JPH09176898A - Method for supplying nickel ion to plating solution and equipment therefor - Google Patents

Method for supplying nickel ion to plating solution and equipment therefor

Info

Publication number
JPH09176898A
JPH09176898A JP33660295A JP33660295A JPH09176898A JP H09176898 A JPH09176898 A JP H09176898A JP 33660295 A JP33660295 A JP 33660295A JP 33660295 A JP33660295 A JP 33660295A JP H09176898 A JPH09176898 A JP H09176898A
Authority
JP
Japan
Prior art keywords
plating solution
nickel
tank
filter
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33660295A
Other languages
Japanese (ja)
Other versions
JP3017067B2 (en
Inventor
Shiyuuji Kaeriyama
周士 帰山
Osamu Shin
修 進
Takashi Sekida
貴司 関田
Ichirou Tanoguchi
一郎 田野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7336602A priority Critical patent/JP3017067B2/en
Publication of JPH09176898A publication Critical patent/JPH09176898A/en
Application granted granted Critical
Publication of JP3017067B2 publication Critical patent/JP3017067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an equipment for supplying nickel ion to a nickel plating soln. by which the dissolving rate is increased when metallic nickel is chemically dissolved by using a metallic nickel dissolving tank and the productivity of a continuous nickel electroplating equipment is improved. SOLUTION: In a nickel electroplating equipment of metallic strip using an insoluble anode, nickel ion is supplied to a plating soln. as a supply raw material, a metallic nickel having 0.01-1.0m<2> /g specific surface is used, and the metallic nickel is incorporated by the amt. of 2-20 times the saturation solubility into a plating soln. kept at 70-100 deg.C and pH1-2, and chemically dissolved. Meanwhile, the equipment for supplying nickel ion to the plating soln. is provided with an electroplating tank 1, plating soln. circulating tank 2, metallic nickel dissolving tank 5, filter 7 for filtering a plating soln. contg. undissolved metallic nickel, plating soln. receiving tank 9 storing a filtered plating soln. and supplying it to the circulating tank 2 and means 8 for transferring the undissolved nickel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、不溶性陽極を用い
る鋼帯などの金属帯のニッケル系連続電気めっき設備に
おいて、消費されるニッケルイオンをめっき液中に補給
するニッケル系めっき液へのニッケルイオンの供給方法
および設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-based continuous electroplating facility for a metal strip such as a steel strip using an insoluble anode, which is used to replenish the plating solution with consumed nickel ions. Supply method and equipment.

【0002】[0002]

【従来の技術】近年、自動車、家電製品などにおいて耐
食性向上の要求が高まり、従来から使用されている亜鉛
めっき鋼板に加え、亜鉛−ニッケル系合金めっき鋼板な
どのニッケル含有合金めっき鋼板の需要が著しく増加し
ている。こうした需要増に対処するため、高能率生産の
可能な高電流密度による高速電気めっき法が採用されて
いるが、高速電気めっき法においては陽極交換を頻繁に
行わねばならない可溶性陽極方式よりも、陽極交換を必
要としないイリジウム系などの不溶性陽極を用い、消費
されるニッケルイオンなどの金属イオンを別途めっき液
中へ連続的に補給する方式の方が有利であることはいう
までもない。
2. Description of the Related Art In recent years, there has been an increasing demand for improved corrosion resistance in automobiles, home appliances and the like, and in addition to the galvanized steel sheets that have been conventionally used, there is a marked demand for nickel-containing alloy plated steel sheets such as zinc-nickel alloy plated steel sheets. It has increased. In order to cope with such an increase in demand, high-speed electroplating method with high current density that enables high-efficiency production is adopted.However, in the high-speed electroplating method, the anode is more preferable than the soluble anode method, which requires frequent replacement of the anode. It goes without saying that a method of using an insoluble anode such as an iridium-based material that does not require replacement and continuously replenishing metal ions such as consumed nickel ions into the plating solution is advantageous.

【0003】めっき液中へのニッケルイオンなどの金属
イオンの補給方法としては、酸化ニッケル、炭酸ニッ
ケルなどの金属化合物の形で溶解する方法、電解設備
を設けて金属ニッケルを電気分解によって溶解する方法
(特開平1−234598号公報、特開平4−1390
0号公報、特開平4−99198号公報、特開平5−2
5700号公報参照)、および、金属ニッケルなどを
直接、酸性めっき液に接触させ、化学溶解する方法、と
がある。
As a method of supplying metal ions such as nickel ions to the plating solution, a method of dissolving in the form of a metal compound such as nickel oxide or nickel carbonate, or a method of providing electrolytic equipment to dissolve nickel metal by electrolysis (JP-A-1-234598, JP-A-4-1390)
No. 0, JP 4-99198 A, JP 5-2
5700), and a method in which metallic nickel or the like is directly brought into contact with an acidic plating solution and chemically dissolved.

【0004】前記の金属化合物を用いる方法において
は、炭酸ニッケルなどの金属化合物は高価な工業用薬品
であり、コスト低減を妨げる一因ともなっている上、微
粉であるため発塵等の環境問題もあり、さらにこれら金
属化合物に通常含有されるナトリウム、カルシウム、塩
素、珪素などの不純物により、次のような問題も発生し
ている。
In the above-mentioned method using a metal compound, the metal compound such as nickel carbonate is an expensive industrial chemical, which is one of the factors that hinder the cost reduction, and because it is a fine powder, it also causes environmental problems such as dust generation. In addition, impurities such as sodium, calcium, chlorine, and silicon usually contained in these metal compounds cause the following problems.

【0005】すなわち、ナトリウムは、めっき浴の電気
伝導度を向上させるため、過剰に存在すると「めっき焼
け」などの異常めっきの原因となる。カルシウムは、め
っき操業において消費されないため、めっき浴中に蓄積
され、飽和状態となると石膏として析出して配管閉塞な
どのトラブルを引き起こす。塩素は、めっき浴中の濃度
が高くなると、めっき密着性を低下させる。
That is, since sodium improves the electric conductivity of the plating bath, if it is present in excess, it causes abnormal plating such as "plating burn". Since calcium is not consumed in the plating operation, it is accumulated in the plating bath and, when saturated, precipitates as gypsum and causes troubles such as pipe blockage. Chlorine reduces the plating adhesion when the concentration in the plating bath increases.

【0006】また、珪素は、めっき浴中の濃度が高くな
ると、めっき浴中の鉄分と反応し、付着性の高い化合物
を生成してカルシウムと同様に配管閉塞などのトラブル
を引き起こす。このため、ニッケルイオン源として金属
化合物を使用するニッケル系電気めっき設備では、これ
らの不純物を除去するための専用の設備を設けるのが一
般的であるが、設備が複雑で、また設備の保守が種々必
要であるという問題があった。
Further, when the concentration of silicon in the plating bath becomes high, silicon reacts with iron in the plating bath to form a highly adherent compound, which causes troubles such as clogging of pipes like calcium. Therefore, in nickel-based electroplating equipment that uses a metal compound as a nickel ion source, it is common to provide dedicated equipment for removing these impurities, but the equipment is complicated and maintenance of the equipment is difficult. There was a problem that various kinds were needed.

【0007】一方、前記、の金属ニッケルを用いる
方法においては、金属ニッケルは、金属化合物と比較し
てニッケル単位重量当たりの価格が50〜60%と安価であ
り、その分工業的に有利である。しかし、の電気分解
によって金属ニッケルを溶解する方法の場合、電力費が
大であるばかりでなく、設備自体が大掛かりなものにな
るという問題があった。
On the other hand, in the above-described method using metallic nickel, the metallic nickel is cheaper at a price per unit weight of nickel of 50 to 60% as compared with metallic compounds, which is industrially advantageous. . However, in the case of the method of dissolving metallic nickel by electrolysis, there is a problem that not only the power cost is large, but also the equipment itself becomes large-scale.

【0008】また、の金属ニッケルをめっき液に接触
させて直接、化学溶解する方法は、コストや作業環境面
では問題がないが、本発明の対象とするZn−Ni合金
電気めっきなどに用いられるニッケル系めっき液の酸濃
度においては溶解速度が小さく、短時間に多量の金属ニ
ッケルを溶解させることは困難であった。
Although the method of directly contacting metal nickel with a plating solution and chemically dissolving the same is not problematic in terms of cost and working environment, it is used for Zn-Ni alloy electroplating, which is the object of the present invention. It was difficult to dissolve a large amount of metallic nickel in a short time because the dissolution rate was low at the acid concentration of the nickel-based plating solution.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、前記
従来技術の問題点を解決し、金属ニッケルを金属ニッケ
ル溶解槽を使用して化学溶解する際の溶解速度を大きく
し、ニッケル系連続電気めっき設備の生産性向上、さら
には金属ニッケル溶解槽およびその付帯設備の小型化が
可能な、ニッケル系めっき液へのニッケルイオンの供給
方法および設備の提供を目的とする。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems of the prior art, to increase the dissolution rate when chemically dissolving metallic nickel using a metallic nickel dissolving tank, and An object of the present invention is to provide a method and equipment for supplying nickel ions to a nickel-based plating solution capable of improving the productivity of electroplating equipment and further downsizing the metal nickel dissolving tank and its associated equipment.

【0010】[0010]

【課題を解決するための手段】第1の発明は、不溶性陽
極を用いる金属帯のニッケル系電気めっき設備における
めっき液へのニッケルイオン供給方法において、供給原
料として、比表面積が0.01 〜1.0 m2/gの粒状および/
または薄片状の金属ニッケルを用い、金属ニッケル溶解
槽内の液温が70〜100 ℃、pHが1〜2に保持された酸
性めっき液中に飽和溶解量の2〜20倍の前記金属ニッケ
ルを含有せしめ、該酸性めっき液を攪拌することを特徴
とするめっき液へのニッケルイオン供給方法である。
The first aspect of the present invention is a method for supplying nickel ions to a plating solution in a nickel-based electroplating equipment for metal strips using an insoluble anode, wherein the specific surface area is 0.01 to 1.0 m 2 as a feed material. / g granularity and /
Alternatively, flaky metallic nickel is used, and 2 to 20 times the saturated amount of the metallic nickel is dissolved in the acidic plating solution in which the liquid temperature in the metallic nickel dissolving tank is maintained at 70 to 100 ° C and the pH is 1 to 2. It is a method for supplying nickel ions to a plating solution, which comprises stirring and stirring the acidic plating solution.

【0011】本第1の発明においては、前記金属ニッケ
ル溶解槽内から未溶解金属ニッケル含有めっき液を抜き
出し、フィルタに供給し、フィルタ濾過液であるめっき
液を、めっき液受槽を経由して電気めっき槽に供給し、
フィルタ濾過残である未溶解金属ニッケルまたは金属ニ
ッケル濃縮めっき液を金属ニッケル溶解槽に循環し、再
溶解に供することが好ましい。
In the first aspect of the present invention, the undissolved metal nickel-containing plating solution is extracted from the metal nickel dissolution tank and supplied to a filter, and the plating solution, which is a filter filtrate, is electrically supplied via a plating solution receiving tank. Supply to the plating tank,
It is preferable to circulate the undissolved metallic nickel or the concentrated metallic nickel plating solution, which is the filter residue, in the metallic nickel dissolving tank for re-dissolution.

【0012】また、本第1の発明においては、前記フィ
ルタが軸方向に複数本の液通路を有する多孔質体で構成
されるフィルタであることが好ましい。さらに、本第1
の発明においては、前記めっき液受槽に移送されためっ
き液中のニッケルイオン濃度を測定し、電気めっき槽で
消費されたニッケルイオン量に相当するめっき液を前記
めっき液受槽から電気めっき槽へ供給することが好まし
い。
Further, in the first aspect of the present invention, it is preferable that the filter is a porous body having a plurality of liquid passages in the axial direction. Furthermore, the first
In the invention, the concentration of nickel ions in the plating solution transferred to the plating solution receiving tank is measured, and a plating solution corresponding to the amount of nickel ions consumed in the electroplating tank is supplied from the plating solution receiving tank to the electroplating tank. Preferably.

【0013】第2の発明は、不溶性陽極を使用する金属
帯のニッケル系電気めっき設備に配設しためっき液への
ニッケルイオン供給設備であって、該ニッケルイオン供
給設備が、電気めっき槽1にめっき液を循環供給するめ
っき液循環槽2と、該めっき液循環槽2から移送される
めっき液に金属ニッケルを溶解する金属ニッケル溶解槽
5と、該金属ニッケル溶解槽5から抜き出した未溶解金
属ニッケル含有めっき液を濾過するためのフィルタ7
と、該フィルタ7からの濾過液であるめっき液を貯蔵
し、前記めっき液循環槽2にめっき液を供給するための
めっき液受槽9と、前記フィルタ7からのフィルタ濾過
残である未溶解金属ニッケルまたは金属ニッケル濃縮め
っき液を前記金属ニッケル溶解槽5に移送するための未
溶解金属ニッケル移送手段8と、前記めっき液受槽9の
めっき液のニッケルイオン濃度測定装置16を備えたこと
を特徴とするめっき液へのニッケルイオン供給設備であ
る。
A second aspect of the present invention is a nickel ion supply facility for a plating solution arranged in a nickel-based electroplating facility for a metal strip using an insoluble anode, the nickel ion supply facility being used in the electroplating tank 1. A plating solution circulating tank 2 for circulatingly supplying the plating solution, a metal nickel dissolving tank 5 for dissolving metal nickel in the plating solution transferred from the plating solution circulating tank 2, and an undissolved metal extracted from the metal nickel dissolving tank 5. Filter 7 for filtering nickel-containing plating solution
And a plating solution receiving tank 9 for storing a plating solution which is a filtered solution from the filter 7 and supplying the plating solution to the plating solution circulating tank 2, and an undissolved metal which is a filter filtration residue from the filter 7. An undissolved metallic nickel transfer means 8 for transferring a nickel or metallic nickel concentrated plating solution to the metallic nickel dissolving tank 5; and a nickel ion concentration measuring device 16 for the plating solution in the plating solution receiving tank 9. This is a facility for supplying nickel ions to the plating solution.

【0014】本第2の発明においては、前記フィルタ7
が軸方向に複数本の液通路を有する多孔質体で構成され
るフィルタであることが好ましい。
In the second invention, the filter 7 is used.
Is preferably a filter composed of a porous body having a plurality of liquid passages in the axial direction.

【0015】[0015]

【発明の実施の形態】以下に本発明をさらに詳細に説明
する。本発明は、Zn−Ni合金電気めっき、Zn−Ni−Cr合
金電気めっきなどNi系電気めっきにおける酸性めっき液
中へのニッケルイオンの供給方法として好ましく適用さ
れる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. INDUSTRIAL APPLICABILITY The present invention is preferably applied as a method for supplying nickel ions to an acidic plating solution in Ni-based electroplating such as Zn-Ni alloy electroplating and Zn-Ni-Cr alloy electroplating.

【0016】また、本発明は、前記の金属化合物を用
いる方法、およびの金属ニッケル電気分解法の問題点
を解決するため、金属ニッケルをめっき液に化学溶解さ
せることで、経済的かつ簡易な方法、設備でめっき液中
にニッケルイオンを迅速に供給可能な方法および設備で
ある。図3に本発明に係わる電気めっき設備を示す。
Further, in order to solve the problems of the method using the above metal compound and the metal nickel electrolysis method, the present invention is an economical and simple method by chemically dissolving metal nickel in a plating solution. A method and equipment capable of rapidly supplying nickel ions into a plating solution in the equipment. FIG. 3 shows the electroplating equipment according to the present invention.

【0017】図3において、1は電気めっき槽、2はめ
っき液循環槽、3は昇温槽、4は金属ニッケル貯蔵ホッ
パ、5は金属ニッケル溶解槽、6は攪拌機、7はフィル
タ、8は未溶解金属ニッケル移送手段、9はめっき液受
槽、10、11、12はめっき液送給ポンプ、13は攪拌機用モ
ータ、14は昇温用熱交換器、15は冷却用熱交換器、16、
17、18はめっき液のニッケルイオン濃度測定装置、19は
鋼帯などの金属帯、20は金属帯の進行方向、21はバック
アップロール、22はコンダクタロール、23、24は不溶性
陽極を示す。
In FIG. 3, 1 is an electroplating tank, 2 is a plating solution circulating tank, 3 is a temperature raising tank, 4 is a metal nickel storage hopper, 5 is a metal nickel dissolving tank, 6 is a stirrer, 7 is a filter, and 8 is Undissolved metallic nickel transfer means, 9 is a plating solution receiving tank, 10, 11 and 12 are plating solution feeding pumps, 13 is a stirrer motor, 14 is a heat-up heat exchanger, 15 is a heat exchanger for cooling, 16,
Reference numerals 17 and 18 indicate a nickel ion concentration measuring device for plating solution, 19 indicates a metal strip such as a steel strip, 20 indicates a traveling direction of the metal strip, 21 indicates a backup roll, 22 indicates a conductor roll, and 23 and 24 indicate insoluble anodes.

【0018】なお、めっき液のニッケルイオン濃度測定
装置16、17、18は、めっき液試料採集装置またはセンサ
のみを個別にめっき液受槽9、めっき液循環槽2、昇温
槽3に付設し、測定装置本体は1台で兼用しても良く、
制限はされない。以下、図3に基づき本発明のめっき液
へのニッケルイオン供給方法および装置について説明す
る。
In the plating solution nickel ion concentration measuring devices 16, 17, and 18, only the plating solution sample collecting device or the sensor is individually attached to the plating solution receiving tank 9, the plating solution circulating tank 2, and the temperature raising tank 3. The main unit of the measuring device may be used as a single unit,
There is no limit. The method and apparatus for supplying nickel ions to the plating solution of the present invention will be described below with reference to FIG.

【0019】ニッケルイオン含有めっき液は、電気めっ
き槽1とめっき液循環槽2の間を循環する。鋼帯などの
金属帯19は、電気めっき槽1において下記式(1) の反応
に従って電気めっきを施され、その際めっき液中のニッ
ケルイオン濃度が減少する。 Ni2++2e- →Ni ・・・・(1) めっき液循環槽2から抜き出した硫酸酸性めっき液など
の酸性めっき液は、めっき液送給ポンプ10により、昇温
槽3へ移送し、蒸気ヒータ、電熱ヒータなどから構成さ
れる昇温用熱交換器14により昇温後、金属ニッケル溶解
槽(以下溶解槽と記す)5に供給する。
The nickel ion-containing plating solution circulates between the electroplating tank 1 and the plating solution circulating tank 2. The metal strip 19 such as a steel strip is electroplated in the electroplating tank 1 according to the reaction of the following equation (1), and at that time, the nickel ion concentration in the plating solution is reduced. Ni 2+ + 2e → Ni ・ ・ ・ ・ (1) Acid plating solution such as sulfuric acid plating solution extracted from the plating solution circulation tank 2 is transferred to the temperature raising tank 3 by the plating solution feeding pump 10 and vaporized. After the temperature is raised by a heat-up heat exchanger 14 composed of a heater, an electric heater, etc., it is supplied to a metal nickel melting tank (hereinafter referred to as a melting tank) 5.

【0020】溶解槽5においては、金属ニッケル貯蔵ホ
ッパ4から投入した金属ニッケルをめっき液中でインペ
ラ型またはポンプ型などの攪拌機6による攪拌条件下、
下記式(2) 、(3) に従い化学溶解し、めっき液中にニッ
ケルイオンを供給する。 Ni→Ni2++2e- ・・・・(2) 2H+ +2e- →H2 ↑・・・(3) 溶解槽5から間隔をおいて、または連続的に抜き出した
未溶解金属ニッケル含有めっき液は、めっき液送給ポン
プ11により、フィルタ7に移送し、フィルタ濾過液であ
るめっき液は、めっき液受槽9、めっき液循環槽2を経
由してめっき液送給ポンプ12等により電気めっき槽1へ
供給する。
In the melting tank 5, the metallic nickel charged from the metallic nickel storage hopper 4 is stirred in a plating solution by a stirring machine 6 of an impeller type or a pump type.
Chemically dissolve according to the following formulas (2) and (3), and supply nickel ions into the plating solution. Ni → Ni 2+ + 2e ··· (2) 2H + + 2e → H 2 ↑ ··· (3) Undissolved metallic nickel-containing plating solution withdrawn from the dissolution tank 5 at intervals or continuously. Is transferred to the filter 7 by the plating solution feed pump 11, and the plating solution which is the filter filtrate is passed through the plating solution receiving tank 9 and the plating solution circulating tank 2 by the plating solution feed pump 12 and the like to the electroplating tank. Supply to 1.

【0021】なお、めっき液はめっき液受槽9の冷却用
熱交換器15により、電気めっき槽1における好ましいめ
っき液温度まで冷却する。また、本発明においては、前
記めっき液受槽9に移送されためっき液およびめっき液
循環槽2のめっき液、各々のニッケルイオン濃度を、ニ
ッケルイオン濃度測定装置16、17により測定し、電気め
っき槽1で消費されたニッケルイオン量に相当するめっ
き液を、めっき液受槽9からめっき液循環槽2を経由し
て電気めっき槽1へ供給することが好ましい。
The plating solution is cooled by the cooling heat exchanger 15 of the plating solution receiving tank 9 to a preferable plating solution temperature in the electroplating tank 1. Further, in the present invention, the plating solution transferred to the plating solution receiving tank 9 and the plating solution in the plating solution circulating tank 2 and the nickel ion concentration of each are measured by nickel ion concentration measuring devices 16 and 17, and the electroplating tank It is preferable that the plating solution corresponding to the amount of nickel ions consumed in 1 is supplied from the plating solution receiving tank 9 to the electroplating tank 1 via the plating solution circulating tank 2.

【0022】なお、めっき液循環槽2内のめっき液ニッ
ケルイオン濃度を測定する代わりに、昇温槽3内のめっ
き液ニッケルイオン濃度を、ニッケルイオン濃度測定装
置18により測定した方が、より精度良い濃度制御が可能
であり、より好ましい。一方、フィルタ濾過残である未
溶解金属ニッケルまたは未溶解金属ニッケル含有めっき
液(以下金属ニッケル濃縮めっき液と記す)は、コンベ
ア、スクリューフィーダまたはポンプなどの未溶解金属
ニッケル移送手段8により金属ニッケル溶解槽5に循環
し、再溶解に供する。
It is more accurate to measure the nickel ion concentration of the plating solution in the temperature raising tank 3 by the nickel ion concentration measuring device 18 instead of measuring the nickel ion concentration of the plating solution in the plating solution circulating tank 2. Good concentration control is possible and more preferable. On the other hand, the undissolved metallic nickel or the undissolved metallic nickel-containing plating solution (hereinafter referred to as the metallic nickel concentrated plating solution), which is the filter residue, is dissolved by the undissolved metallic nickel transfer means 8 such as a conveyor, a screw feeder or a pump. It circulates in the tank 5 and is used for redissolution.

【0023】なお、金属ニッケル溶解槽5に循環する前
記未溶解金属ニッケルの状態としてはスラリー状のもの
も含む。以下、本発明の好適な態様およびその作用につ
いて述べる。前記したように、電気めっき槽の陽極とし
て不溶性陽極を用いた場合、ニッケルイオンを外部から
補給する必要があるが、そのニッケルイオンの補給を、
金属ニッケルの酸性めっき液への化学溶解により行うの
が本発明の方式である。
The state of the undissolved metallic nickel circulated in the metallic nickel dissolving tank 5 includes a slurry state. Hereinafter, preferred embodiments of the present invention and their effects will be described. As described above, when an insoluble anode is used as the anode of the electroplating bath, it is necessary to replenish nickel ions from the outside.
The method of the present invention is performed by chemically dissolving metallic nickel in an acidic plating solution.

【0024】しかし、金属ニッケルは、例えばpH:1
〜2の酸性めっき液に対して、その溶解速度が小さいた
め、溶解速度を上げるために、本発明においては、比表
面積が 0.01 〜1.0m2/g の粒状および/または薄片状の
金属ニッケルを原料として用い、該金属ニッケルを、溶
解槽内の液温が70〜100 ℃、pHが1〜2に保持された
酸性めっき液中に投入、溶解する。
However, metallic nickel has, for example, a pH of 1:
In the present invention, in order to increase the dissolution rate, in the present invention, granular and / or flaky metallic nickel having a specific surface area of 0.01 to 1.0 m 2 / g is used. Used as a raw material, the metallic nickel is charged and dissolved in an acidic plating solution in which the liquid temperature is maintained at 70 to 100 ° C. and the pH is maintained at 1 to 2 in the melting tank.

【0025】金属ニッケルの比表面積が 0.01m2/g 未満
の場合、金属ニッケルとめっき液との接触面積が小さ
く、目標とした溶解速度が得られず、逆に1.0m2/g を超
える金属ニッケルを製造することは難しく、また微粉金
属取扱い時の安全性の面および経済性の面から金属ニッ
ケルの比表面積を前記の範囲に限定した。金属ニッケル
溶解槽内のめっき液温度が70℃未満の場合、目標とした
溶解速度が得られず、逆に100 ℃を超える場合、めっき
液が沸騰し、溶解槽の構造の複雑化、溶解槽内壁などの
腐食が著しくなるため、金属ニッケル溶解槽5内のめっ
き液温度を前記の範囲に限定した。
When the specific surface area of the metallic nickel is less than 0.01 m 2 / g, the contact area between the metallic nickel and the plating solution is small, and the target dissolution rate cannot be obtained. Conversely, when the specific surface area of the metallic nickel exceeds 1.0 m 2 / g. It is difficult to produce nickel, and the specific surface area of metallic nickel is limited to the above range in terms of safety and economical efficiency when handling fine metal powder. If the temperature of the plating solution in the metal nickel solution bath is less than 70 ° C, the target dissolution rate cannot be obtained. Conversely, if it exceeds 100 ° C, the plating solution will boil and the structure of the dissolution tank will be complicated. Since the corrosion of the inner wall becomes remarkable, the temperature of the plating solution in the metal nickel dissolving tank 5 is limited to the above range.

【0026】なお、溶解槽内のめっき液温度を70〜100
℃に調節する方法としては、(1)前記の図3に示され
るとおり、溶解槽5の前段に昇温槽3または昇温装置
(図示せず)を配置し、予め70〜100 ℃に調節しためっ
き液を断熱材を施工した溶解槽内に供給する方式、
(2)溶解槽に加熱装置(図示せず)を設け、めっき液
温度を70〜100 ℃に調節する方法、および(3)溶解槽
の前段の昇温槽3または昇温装置でめっき液を予熱し、
かつ溶解槽5に加熱装置を設け、めっき液温度を70〜10
0 ℃に調節する方法などが例示され、好ましくは、
(1)の前記の図3に示される昇温槽方式が、温度制御
性に優れるため好ましい。
The temperature of the plating solution in the melting tank should be 70-100.
As a method of adjusting the temperature to (1), as shown in FIG. 3 above, the temperature raising tank 3 or a temperature raising device (not shown) is arranged in front of the dissolution tank 5, and the temperature is adjusted to 70 to 100 ° C. in advance. The plating solution is supplied into the melting tank with heat insulation material,
(2) A heating device (not shown) is provided in the melting tank to adjust the plating solution temperature to 70 to 100 ° C, and (3) the plating solution is heated in the temperature raising tank 3 or the temperature raising device in the preceding stage of the melting tank. Preheat,
Moreover, a heating device is provided in the melting tank 5 to control the plating solution temperature to 70 to 10
A method of adjusting the temperature to 0 ° C. is exemplified, and preferably,
The temperature raising tank method shown in FIG. 3 of (1) is preferable because of excellent temperature controllability.

【0027】また、溶解槽5内のめっき液のpHは1〜
2に保持する。これは、めっき液のpHが1未満の場
合、該めっき液をめっき液循環槽2へ送液すると、電気
めっき槽のめっき液pHの低下を招きめっき効率が著し
く低下するためであり、2を超えた場合、金属Niの溶
解速度が著しく低下するためである。
The pH of the plating solution in the dissolution tank 5 is 1 to
Hold at 2. This is because when the pH of the plating solution is less than 1, when the plating solution is sent to the plating solution circulation tank 2, the pH of the plating solution in the electroplating tank is lowered and the plating efficiency is significantly reduced. This is because if it exceeds, the dissolution rate of the metallic Ni is significantly reduced.

【0028】めっき液のpH調節としては、硫酸など酸
の添加、蒸発法または電気透析法による濃縮法などを用
いることができ、特に制限はされない。溶解槽における
溶解操作は、(1)めっき液および金属ニッケルを所定
量溶解槽に仕込んだ後、攪拌、溶解し、溶解後、未溶解
金属ニッケル含有めっき液を溶解槽から抜き出しフィル
タリングするバッチ式、(2)めっき液および金属ニッ
ケルを連続的に供給し、並行して未溶解金属ニッケル含
有めっき液を溶解槽から抜き出しフィルタリングする連
続式、(3)溶解槽へのめっき液の供給、金属ニッケル
の投入、未溶解金属ニッケル含有めっき液の溶解槽から
の抜き出し及びフィルタリングの少なくともいずれか一
つを連続的に行い、他の少なくともいずれか一つを間隔
をおいて行う方式など種々の操作方式が可能である。
The pH of the plating solution can be adjusted by adding an acid such as sulfuric acid, a concentration method by an evaporation method or an electrodialysis method, and is not particularly limited. The dissolution operation in the dissolution tank is (1) a batch type in which a plating solution and metallic nickel are charged in a predetermined amount in a dissolution tank, stirred and dissolved, and after dissolution, an undissolved metallic nickel-containing plating solution is extracted from the dissolution tank and filtered. (2) A continuous system in which the plating solution and metallic nickel are continuously supplied, and in parallel, the undissolved metallic nickel-containing plating solution is withdrawn from the dissolution tank and filtered, (3) The plating solution is supplied to the dissolution tank, and metallic nickel Various operation methods are possible, such as a method of continuously performing at least one of inputting, withdrawing the undissolved metal nickel-containing plating solution from the dissolution tank, and filtering, and performing at least one of the other at intervals. Is.

【0029】前記した種々の操作方式のうち、一定のニ
ッケル濃度のめっき液を連続して供給でき、しかも撹
拌、溶解、抜き出し、フィルタリングを同時に行うた
め、ロスタイムがなく効率がよいという理由で(1)の
方式が好ましいが、これらの溶解操作方式に制限される
ものではない。次に、めっき液中の金属ニッケル含有量
について述べる。
Among the various operation methods described above, a plating solution having a constant nickel concentration can be continuously supplied, and since stirring, dissolution, extraction and filtering are simultaneously performed, there is no loss time and efficiency is high (1 Method) is preferred, but is not limited to these dissolution operation methods. Next, the content of metallic nickel in the plating solution will be described.

【0030】溶解槽における金属ニッケルの溶解におい
て、溶解操作前または溶解中の金属ニッケルの投入量
は、必要溶解量だけとし、全て溶解するまで攪拌するこ
とにより、未溶解金属ニッケルの残留を防止することも
可能であるが、前記のとおり金属ニッケルのめっき液へ
の溶解速度は小さく、金属ニッケルが全て溶解するには
相当の時間を要するため、本発明においては、金属ニッ
ケルは、必要溶解量に対して過剰量を投入する。
In the dissolution of metallic nickel in the dissolution tank, the amount of metallic nickel before or during the melting operation is limited to the required amount, and stirring is carried out until all the metallic nickel is dissolved to prevent the undissolved metallic nickel from remaining. Although it is also possible, as described above, the dissolution rate of the metallic nickel in the plating solution is small, and it takes a considerable time for all the metallic nickel to dissolve. On the other hand, add an excessive amount.

【0031】すなわち、溶解槽内の液温が70〜100 ℃、
pHが1〜2に保持された酸性めっき液中に飽和溶解量
の2〜20倍、さらに好ましくは5〜10倍の前記金属ニッ
ケルを含有せしめることが好ましい。溶解槽内のめっき
液中の金属ニッケルの含有量が飽和溶解量の2倍未満の
場合、溶解速度が低下し、逆に20倍を超えた場合、未溶
解金属ニッケルの分離・回収に時間を要し、好ましくな
い。
That is, the liquid temperature in the melting tank is 70 to 100 ° C.,
It is preferable that the acidic nickel plating solution whose pH is maintained at 1 to 2 contains 2 to 20 times, and more preferably 5 to 10 times, the above-mentioned metallic nickel of the saturated dissolution amount. When the content of metallic nickel in the plating solution in the dissolution tank is less than twice the saturated dissolution amount, the dissolution rate decreases, and when it exceeds 20 times, it takes time to separate and recover the undissolved metallic nickel. Needed and not preferred.

【0032】なお、溶解槽内のめっき液中に飽和溶解量
の2〜20倍の金属ニッケルを含有せしめるための金属ニ
ッケルの投入量は、下記のようにして求められる。すな
わち、前記バッチ方式、連続方式などいずれの場合も、
溶解時間をt(hr)、溶解槽の有効容積(=めっき液を保
有可能な容積)をV、溶解槽単位容積(=有効単位容
積)当たりの飽和溶解量をW0 (kg/m3 )としたとき、
初回の金属ニッケルの投入量W(kg)は下記式(4) で示さ
れる。
The amount of metallic nickel to be added in order to contain 2 to 20 times the saturated amount of metallic nickel in the plating solution in the melting tank is determined as follows. That is, in any of the batch method, the continuous method, etc.,
The dissolution time is t (hr), the effective volume of the dissolution tank (= the volume that can hold the plating solution) is V, and the saturated dissolution amount per unit volume of the dissolution tank (= effective unit volume) is W 0 (kg / m 3 ). And when
The initial amount W (kg) of metallic nickel is given by the following equation (4).

【0033】W=2〜20W0 ×V ・・・・・(4) バッチ式の場合、2回目以降の投入量Wi (kg)は下記式
(4−1)で示される。 W=(a−a0 )×V ・・・・・・(4−1) ここで、a;めっき液受槽9内のめっき液ニッケルイオ
ン濃度(kg/m3) 、a0;電気めっき槽1内のめっき液ニ
ッケルイオン濃度(=めっき液循環槽2内のめっき液ニ
ッケルイオン濃度)または昇温槽3内のめっき液ニッケ
ルイオン濃度(kg/m3) である。
W = 2 to 20W 0 × V (4) In the case of the batch type, the charged amount W i (kg) after the second time is the following formula.
It is shown in (4-1). W = (a−a 0 ) × V (4−1) where a: Nickel ion concentration of plating solution in plating solution receiving tank 9 (kg / m 3 ), a 0 ; Electroplating tank It is the nickel concentration of the plating solution in 1 (= the nickel ion concentration of the plating solution in the plating solution circulating tank 2) or the nickel ion concentration of the plating solution in the temperature raising tank 3 (kg / m 3 ).

【0034】連続式の場合、溶解槽へ投入する金属ニッ
ケル投入速度VW (kg/hr) は下記式(4−2)で示される。 VW =(a−a0 )×f ・・・・・(4−2) ここで、f;溶解槽からフィルタ濾過されてめっき液受
槽9へ送り出されるめっき液流量(m3/hr) である。
In the case of the continuous type, the feeding rate V W (kg / hr) of metallic nickel fed into the melting tank is expressed by the following equation (4-2). V W = (a−a 0 ) × f (4-2) where f is the plating solution flow rate (m 3 / hr) sent from the dissolution tank to the plating solution receiving tank 9 after being filtered by the filter. is there.

【0035】すなわち、例えば前記バッチ方式、連続方
式などいずれの場合も、予め前記式(4) から導かれる金
属ニッケル量W(kg)が常に溶解槽内で一定となるよう
に、溶解前および/または溶解中に投入し、溶解時間t
の間に溶解を行う。溶解操作後にまたは溶解中に溶解槽
5から抜き出した未溶解金属ニッケル含有めっき液は、
めっき液送給ポンプ11によりフィルタ7に移送する。
That is, in any of the batch system and the continuous system, the amount of metallic nickel W (kg) previously derived from the above formula (4) is always constant in the melting tank before and / or before the melting. Or, it is put in during the dissolution and the dissolution time t
Dissolve during. The undissolved metallic nickel-containing plating solution extracted from the dissolution tank 5 after the dissolution operation or during the dissolution is
The plating solution feed pump 11 transfers the plating solution to the filter 7.

【0036】本発明においては、未溶解金属ニッケルを
めっき液と共にフィルタに移送して分離し、金属ニッケ
ルを溶解槽へ循環、再溶解することにより、金属ニッケ
ルのロスおよびフィルタ内の詰まりを防止することが可
能となった。フィルタ濾過液であるめっき液は、めっき
液受槽9を経由し、またはめっき液受槽9に一旦貯蔵
し、必要量をめっき液循環槽2を経由して電気めっき槽
1に供給し、電気めっき槽中のめっき液のニッケルイオ
ン濃度の制御を行う。
In the present invention, undissolved metallic nickel is transferred to the filter together with the plating solution for separation, and the metallic nickel is circulated in the dissolution tank and redissolved to prevent loss of metallic nickel and clogging of the filter. It has become possible. The plating solution, which is a filter filtrate, is stored in the plating solution receiving tank 9 or is temporarily stored in the plating solution receiving tank 9, and a necessary amount is supplied to the electroplating tank 1 via the plating solution circulating tank 2 to obtain the electroplating tank. The nickel ion concentration of the plating solution inside is controlled.

【0037】また、フィルタ濾過残である未溶解金属ニ
ッケルまたは金属ニッケル濃縮めっき液は金属ニッケル
溶解槽5に循環し、再溶解に供する。なお、フィルタ7
としては、図4に例示する軸方向に複数本の液通路を有
する多孔質体で構成されるフィルタ(以下クロスフロー
方式のフィルタと記す)が好ましい。
The undissolved metallic nickel or the concentrated metallic nickel plating solution, which is the filter filtration residue, is circulated to the metallic nickel dissolving tank 5 for re-dissolution. Note that the filter 7
As the above, a filter constituted by a porous body having a plurality of liquid passages in the axial direction illustrated in FIG. 4 (hereinafter referred to as a cross-flow type filter) is preferable.

【0038】図4は、クロスフロー方式のフィルタ25の
構造を示す斜視図である。図4において、26はフィルタ
エレメント、27は貫通孔(ルーメン)を示す。クロスフ
ロー方式のフィルタ25は、ポーラスなセラミックス製の
円柱体をなすフィルタエレメント26にその長手方向(=
軸方向)に複数の貫通孔(ルーメン)27を設けたもので
ある。
FIG. 4 is a perspective view showing the structure of the cross-flow type filter 25. In FIG. 4, 26 is a filter element, and 27 is a through hole (lumen). The cross-flow type filter 25 includes a filter element 26, which is a columnar body made of porous ceramics, in the longitudinal direction (=
A plurality of through holes (lumens) 27 are provided in the axial direction.

【0039】クロスフロー方式のフィルタ25に供給され
た未溶解金属ニッケル含有めっき液は、ルーメン27の中
を通過する間に、その一部がフィルタエレメント26によ
り濾過されてフィルタ濾過めっき液となるが、残りのめ
っき液はルーメン27中を未溶解金属ニッケルと共に素通
りしてフィルタ濾過残、すなわち金属ニッケル濃縮めっ
き液またはスラリーとして金属ニッケル溶解槽に循環さ
れる。
While the undissolved metallic nickel-containing plating solution supplied to the cross-flow type filter 25 passes through the lumen 27, a part thereof is filtered by the filter element 26 to become a filter filtration plating solution. The remaining plating solution passes through the lumen 27 together with undissolved metallic nickel, and is filtered and filtered, that is, circulated in the metallic nickel dissolving tank as a concentrated metallic nickel plating solution or slurry.

【0040】本発明においては、クロスフロー方式のフ
ィルタを採用することにより、未溶解の金属ニッケルは
フィルタ中に堆積しないでめっき液とともにルーメン27
中を通過するため、溶解槽5とフィルタ7との間を循環
する図3に示すような溶解槽5からフィルタ7への送液
経路および未溶解金属ニッケル移送手段8の経路を設け
ることにより、金属ニッケルの溶解と未溶解金属ニッケ
ルの分離・回収、再溶解を連続的に行うことが可能とな
り、設備を全体的にコンパクトにすることが可能とな
る。
In the present invention, by adopting the cross-flow type filter, the undissolved metallic nickel is not deposited in the filter and the lumen 27 together with the plating solution is used.
In order to pass through the inside, by providing a liquid feeding path from the melting tank 5 to the filter 7 and a path of the undissolved metal nickel transfer means 8 as shown in FIG. 3, which circulates between the melting tank 5 and the filter 7, Dissolution of metallic nickel and separation / recovery of undissolved metallic nickel and re-dissolution can be performed continuously, and the equipment can be made compact as a whole.

【0041】また、フィルタで回収したフィルタ濾過残
である未溶解金属ニッケルまたは金属ニッケル濃縮めっ
き液は、金属ニッケル溶解槽5に循環し、再溶解に供す
ることにより、金属ニッケルのニッケルイオンへの歩留
りを100 %とすることが可能となる。クロスフロー方式
のフィルタの前記多孔質体としては、例えばアルミナお
よび/またはシリカを主成分とするセラミック材が好ま
しく、さらにはアルミナ系セラミック材が好ましい。
The undissolved metallic nickel or concentrated metallic nickel plating solution, which is the filter residue collected by the filter, is circulated to the metallic nickel dissolving tank 5 and is subjected to re-dissolution, whereby the yield of metallic nickel to nickel ions is increased. Can be 100%. As the porous body of the cross-flow type filter, for example, a ceramic material containing alumina and / or silica as a main component is preferable, and further an alumina ceramic material is preferable.

【0042】アルミナおよび/またはシリカを主成分と
するセラミック材の場合、フィルタ濾過液であるめっき
液への未溶解金属ニッケルの混入が防止可能となり、め
っき時の金属帯への金属ニッケル微粒子の付着が防止で
き、めっき品質が向上する。さらに、多孔質体として、
アルミナおよび/またはシリカを主成分とするセラミッ
ク材を用いた場合、微細な未溶解金属ニッケルの分離性
が向上し、溶解槽5に供給する金属ニッケルの粒径を従
来よりかなり小さくできるため、金属ニッケルの溶解速
度が上がり、効率のよい溶解作業が可能となる。
In the case of a ceramic material containing alumina and / or silica as a main component, it is possible to prevent the undissolved metallic nickel from being mixed into the plating solution which is the filter filtrate, and the adhesion of the metallic nickel fine particles to the metal band during plating Can be prevented and the plating quality is improved. Furthermore, as a porous body,
When a ceramic material containing alumina and / or silica as a main component is used, the separation property of fine undissolved metallic nickel is improved, and the particle size of metallic nickel supplied to the melting tank 5 can be made considerably smaller than in the conventional case. The rate of nickel dissolution is increased, enabling efficient melting work.

【0043】溶解操作後にまたは溶解中に、時間の間隔
をおいて、または連続的に溶解槽5より抜き出し、フィ
ルタにより濾過された濾液であるめっき液は、めっき液
受槽9に移送し、好ましくはめっき液受槽9に一旦貯蔵
し、めっき液中のニッケルイオン濃度を均一化し、めっ
き液受槽のめっき液中のニッケルイオンの濃度測定を行
った後、電気めっき槽1に必要量を供給し、電気めっき
槽1中のめっき液のニッケルイオン濃度の制御を行うこ
とが好ましい。
After or during the dissolution operation, the plating solution, which is the filtrate filtered out by the filter after being taken out of the dissolution tank 5 at intervals of time or continuously, is transferred to the plating solution receiving tank 9, and preferably. Once stored in the plating solution receiving tank 9, the concentration of nickel ions in the plating solution is made uniform, and the concentration of nickel ions in the plating solution in the plating solution receiving tank is measured. It is preferable to control the nickel ion concentration of the plating solution in the plating tank 1.

【0044】この場合、電気めっき槽1に供給するめっ
き液量v(m3)は下記式 (5)で算出する。 v=X/(a−a0 )・・・・・・・(5) ここで、X;ニッケルイオン減少量(kg)、a;めっき液
受槽9内のめっき液ニッケルイオン濃度(kg/m3) 、
0 ;電気めっき槽1内のめっき液ニッケルイオン濃度
(=めっき液循環槽2内のめっき液ニッケルイオン濃
度)または昇温槽3内のめっき液ニッケルイオン濃度(k
g/m3) である。
In this case, the plating solution amount v (m 3 ) supplied to the electroplating tank 1 is calculated by the following equation (5). v = X / (a−a 0 ) ... (5) where X: nickel ion decrease amount (kg), a: plating solution nickel ion concentration in plating solution receiving tank 9 (kg / m) 3 ),
a 0 : Nickel ion concentration of plating solution in the electroplating tank 1 (= nickel ion concentration of plating solution in the plating solution circulating tank 2) or nickel ion concentration of plating solution in the temperature raising tank 3 (k
g / m 3 ).

【0045】なお、前記Xは、後記に示すとおり、め
っき液循環槽2内のめっき液ニッケルイオン濃度の測定
値の経時変化と電気めっき槽1内のめっき液量および
めっき液循環槽2内のめっき液量の合計値の両者から求
めることができる。本発明によれば、ニッケルイオン供
給原料として、比表面積が 0.01 〜1.0m2/g の粒状およ
び/または薄片状の金属ニッケルを、金属ニッケル溶解
槽内の液温が70〜100 ℃、pHが1〜2に保持された酸
性めっき液中に飽和溶解量の2〜20倍含有せしめ、攪拌
下、化学溶解せしめることにより、目標とする高い溶解
速度を達成することが可能となった。
As will be described later, the X is a change over time in the measured value of the nickel ion concentration of the plating solution in the plating solution circulating tank 2, the amount of plating solution in the electroplating tank 1 and the plating solution circulating tank 2. It can be obtained from both of the total values of the plating solutions. According to the present invention, as the nickel ion feedstock, a granular and / or flaky metallic nickel having a specific surface area of 0.01 to 1.0 m 2 / g is used, the liquid temperature in the metallic nickel melting tank is 70 to 100 ° C., and the pH is It was possible to achieve the target high dissolution rate by containing 2 to 20 times the saturated dissolution amount in the acidic plating solution held at 1 to 2 and chemically dissolving it under stirring.

【0046】また、本発明においては、好ましくはアル
ミナおよび/またはシリカを主成分とする多孔質体、よ
り好ましくはアルミナを主成分とする多孔質体から構成
されるクロスフロー方式のフィルタを併用することによ
り、金属ニッケルの溶解と未溶解金属ニッケルの分離・
回収、再溶解を連続的かつ迅速に行うことが可能とな
り、設備を全体的にコンパクトにすることが可能となっ
た。
Further, in the present invention, a cross-flow type filter composed of a porous body containing alumina and / or silica as a main component, more preferably a porous body containing alumina as a main component, is used together. This allows the dissolution of metallic nickel and the separation of undissolved metallic nickel.
It became possible to carry out recovery and redissolving continuously and quickly, making it possible to make the equipment compact overall.

【0047】また、フィルタ濾過液であるめっき液への
未溶解金属ニッケルの混入が防止可能となり、めっき時
の金属帯への金属ニッケル微粒子の付着が防止でき、め
っき品質が向上する。さらに、微細な未溶解金属ニッケ
ルの分離性が向上し、溶解槽5に供給する金属ニッケル
の粒径を従来よりかなり小さくできるため、金属ニッケ
ルの溶解速度が上がり、効率のよい溶解作業が可能とな
った。
Further, it becomes possible to prevent the undissolved metallic nickel from mixing into the plating solution which is the filter filtrate, and to prevent the metallic nickel fine particles from adhering to the metal strip during plating, thus improving the plating quality. Furthermore, the separation of fine undissolved metallic nickel is improved, and the particle size of metallic nickel supplied to the melting tank 5 can be made considerably smaller than before, so the rate of metallic nickel dissolution is increased, and efficient melting work is possible. became.

【0048】また、本発明においては、図3に示すよう
に、電気めっき槽1およびめっき液循環槽2と別個に設
けためっき液受槽9を用いてめっき液中のニッケルイオ
ン濃度の制御を行うことにより、例えば亜鉛−ニッケル
合金電気めっきなどのニッケル系合金電気めっきにおい
て、めっき品質に大きな影響を及ぼすめっき皮膜中のニ
ッケル含有率が極めて正確に制御でき、めっき品質の管
理が極めて容易となる効果を有する。
In the present invention, as shown in FIG. 3, the nickel ion concentration in the plating solution is controlled by using the plating solution receiving tank 9 provided separately from the electroplating tank 1 and the plating solution circulating tank 2. As a result, for example, in nickel-based alloy electroplating such as zinc-nickel alloy electroplating, the nickel content in the plating film, which greatly affects the plating quality, can be controlled very accurately, and the management of the plating quality becomes extremely easy. Have.

【0049】[0049]

【実施例】次に本発明の効果を実施例に基づいて具体的
に説明する。 (実施例1)前記した図3の電気めっき設備において金
属ニッケルの溶解実験を行った。すなわち、金属ニッケ
ル溶解槽5へ投入する金属ニッケルの比表面積を種々変
えて、金属ニッケル比表面積と金属ニッケル溶解速度と
の関係を、溶解槽内めっき液温度:90℃、めっき液p
H:1.5 の条件下で調査した。
EXAMPLES Next, the effects of the present invention will be specifically described based on examples. (Example 1) A dissolution test of metallic nickel was conducted in the electroplating equipment shown in FIG. That is, the specific surface area of the metallic nickel charged into the metallic nickel dissolving tank 5 is changed variously, and the relationship between the specific surface area of metallic nickel and the dissolution rate of metallic nickel is shown as follows.
The condition was H: 1.5.

【0050】なお、比表面積;SA(m2/g)は、マイクロ
トラックで平均粒径を測定し、その結果から下記式(6)
により算出した。 SA=〔6/(Dp ・ρ)〕×10-6 ・・・・(6) ここで、Dp ;金属ニッケル平均粒径(m) 、ρ;金属ニ
ッケルの密度(g/cm3)である。
The specific surface area; SA (m 2 / g) was determined by measuring the average particle diameter with a Microtrac, and from the result, the following formula (6) was used.
Was calculated by SA = [6 / (D p · ρ)] × 10 −6 (6) where D p : average particle size of metallic nickel (m), ρ; density of metallic nickel (g / cm 3 ). Is.

【0051】結果を図1に示す。図1より、比表面積が
大きくなる程、すなわち平均粒径が小さくなる程、金属
ニッケル溶解速度が大きくなること、また特に比表面積
が 0.01 m2/g以上となると急激に溶解速度が大きくなる
ことが分かる。また、目標溶解速度:4kg/m3・hrを得
るためには、比表面積を 0.01 m2/g以上とする必要があ
ることが分かった。
The results are shown in FIG. From Fig. 1, the larger the specific surface area, that is, the smaller the average particle size, the larger the dissolution rate of metallic nickel. Especially, when the specific surface area becomes 0.01 m 2 / g or more, the dissolution rate rapidly increases. I understand. It was also found that the specific surface area must be 0.01 m 2 / g or more in order to obtain the target dissolution rate: 4 kg / m 3 · hr.

【0052】次に、溶解槽内のめっき液温度を種々変え
て、溶解槽内めっき液温度と金属ニッケル溶解速度との
関係を、めっき液pH:1.5 、金属ニッケル比表面積:
0.07m2/gの条件下で調査した。結果を図2に示す。図2
より、溶解槽内めっき液温度が高くなる程、金属ニッケ
ル溶解速度が大きくなり、溶解槽内めっき液温度を70℃
以上とすることにより、目標溶解速度:4kg/m3・hrを
得ることが可能であることが分かった。
Next, the relationship between the plating solution temperature in the dissolution tank and the metal nickel dissolution rate was changed by variously changing the plating solution temperature in the dissolution tank, and the plating solution pH: 1.5 and the metal nickel specific surface area:
It was investigated under the condition of 0.07 m 2 / g. The results are shown in FIG. FIG.
Therefore, the higher the temperature of the plating solution in the dissolution tank, the higher the dissolution rate of metallic nickel, and the temperature of the plating solution in the dissolution tank was 70 ° C.
By the above, it was found that it is possible to obtain the target dissolution rate: 4 kg / m 3 · hr.

【0053】(実施例2)実施例1で得られた実験結果
に基づく本発明の1実施例を、図3により説明する。先
ず、ニッケルイオン濃度が減少したpH:1〜2のめっ
き液(例えば、pH:1.5 、Ni:65wt%、Zn:25wt%、
H2SO4:10wt%のZn−Ni系合金電気めっき液)が、めっき
液循環槽2から昇温槽3へ、めっき液送給ポンプ10によ
り移送される。
(Example 2) An example of the present invention based on the experimental results obtained in Example 1 will be described with reference to FIG. First, a plating solution having a reduced nickel ion concentration of pH: 1-2 (for example, pH: 1.5, Ni: 65 wt%, Zn: 25 wt%,
H 2 SO 4 : 10 wt% Zn-Ni alloy electroplating solution) is transferred from the plating solution circulating tank 2 to the temperature raising tank 3 by the plating solution feeding pump 10.

【0054】昇温槽3に移送されためっき液は、蒸気ヒ
ータなどから構成される昇温用熱交換器14により、70〜
100 ℃の温度に昇温される。昇温槽3で昇温されためっ
き液は、金属ニッケル溶解槽5へ移送され、インペラ型
の攪拌機6で攪拌される。一方、比表面積が 0.01 〜1.
0m2/g の範囲内の金属ニッケル粉、例えば比表面積が
0.1m2/gの金属ニッケル粉が、めっき液の組成、温度に
よって決まる金属ニッケル飽和溶解量、例えば4〜10kg
/m3 の2〜20倍の量、例えば10倍の量になるように、初
回に金属ニッケル貯蔵ホッパ4より金属ニッケル溶解槽
5内のめっき液中に投入される。
The plating solution transferred to the temperature raising tank 3 is heated to 70 to 70 ° C by the temperature raising heat exchanger 14 including a steam heater or the like.
The temperature is raised to 100 ° C. The plating solution heated in the temperature raising tank 3 is transferred to the metal nickel dissolving tank 5 and stirred by the impeller-type stirrer 6. On the other hand, the specific surface area is 0.01-1.
Metallic nickel powder in the range of 0 m 2 / g, for example with a specific surface area
0.1m 2 / g of metallic nickel powder is the saturated amount of metallic nickel dissolved depending on the composition and temperature of the plating solution, eg 4-10kg
The amount is 2 to 20 times, for example, 10 times as much as / m 3 , is initially charged into the plating solution in the metal nickel dissolving tank 5 from the metal nickel storage hopper 4.

【0055】金属ニッケル溶解槽5においては、金属ニ
ッケルが酸性めっき液中で前記式(2) 、(3) に従い化学
溶解し、めっき液中にニッケルイオンを供給する。金属
ニッケル溶解量、溶解時間は、金属ニッケル溶解槽5の
有効容積、投入金属ニッケル比表面積、投入金属ニッケ
ル量、溶解槽内めっき液温度、溶解槽内めっき液pHの
設定、投入金属ニッケルの種類の選択などによって目標
値を達成するように制御できる。
In the metallic nickel dissolving tank 5, metallic nickel is chemically dissolved in the acidic plating solution according to the above equations (2) and (3), and nickel ions are supplied to the plating solution. The amount of metal nickel dissolved and the dissolution time are the effective volume of the metal nickel dissolution tank 5, the specific surface area of the input metal nickel, the amount of input metal nickel, the temperature of the plating solution in the dissolution tank, the pH of the plating solution in the dissolution tank, and the type of the input metal nickel. It is possible to control so as to achieve the target value by selecting.

【0056】また、溶解槽内のめっき液中では、前記式
(2) の反応と同時に前記式(3) の反応が生じ、水素イオ
ンが消費され、水素イオンが全て消費されると未溶解金
属ニッケルが存在していても反応がそれ以上進まなくな
るので、水素イオン消費量によって決めてもよい。本発
明においては、例えば金属ニッケルの溶解槽有効単位容
積当たりの飽和溶解量が6 kg/m3、目標溶解所要時間が
15〜20min の場合、溶解槽5の有効容積:15m3、金属ニ
ッケル投入量:1000kg、溶解槽内めっき液温度:90℃、
めっき液pH:1.5 、投入金属ニッケル粉の比表面積:
0.1m2/g とすることにより、前記金属ニッケルの飽和溶
解量、目標溶解所要時間を達成することができる。
In the plating solution in the melting tank, the above formula is used.
At the same time as the reaction of (2), the reaction of the above formula (3) occurs, the hydrogen ions are consumed, and when all the hydrogen ions are consumed, the reaction does not proceed further even if undissolved metallic nickel is present. It may be determined depending on the amount of consumed ions. In the present invention, for example, the saturation dissolution amount of metal nickel per effective unit volume of the dissolution tank is 6 kg / m 3 , and the target dissolution time is
In the case of 15 to 20 min, the effective volume of the melting tank 5: 15 m 3 , the amount of metallic nickel input: 1000 kg, the temperature of the plating solution in the melting tank: 90 ° C,
Plating solution pH: 1.5, specific surface area of input nickel metal powder:
By setting the amount to 0.1 m 2 / g, the saturated dissolution amount of the metallic nickel and the target dissolution required time can be achieved.

【0057】飽和量の金属ニッケル溶解完了後または溶
解操作中に、未溶解の金属ニッケルは、めっき液ととも
にめっき液送給ポンプ11によりフィルタ7へ移送する。
フィルタとしては、前記の図4に示すクロスフロー方式
のフィルタが好ましい。クロスフロー方式のフィルタ25
としては、例えばミリポアセラフロー(商品名、日本ミ
リポア(株)社製)が例示される。
After the completion of the dissolution of the saturated amount of metallic nickel or during the dissolution operation, the undissolved metallic nickel is transferred to the filter 7 by the plating solution feed pump 11 together with the plating solution.
As the filter, the cross-flow type filter shown in FIG. 4 is preferable. Cross-flow type filter 25
As an example, Millipore Ceraflow (trade name, manufactured by Japan Millipore Co., Ltd.) is exemplified.

【0058】表1に濾過条件を含めた仕様を示す。表1
に示すとおり、多孔質体としてアルミナ系セラミックス
材を用いることにより、高温、低pHのめっき液の条件
下でもニッケル系めっき液中の未溶解金属ニッケルが効
率良く濾過可能となった。フィルタ7で濾過されたフィ
ルタ濾過液であるめっき液は、めっき液受槽9へ移送す
る。
Table 1 shows the specifications including the filtration conditions. Table 1
As shown in, by using the alumina-based ceramic material as the porous body, the undissolved metallic nickel in the nickel-based plating solution can be efficiently filtered even under the condition of the high-temperature and low-pH plating solution. The plating solution, which is the filtered solution filtered by the filter 7, is transferred to the plating solution receiving tank 9.

【0059】また、フィルタ7で捕集されたフィルタ濾
過残またはクロスフロー方式のフィルタの貫通孔27を通
過したフィルタ濾過残(粒径≧0.2 μm )である未溶解
金属ニッケルは、コンベアまたはスクリューフィーダま
たはポンプなどで構成される未溶解金属ニッケル移送手
段8で金属ニッケル溶解槽5へ循環し、再溶解に供せら
れる。
The undissolved metallic nickel, which is the filter residue collected by the filter 7 or the filter residue (particle size ≧ 0.2 μm) that has passed through the through holes 27 of the cross-flow type filter, is conveyed by a conveyor or a screw feeder. Alternatively, it is circulated to the metal nickel dissolution tank 5 by the undissolved metal nickel transfer means 8 composed of a pump or the like, and is provided for remelting.

【0060】めっき液受槽9に貯蔵しためっき液は、冷
却用熱交換器15で電気めっき槽1での最適めっき液温度
まで冷却する。なお、電気めっき槽の最適めっき液温度
は、Zn−Ni系合金電気めっきの場合、50〜70℃、より好
ましくは55〜65℃である。また、別途、めっき液受槽9
内のめっき液およびめっき液循環槽2内のめっき液また
は昇温槽3内のめっき液、各々のニッケルイオン濃度
を、ニッケルイオン濃度測定装置16、17または18により
測定する。
The plating solution stored in the plating solution receiving tank 9 is cooled by the cooling heat exchanger 15 to the optimum plating solution temperature in the electroplating tank 1. The optimum plating solution temperature in the electroplating tank is 50 to 70 ° C, and more preferably 55 to 65 ° C in the case of Zn-Ni alloy electroplating. Separately, the plating solution receiving tank 9
The nickel ion concentration measuring device 16, 17 or 18 is used to measure the nickel ion concentration of each of the plating solution inside and the plating solution in the plating solution circulating tank 2 or the plating solution in the temperature raising tank 3.

【0061】ニッケルイオン濃度測定装置16、17、18の
測定方法は、例えば蛍光X線分析が例示されるが、特に
制限されるものではない。また、めっき液試料を必要に
応じて予め濾過し、比重測定を行いニッケルイオン濃度
を測定する方法を用いることもできる。得られためっき
液受槽9内およびめっき液循環槽2内または昇温槽3内
のめっき液のニッケルイオン濃度の測定結果から前記式
(5) に従って算出しためっき液量vのめっき液を、めっ
き液受槽9からめっき液送給ポンプ12によりめっき液循
環槽2を経由して電気めっき槽1へ供給する。
The measuring method of the nickel ion concentration measuring devices 16, 17, 18 is, for example, fluorescent X-ray analysis, but is not particularly limited. Alternatively, a method of previously filtering the plating solution sample as needed and measuring the specific gravity to measure the nickel ion concentration can also be used. From the obtained measurement results of the nickel ion concentration of the plating solution in the plating solution receiving tank 9 and the plating solution circulating tank 2 or the temperature raising tank 3, the above formula is obtained.
The plating solution of the plating solution amount v calculated according to (5) is supplied from the plating solution receiving tank 9 to the electroplating tank 1 by the plating solution feeding pump 12 via the plating solution circulating tank 2.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【発明の効果】本発明によれば、めっき液へのニッケル
イオン供給源を比表面積 0.01 〜1.0m 2/g の金属ニッケ
ルとし、該金属ニッケルを70〜100 ℃に昇温した酸性め
っき液中に飽和溶解量の2〜20倍含有せしめ化学溶解す
ることにより、化学溶解する際の溶解速度を大きくで
き、ニッケル系連続電気めっき金属帯の生産性向上、さ
らには金属ニッケル溶解槽およびその付帯設備の小型化
が可能となり、経済的なニッケルイオンの供給が可能と
なった。
According to the present invention, nickel in the plating solution is
Ion source with a specific surface area of 0.01 to 1.0 m Two/ g metal nickel
And the metallic nickel was heated to 70-100 ℃
Contain 2 to 20 times the saturated dissolution amount in the plating solution.
By doing so, the dissolution rate during chemical dissolution can be increased.
To improve the productivity of nickel-based continuous electroplated metal strips.
Miniaturization of metal nickel melting tank and its ancillary equipment
It becomes possible to supply nickel ions economically.
became.

【0064】また、金属ニッケル溶解槽から抜き出した
未溶解金属ニッケル含有めっき液の濾過用フィルタとし
て、特に、セラミック材からなる多孔質体から構成され
るクロスフロー方式のフィルタを併用することにより、
下記〜の効果を得ることができた。 金属ニッケルの溶解と未溶解金属ニッケルの分離・回
収、再溶解を連続的、かつ迅速に行うことが可能とな
り、設備をさらに小型化することが可能となった。
Further, as a filter for filtering the undissolved metallic nickel-containing plating solution extracted from the metallic nickel dissolving tank, in particular, by using a cross-flow type filter composed of a porous body made of a ceramic material,
The following effects were obtained. Dissolution of metal nickel, separation / recovery of undissolved metal nickel, and re-dissolution can be carried out continuously and rapidly, and it has become possible to further downsize the equipment.

【0065】フィルタ濾過液であるめっき液への未溶
解金属ニッケルの混入が防止可能となり、めっき時の金
属帯への金属ニッケル微粒子の付着が防止でき、めっき
品質が向上する。 微細な未溶解金属ニッケルの分離性が向上し、溶解槽
に供給する金属ニッケルの粒径を従来よりかなり小さく
できるため、金属ニッケルの溶解速度が上がり、さらに
効率のよい溶解作業が可能となった。
It is possible to prevent undissolved metallic nickel from being mixed into the plating solution which is the filter filtrate, prevent the metallic nickel fine particles from adhering to the metal strip during plating, and improve the plating quality. Separation of fine undissolved metallic nickel is improved, and the particle size of metallic nickel supplied to the melting tank can be made considerably smaller than before, so the dissolution rate of metallic nickel is increased and more efficient melting work becomes possible. .

【0066】さらに、本発明によれば、電気めっき槽お
よびめっき液循環槽と別個に設けためっき液受槽を用い
てめっき液中のニッケルイオン濃度の制御を行うことに
より、例えば亜鉛−ニッケル合金電気めっきなどのニッ
ケル系合金電気めっきにおいて、めっき品質に大きな影
響を及ぼすめっき皮膜中のニッケル含有率が正確に制御
でき、めっき品質の管理が極めて容易となる。
Furthermore, according to the present invention, by controlling the nickel ion concentration in the plating solution by using the plating solution receiving tank provided separately from the electroplating tank and the plating solution circulating tank, for example, zinc-nickel alloy In nickel-based alloy electroplating such as plating, the nickel content in the plating film, which has a great influence on the plating quality, can be accurately controlled, and the management of the plating quality becomes extremely easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】金属ニッケルの比表面積と金属ニッケル溶解速
度との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the specific surface area of metallic nickel and the dissolution rate of metallic nickel.

【図2】金属ニッケル溶解槽内のめっき液温度と金属ニ
ッケル溶解速度との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a plating solution temperature in a metal nickel dissolving tank and a metal nickel dissolving rate.

【図3】本発明に係わる電気めっき設備の概略説明図で
ある。
FIG. 3 is a schematic explanatory diagram of electroplating equipment according to the present invention.

【図4】クロスフロー方式のフィルタの構造を示す斜視
図である。
FIG. 4 is a perspective view showing the structure of a cross-flow type filter.

【符号の説明】 1 電気めっき槽 2 めっき液循環槽 3 昇温槽 4 金属ニッケル貯蔵ホッパ 5 金属ニッケル溶解槽 6 攪拌機 7 フィルタ 8 未溶解金属ニッケル移送手段 9 めっき液受槽 14 昇温用熱交換器 15 冷却用熱交換器 16、17、18 ニッケルイオン濃度測定装置 19 金属帯 21 バックアップロール 22 コンダクタロール 23、24 不溶性陽極 25 クロスフロー方式のフィルタ 26 フィルタエレメント 27 貫通孔(ルーメン)[Explanation of symbols] 1 electroplating tank 2 plating solution circulating tank 3 temperature raising tank 4 metal nickel storage hopper 5 metal nickel dissolution tank 6 stirrer 7 filter 8 undissolved metal nickel transfer means 9 plating solution receiving tank 14 heat exchanger for heating 15 Cooling heat exchanger 16, 17, 18 Nickel ion concentration measuring device 19 Metal band 21 Backup roll 22 Conductor roll 23, 24 Insoluble anode 25 Cross flow type filter 26 Filter element 27 Through hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 関田 貴司 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 田野口 一郎 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takashi Sekita, Takashi Sekida 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Prefecture (without address) Inside the Mizushima Works, Kawasaki Steel Co., Ltd. Chome (No house number) Kawasaki Steel Co., Ltd. Mizushima Steel Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 不溶性陽極を用いる金属帯のニッケル系
電気めっき設備におけるめっき液へのニッケルイオン供
給方法において、供給原料として、比表面積が 0.01 〜
1.0 m2/gの粒状および/または薄片状の金属ニッケルを
用い、金属ニッケル溶解槽内の液温が70〜100 ℃、pH
が1〜2に保持された酸性めっき液中に飽和溶解量の2
〜20倍の前記金属ニッケルを含有せしめ、該酸性めっき
液を攪拌することを特徴とするめっき液へのニッケルイ
オン供給方法。
1. A method for supplying nickel ions to a plating solution in a nickel-based electroplating equipment for metal strips using an insoluble anode, wherein a specific surface area of 0.01 to
1.0 m 2 / g of granular and / or flaky metallic nickel is used, and the liquid temperature in the metallic nickel melting tank is 70-100 ° C, pH
Of saturated dissolution amount of 2 in the acidic plating solution in which
A method for supplying nickel ions to a plating solution, wherein the acidic nickel plating solution is stirred in an amount of about 20 to 20 times that of the metallic nickel.
【請求項2】 前記金属ニッケル溶解槽内から未溶解金
属ニッケル含有めっき液を抜き出し、フィルタに供給
し、フィルタ濾過液であるめっき液を、めっき液受槽を
経由して電気めっき槽に供給し、フィルタ濾過残である
未溶解金属ニッケルまたは金属ニッケル濃縮めっき液を
金属ニッケル溶解槽に循環し、再溶解に供することを特
徴とする請求項1記載のめっき液へのニッケルイオン供
給方法。
2. An undissolved metal nickel-containing plating solution is extracted from the metal nickel dissolution tank and supplied to a filter, and a plating solution that is a filter filtrate is supplied to an electroplating tank via a plating solution receiving tank. The method for supplying nickel ions to a plating solution according to claim 1, wherein the undissolved metal nickel or metal nickel concentrated plating solution which is a filter filtration residue is circulated in a metal nickel dissolution tank and is used for re-dissolution.
【請求項3】 前記フィルタが軸方向に複数本の液通路
を有する多孔質体で構成されるフィルタである請求項2
記載のめっき液へのニッケルイオン供給方法。
3. The filter according to claim 2, wherein the filter is a porous body having a plurality of liquid passages in the axial direction.
A method for supplying nickel ions to the described plating solution.
【請求項4】 前記めっき液受槽に移送されためっき液
中のニッケルイオン濃度を測定し、電気めっき槽で消費
されたニッケルイオン量に相当するめっき液を前記めっ
き液受槽から前記電気めっき槽へ供給することを特徴と
する請求項2または3記載のめっき液へのニッケルイオ
ン供給方法。
4. A nickel ion concentration in the plating solution transferred to the plating solution receiving tank is measured, and a plating solution corresponding to the amount of nickel ions consumed in the electroplating tank is transferred from the plating solution receiving tank to the electroplating tank. The method for supplying nickel ions to the plating solution according to claim 2, wherein the nickel ions are supplied.
【請求項5】 不溶性陽極を用いる金属帯のニッケル系
電気めっき設備に配設しためっき液へのニッケルイオン
供給設備であって、該ニッケルイオン供給設備が、電気
めっき槽1にめっき液を循環供給するめっき液循環槽2
と、該めっき液循環槽2から移送されるめっき液に金属
ニッケルを溶解する金属ニッケル溶解槽5と、該金属ニ
ッケル溶解槽5から抜き出した未溶解金属ニッケル含有
めっき液を濾過するためのフィルタ7と、該フィルタ7
からの濾過液であるめっき液を貯蔵し、前記めっき液循
環槽2にめっき液を供給するためのめっき液受槽9と、
前記フィルタ7からのフィルタ濾過残である未溶解金属
ニッケルまたは金属ニッケル濃縮めっき液を前記金属ニ
ッケル溶解槽5に移送するための未溶解金属ニッケル移
送手段8と、前記めっき液受槽9のめっき液のニッケル
イオン濃度測定装置16を備えたことを特徴とするめっき
液へのニッケルイオン供給設備。
5. A facility for supplying nickel ions to a plating solution arranged in a nickel-based electroplating facility for metal strips using an insoluble anode, the nickel ion supplying facility circulatingly supplying the plating solution to the electroplating tank 1. Plating solution circulation tank 2
A metal nickel dissolving bath 5 for dissolving metal nickel in the plating liquid transferred from the plating liquid circulating bath 2; and a filter 7 for filtering the undissolved metal nickel-containing plating liquid extracted from the metal nickel dissolving bath 5. And the filter 7
A plating solution receiving tank 9 for storing a plating solution which is a filtered solution from the above and supplying the plating solution to the plating solution circulating tank 2.
The undissolved metal nickel transfer means 8 for transferring the undissolved metal nickel or the concentrated metal nickel plating solution, which is the filter residue from the filter 7, to the metal nickel dissolution tank 5, and the plating solution in the plating solution receiving tank 9 Equipment for supplying nickel ions to a plating solution, which is equipped with a nickel ion concentration measuring device 16.
JP7336602A 1995-12-25 1995-12-25 Method and equipment for supplying nickel ions to plating solution Expired - Fee Related JP3017067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7336602A JP3017067B2 (en) 1995-12-25 1995-12-25 Method and equipment for supplying nickel ions to plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7336602A JP3017067B2 (en) 1995-12-25 1995-12-25 Method and equipment for supplying nickel ions to plating solution

Publications (2)

Publication Number Publication Date
JPH09176898A true JPH09176898A (en) 1997-07-08
JP3017067B2 JP3017067B2 (en) 2000-03-06

Family

ID=18300859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7336602A Expired - Fee Related JP3017067B2 (en) 1995-12-25 1995-12-25 Method and equipment for supplying nickel ions to plating solution

Country Status (1)

Country Link
JP (1) JP3017067B2 (en)

Also Published As

Publication number Publication date
JP3017067B2 (en) 2000-03-06

Similar Documents

Publication Publication Date Title
WO2013047340A1 (en) Method for removing rare earth impurities in electrolytic nickel plating solution
JP2004502036A (en) Method and apparatus for processing metal, and metal manufactured by processing
TWI588291B (en) Method for removing impurities from plating solutions
JP2009024216A (en) Method for electrolytically oxidizing waste liquid of etching solution
JP7398395B2 (en) Improvements in copper electrorefining
JP5835001B2 (en) Method for removing rare earth impurities in electro nickel plating solution
US1945107A (en) Method of making ductile electrolytic iron
JP3017067B2 (en) Method and equipment for supplying nickel ions to plating solution
PL95746B1 (en) METHOD OF GALVANIC TINNING
US3256165A (en) Method and apparatus for use in electrolytic shaping
JPH0270087A (en) Method and apparatus for plating tin
JP6222071B2 (en) Electrolytic apparatus for indium hydroxide powder, method for producing indium hydroxide powder, and method for producing sputtering target
JP2905426B2 (en) Method and apparatus for dissolving metallic nickel in nickel-based zinc plating solution
JP6281565B2 (en) Method for removing rare earth impurities in electro nickel plating solution
KR20170108424A (en) Electrolysis cell, smelter and smelting method using same
JP3176794B2 (en) Method and apparatus for supplying nickel raw material into nickel-based plating solution
JP2016037633A (en) Electrolytic device for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target
JPH11343600A (en) Plating metal dissolving method and dissolving device
JP2003328199A (en) Copper plating method and apparatus therefor, method of producing copper and apparatus therefor, metal plating method and apparatus therefor, and method of producing metal and apparatus therefor
JP3258752B2 (en) Method and apparatus for recovering nickel mixed in plating solution
WO2024078627A1 (en) Electrolytic copper dissolution-integrated insoluble anode copper plating process optimization method and apparatus
US2767136A (en) Process of eliminating arsenic compounds from phosphoric acid
KR101770446B1 (en) Method and arrangement for depositing a metal coating
JP7180039B1 (en) Method for separating tin and nickel from mixtures containing tin and nickel
JP4831408B2 (en) Method for producing plate-like electrolytic copper

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees