JPH09176399A - Oriented film - Google Patents

Oriented film

Info

Publication number
JPH09176399A
JPH09176399A JP33948395A JP33948395A JPH09176399A JP H09176399 A JPH09176399 A JP H09176399A JP 33948395 A JP33948395 A JP 33948395A JP 33948395 A JP33948395 A JP 33948395A JP H09176399 A JPH09176399 A JP H09176399A
Authority
JP
Japan
Prior art keywords
film
resin
weight
stretched
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33948395A
Other languages
Japanese (ja)
Inventor
Masayuki Egami
正之 江上
Kazuhiko Kagawa
和彦 香川
Noriyuki Okada
紀幸 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP33948395A priority Critical patent/JPH09176399A/en
Publication of JPH09176399A publication Critical patent/JPH09176399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an oriented film excellent in flexibilityt strength and transparency, capable of optionally providing contractility, comprising a resin composition composed of two kinds of ethylene/α-olefin copolymer resins having prescribed physical properties respectively. SOLUTION: A resin composition for this oriented film comprises (A) 30-90wt.% of an ethylene/a 4-8C α-olefin copolymer resin having 0.915-0.935g/cm<3> density and (B) 70-10wt.% of an ethylene/a 4-8C α-olefin copolymer resin having <0.915g/cm<3> density and <=3 ratio Mw/Mn of a weight-average molecular weight Mw to a number-average molecular weight Mn. The component A is preferably a linear low-density polyethylene copolymer and has 0.3-3g/10 minutes melt flow rate (under 2.16kg load at 190 deg.C). The component B has preferably 1-6g/10 minutes melt flow rate and 0.91-0.89g/cm<3> density. Hexene, octene or 4- methylpentene is preferable as the α-olefin in the component A and the component B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明のフィルムは、柔軟で
強度や透明性に優れ、青果物や加工食品、衣料、化粧
品、文具、事務用品等の商品の包装に用いられるもので
ある。本発明のフィルムは製造の条件により、加熱時に
収縮する収縮性フィルムと、収縮しにくい非収縮性フィ
ルムとを得ることができ、収縮性のフィルムは収縮包装
に用いられるものである。
TECHNICAL FIELD The film of the present invention is flexible and excellent in strength and transparency and is used for packaging products such as fruits and vegetables, processed foods, clothing, cosmetics, stationery, office supplies and the like. The film of the present invention can be obtained as a shrinkable film that shrinks when heated and a non-shrinkable film that does not easily shrink, depending on the production conditions, and the shrinkable film is used for shrink wrapping.

【0002】[0002]

【従来の技術】従来、店頭に並べられ、消費者が購入す
る商品の包装には、内容物の保護、確認と、商品を美し
く見せる為、強度が強く透明光沢の優れている、ポリプ
ロピレン(以下、PPと略称する)やポリ塩化ビニル
(以下、PVCと略称する)、ポリスチレン(以下、P
Sと略称する)等の延伸フィルムが多く使われている。
延伸PPフィルムは、その強度や剛性、透明性を生かし
て、青果物の包装や菓子、スナック類、衣料品、文具、
事務用品等の包装に広く使われ、また延伸成形時の条件
で、収縮性を付与したものはカップラーメン等のオーバ
ーラップ収縮包装に多く使われている。PVCやPSの
延伸フィルムは剛性や透明光沢を生かして、収縮包装を
初め、各種商品の包装に使われ、商品の保護と商品価値
の向上に役立っている。
2. Description of the Related Art Conventionally, products that are lined up in stores and purchased by consumers are packaged with polypropylene (hereinafter referred to as "strength" and "transparent luster", which are strong and have excellent transparency and gloss to protect and confirm the contents and to make the products look beautiful. , PP), polyvinyl chloride (hereinafter abbreviated as PVC), polystyrene (hereinafter P
Stretched films such as S) are often used.
Stretched PP film makes use of its strength, rigidity, and transparency to package fruits and vegetables, confectionery, snacks, clothing, stationery,
It is widely used for packaging office supplies and the like, and it is often used for overlap shrink wrapping such as cup ramen, etc., which has been given shrinkage under the conditions of stretch molding. Stretched films of PVC and PS make use of rigidity and transparent luster and are used for packaging various products including shrink wrapping, and are useful for protecting products and improving product value.

【0003】これらの延伸フィルムは剛性が高い反面、
柔軟性に劣り、衝撃的な力が加わった場合、破損が起こ
りやすく、またヒートシール部分の強度が低く、重量の
大きい製品の包装等強度が要求される場合には適さない
物であった。これら強度の要求される用途には、低密度
ポリエチレンの無延伸フィルムが多く使われているが、
柔軟で衝撃強度が強い反面、引張強度や剛性に劣り伸び
やすい為、厚手のフィルムを使う必要があり、包装の重
量が増し、また透明性も低い為、内容商品の確認のし易
さや美しく見せることには不適当であった。低密度ポリ
エチレンを延伸して強度や剛性、透明性を向上させ、さ
らに熱収縮性を付与することは以前から検討されてお
り、低密度ポリエチレンを架橋したり、線状低密度ポリ
エチレンを材料設計する等、低密度ポリエチレンの延伸
性向上の技術開発が行われており、これらの材料を2軸
延伸したフィルムが一部市販されている、一般に低密度
ポリエチレンの延伸はポリプロピレンより難しく、市販
されているフィルムは高度な加工技術で延伸成形されて
いるものである。
While these stretched films have high rigidity,
It is inferior in flexibility, is likely to be damaged when an impact force is applied, has low strength in the heat-sealed portion, and is unsuitable when strength such as packaging of a heavy product is required. For these applications requiring high strength, unstretched films of low density polyethylene are often used.
Although it is flexible and has high impact strength, it is inferior in tensile strength and rigidity and easily stretches, so it is necessary to use a thick film, the weight of the package increases, and the transparency is low, making it easy to confirm the content product and make it look beautiful. It was unsuitable for that. It has been studied for a long time to stretch low-density polyethylene to improve its strength, rigidity, and transparency, as well as to impart heat-shrinkability. Cross-linking low-density polyethylene or designing linear low-density polyethylene as a material. Etc., technology development for improving the drawability of low density polyethylene has been carried out, and some biaxially stretched films of these materials are commercially available. Generally, stretching of low density polyethylene is more difficult than polypropylene and is commercially available. The film is stretch-formed by an advanced processing technique.

【0004】線状低密度ポリエチレンは基本的には延伸
性のある樹脂であるが、それでも延伸できる温度範囲が
狭く、温度が低いと延伸できずに破裂し、温度が高いと
溶融して伸びてしまい、結局は破裂して延伸フィルムが
安定して成形できない物である。線状低密度ポリエチレ
ンに高圧ラジカル法による分岐状低密度ポリエチレン
(以下、分岐状PEと略称する)を混合して、延伸成形
性を改良する試みも行われ、延伸温度範囲を広げ延伸安
定性をやや向上することができるが、成形されたフィル
ムの強度等物性が劣るものであった。これらポリエチレ
ン系の延伸フィルムは成形に高度な技術が必要であり、
生産ロスが多く生産性に劣る物であった。また、物性面
からは、熱収縮の開始温度が融点に近く、収縮包装に使
用する場合、加熱収縮トンネルのなかで、溶融してフィ
ルムに穴があいたり、収縮が足りずに皺がよったりして
均一に収縮包装することができなかった。
Although linear low-density polyethylene is basically a stretchable resin, it still has a narrow temperature range in which it can be stretched. When it is low, it cannot be stretched and bursts, and when it is high, it melts and stretches. The resulting stretched film is stable and cannot be stably formed. Attempts have also been made to improve stretch formability by mixing linear low-density polyethylene with branched low-density polyethylene (hereinafter abbreviated as branched PE) by the high-pressure radical method to widen the stretching temperature range and improve the stretching stability. Although it could be improved a little, the physical properties such as strength of the formed film were poor. These polyethylene-based stretched films require advanced technology for molding,
It was a product with a lot of production loss and poor productivity. Also, from the viewpoint of physical properties, the start temperature of heat shrinkage is close to the melting point, and when it is used for shrink wrapping, it melts into holes in the film in the heat shrinking tunnel, or shrinkage is insufficient and wrinkles may occur. It was not possible to shrink-wrap uniformly.

【0005】[0005]

【発明が解決しようとする課題】本発明は柔軟で強度が
強く透明性に優れ、必要により収縮性を付与することが
できる延伸フィルムを提供するものであり、延伸成形性
の悪いポリエチレン系材料の延伸性を向上させ、生産性
がよく、薄くても商品を保護するのに充分な強度を持
ち、ひいては省資源化に貢献する包装用フィルムを提供
するものである。
DISCLOSURE OF THE INVENTION The present invention provides a stretched film that is flexible, has high strength, is excellent in transparency, and can impart shrinkage as required. It is intended to provide a packaging film having improved stretchability, good productivity, sufficient strength to protect products even if it is thin, and eventually contributing to resource saving.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は、上記
課題を解決するために、密度が0.915〜0.935g
/cm3のエチレン・α−オレフィン共重合体樹脂(た
だし、α−オレフィンの炭素数は4〜8である)30〜
90重量%と、密度が0.915g/cm3未満であっ
て、数平均分子量Mnに対する重量平均分子量Mwの比
Mw/Mnが3以下のエチレン・α−オレフィン共重合
体樹脂(ただし、α−オレフィンの炭素数は4〜8であ
る)70〜10重量%との樹脂組成物からなる延伸フィ
ルムを提供するものである。本発明の延伸フィルムは上
記のような樹脂組成物から製造されるので、延伸成形性
が向上し、柔軟で強度が強く、透明性にすぐれ、収縮性
を付与することができ、商品の包装に優れたフィルムと
して提供されるものである。
In order to solve the above-mentioned problems, the present invention has a density of 0.915 to 0.935 g.
/ Cm 3 ethylene / α-olefin copolymer resin (provided that the α-olefin has 4 to 8 carbon atoms) 30 to
90% by weight, a density of less than 0.915 g / cm 3 , and a ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of 3 or less ethylene / α-olefin copolymer resin (provided that α- The olefin has a carbon number of 4 to 8) and a stretched film comprising a resin composition of 70 to 10% by weight. Since the stretched film of the present invention is produced from the resin composition as described above, stretch moldability is improved, flexibility and strength are high, transparency is excellent, and shrinkability can be imparted to packaging of products. It is provided as an excellent film.

【0007】[0007]

【発明の実施の形態】以下、本発明のポリエチレン系延
伸フィルムについて詳細に説明する。本発明の延伸フィ
ルムの製造に使用される樹脂組成物の成分の一つは、密
度が0.915〜0.935g/cm3のエチレン・α−
オレフィン共重合体樹脂(ただし、α−オレフィンの炭
素数は4〜8である)である(以下、樹脂Aと略称す
る)。樹脂Aは、エチレンに炭素数4〜8のα−オレフ
ィンを共重合したもので、好ましくは線状低密度ポリエ
チレン共重合体である。α−オレフィンの含有量は2〜
15重量%、好ましくは4〜12重量%、より好ましく
は5〜10重量%である。α−オレフィンとしては、ブ
テンやヘキセン、オクテン、4−メチルペンテン等があ
り、なかでも炭素数6〜8のα−オレフィン、とくにヘ
キセン、オクテン、4−メチルペンテン−1が好まし
い。樹脂Aのメルトフローレート(2.16kg荷重、
190℃、以下同様)は0.1〜10g/10分が好ま
しく、より好ましくは、0.3〜3g/10分である。
樹脂Aの密度は、柔軟性や強度、透明性及び耐熱性の観
点から0.915〜0.935g/cm3である。密度が
0.915g/cm3未満であるとフィルムの耐熱性が劣
り、0.935g/cm3を越えると、柔軟性や強度、透
明性が劣る。
BEST MODE FOR CARRYING OUT THE INVENTION The polyethylene-based stretched film of the present invention will be described in detail below. One of the components of the resin composition used for producing the stretched film of the present invention is ethylene.α- with a density of 0.915 to 0.935 g / cm 3.
It is an olefin copolymer resin (however, the carbon number of α-olefin is 4 to 8) (hereinafter, abbreviated as resin A). Resin A is a copolymer of ethylene with an α-olefin having 4 to 8 carbon atoms, and is preferably a linear low density polyethylene copolymer. The content of α-olefin is 2
It is 15% by weight, preferably 4 to 12% by weight, more preferably 5 to 10% by weight. Examples of the α-olefin include butene, hexene, octene, 4-methylpentene and the like, and among them, α-olefin having 6 to 8 carbon atoms, particularly hexene, octene and 4-methylpentene-1 are preferable. Resin A melt flow rate (2.16 kg load,
190 [deg.] C., the same below) is preferably 0.1 to 10 g / 10 minutes, and more preferably 0.3 to 3 g / 10 minutes.
The density of the resin A is 0.915 to 0.935 g / cm 3 from the viewpoint of flexibility, strength, transparency and heat resistance. If the density is less than 0.915 g / cm 3 , the heat resistance of the film will be poor, and if it exceeds 0.935 g / cm 3 , the flexibility, strength and transparency will be poor.

【0008】本発明の延伸フィルムの製造に使用される
樹脂組成物の成分の他の一つは、密度が0.915g/
cm3未満であって、数平均分子量Mnに対する重量平
均分子量Mwの比Mw/Mnが3以下のエチレン・α−
オレフィン共重合体樹脂(ただし、α−オレフィンの炭
素数は4〜8である)である(以下、樹脂Bと略称す
る)。樹脂Bは、エチレンに炭素数4〜8のα−オレフ
ィンを共重合したもので、α−オレフィンの含有量は5
重量%以上、好ましくは8〜25重量%、より好ましく
は10〜20重量%である。α−オレフィンとしては、
ブテンやヘキセン、オクテン、4−メチルペンテン等が
あり、なかでも炭素数6〜8のα−オレフィン、とくに
ヘキセン、オクテン、4−メチルペンテン−1が好まし
い。樹脂Bのメルトフローレートは0.1〜10g/1
0分が好ましく、より好ましくは、1〜6g/10分で
ある。樹脂Bの密度は、延伸成形性の点から0.915
g/cm3未満、好ましくは0.910〜0.890g/
cm3である。これより密度が高いと、樹脂Aと組み合
わせた時の延伸成形温度範囲が狭くなり、延伸成形性が
向上しない。また収縮性が劣る。樹脂BのMw/Mnの
比は3以下であり、好ましくは2.7〜1.7、より好ま
しくは2.5〜1.9である。3を越えると樹脂の中の低
分子量成分が増えて、強度の向上が得られず、さらにブ
ロッキングし易くなる。
Another one of the components of the resin composition used for producing the stretched film of the present invention has a density of 0.915 g /
ethylene · α- having a ratio Mw / Mn of less than 3 cm 3 and a weight average molecular weight Mw to the number average molecular weight Mn of 3 or less.
It is an olefin copolymer resin (however, the carbon number of α-olefin is 4 to 8) (hereinafter, abbreviated as resin B). Resin B is a copolymer of ethylene with an α-olefin having 4 to 8 carbon atoms, and the content of α-olefin is 5
The amount is at least wt%, preferably 8 to 25 wt%, more preferably 10 to 20 wt%. As an α-olefin,
There are butene, hexene, octene, 4-methylpentene, and the like. Among them, α-olefins having 6 to 8 carbon atoms, particularly hexene, octene, and 4-methylpentene-1 are preferable. Resin B has a melt flow rate of 0.1 to 10 g / 1
It is preferably 0 minutes, more preferably 1 to 6 g / 10 minutes. The density of the resin B is 0.915 from the viewpoint of stretch moldability.
less than g / cm 3 , preferably 0.910 to 0.890 g /
cm 3 . When the density is higher than this range, the stretch molding temperature range when combined with the resin A is narrowed, and the stretch moldability is not improved. Also, the shrinkability is poor. The Mw / Mn ratio of Resin B is 3 or less, preferably 2.7 to 1.7, more preferably 2.5 to 1.9. When it exceeds 3, the low molecular weight component in the resin increases, the strength cannot be improved, and blocking is more likely to occur.

【0009】本発明に用いられる樹脂A、樹脂Bの製造
方法は特に限定されるものではないが、公知の高圧イオ
ン重合法や気相重合法、溶液重合法、スラリー重合法、
バルク重合法が使用できる。触媒としては、公知のチー
グラー触媒、メタロセン触媒等の遷移金属錯体触媒が用
いられる。樹脂Bの場合、メタロセン触媒を用いるのが
好ましい。
The method for producing the resin A and the resin B used in the present invention is not particularly limited, but known high pressure ionic polymerization method, gas phase polymerization method, solution polymerization method, slurry polymerization method,
Bulk polymerization methods can be used. As the catalyst, known transition metal complex catalysts such as Ziegler catalyst and metallocene catalyst are used. In the case of resin B, it is preferable to use a metallocene catalyst.

【0010】樹脂Aは、融点に近い高温域で、延伸する
に従い、強度が強くなっていく性質(ストレインハード
ニング性)を持ち、延伸成形性を有している材料である
が、延伸温度の変化で延伸応力が大きく変化し、インフ
レ再ブロー成形法で延伸した場合、温度の微少変化でチ
ューブが膨らむ位置が上下左右に変化し、安定した延伸
ができず、テンター法で延伸した場合も延伸時に膜割れ
がおこり、延伸が安定しないものであった。
Resin A is a material that has a property of increasing strength as it is stretched (strain hardening property) in a high temperature region close to the melting point and has stretch moldability. When stretched by the inflation re-blow molding method, the position where the tube swells changes vertically and horizontally when stretching by the inflation re-blow molding method, stable stretching cannot be performed, and stretching is performed even when stretched by the tenter method. At times, film cracking occurred and stretching was not stable.

【0011】樹脂Bは溶融温度付近での伸びは大きい
が、延伸しても強度の向上が顕著でなく、延伸時に張力
の低下が急激に起こり、延伸成形しにくいものであっ
た。これらの樹脂Aと樹脂Bを組み合わせることによ
り、延伸成形が著しく安定し、延伸後のフィルムが柔軟
で強度が強く、透明性に優れさらに延伸の条件により収
縮性に優れることを見いだしたものである。樹脂Bの配
合量は10〜70重量%、好ましくは20〜60重量%
である。配合量が10重量%未満では安定した延伸成形
性が得られず、70重量%を越えると強度の向上が充分
てなく、延伸成形も不安定となる。本発明ではさらに、
本発明の効果を損なわない範囲で、他の樹脂、好ましく
は分岐状PE等を配合することができる。中でも樹脂B
に対して分岐状PEを配合するのが好ましい。分岐状P
Eを配合した場合は、押出時の粘度が低下し押出性が向
上する。また樹脂Bと併せて延伸可能温度範囲を広げる
ことができる。他の樹脂の配合量は、組成物中の割合と
して0〜60重量%、好ましくは0〜40重量%であ
り、樹脂Bに配合する場合は、樹脂Bは少なくとも10
重量%配合する必要があるので、他の樹脂の配合量は樹
脂Bと併せて70重量%以下である。
Although the resin B has a large elongation near the melting temperature, the strength is not significantly improved even when it is stretched, and the tension is drastically lowered during stretching, which makes it difficult to stretch-mold. By combining these resins A and B, it was found that stretch molding is remarkably stable, the stretched film is flexible and strong, has excellent transparency, and has excellent shrinkability depending on the stretching conditions. . The content of the resin B is 10 to 70% by weight, preferably 20 to 60% by weight.
It is. If the blending amount is less than 10% by weight, stable stretch moldability cannot be obtained, and if it exceeds 70% by weight, the strength is not sufficiently improved and the stretch molding becomes unstable. In the present invention,
Other resins, preferably branched PE and the like can be blended within a range that does not impair the effects of the present invention. Above all, resin B
On the other hand, it is preferable to add branched PE. Branched P
When E is blended, the viscosity at the time of extrusion is lowered and the extrudability is improved. In addition, the temperature range in which the resin B can be stretched can be expanded. The blending amount of the other resin is 0 to 60% by weight, preferably 0 to 40% by weight as a ratio in the composition. When blended with the resin B, the resin B is at least 10% by weight.
Since it is necessary to mix the resin B with other resins, the amount of the other resin compounded together with the resin B is 70% by weight or less.

【0012】フィルムに成形する場合は、一般にフィル
ム間の固着を防止し、滑り性を良くするために、アンチ
ブロッキング剤や滑剤等が通常使用される。本発明の材
料も従来フィルムに使われている添加剤や充填剤、顔料
等を配合して、用途に応じた性能を付与することができ
る。配合された材料は、従来のインフレ再ブロー延伸成
形法や、テンター延伸成形法で成形することができる。
インフレ再ブロー延伸成形法の場合は、押出機からチュ
ーブ状に押出された溶融樹脂を水等で急冷し、固化した
チューブをニップロールで平たくして引き取り、再加
熱、再ブローして縦横2軸方向を所定の倍率に延伸す
る。
In the case of forming a film, an anti-blocking agent, a lubricant and the like are usually used in order to prevent sticking between the films and improve slipperiness. The material of the present invention can also be blended with additives, fillers, pigments, etc., which have been conventionally used in films, to impart performance depending on the application. The blended material can be molded by a conventional inflation re-blow stretch molding method or a tenter stretch molding method.
In the case of the inflation re-blow stretch molding method, the molten resin extruded into a tube shape from the extruder is rapidly cooled with water, etc., and the solidified tube is flattened with a nip roll and taken out, and reheated and re-blown to form a horizontal and vertical biaxial direction. Is stretched to a predetermined ratio.

【0013】L−LDPEは延伸する時の温度範囲が融
点一歩手前で、1〜2℃の温度変化で延伸成形が不安定
になるのに対して、本発明の材料は延伸する時の温度範
囲が広く、融点から約20℃低い温度の範囲でも安定し
て延伸できるものである。延伸倍率は縦横それぞれ3倍
程度以上であれば、延伸フィルムとして大きな強度を持
ち透明性も優れたフィルムが得られる。2倍以下では強
度や剛性が劣り、10倍以上であれば延伸時にフィルム
の破断が起こる。延伸したチューブをそのまま巻き取れ
ば、収縮性フィルムが得られる。付与できる熱収縮率は
110℃で40%を越え、実用上充分な収縮率が得られ
る。また再度ブローしたり、テンターのクリップで寸法
を保ったまま高温にして、熱固定をしたものは高温で収
縮しにくくなり、寸法安定性の良い非収縮性フィルムが
得られる。
In L-LDPE, the temperature range during stretching is just before the melting point, and stretch molding becomes unstable due to a temperature change of 1 to 2 ° C., whereas the material of the present invention has a temperature range during stretching. It has a wide range, and can be stably stretched even in a temperature range lower than the melting point by about 20 ° C. If the stretching ratio is about 3 times or more in each of the length and width, a film having high strength and excellent transparency can be obtained as a stretched film. If it is 2 times or less, the strength and rigidity are poor, and if it is 10 times or more, the film breaks during stretching. When the stretched tube is wound up as it is, a shrinkable film is obtained. The heat shrinkage that can be applied exceeds 40% at 110 ° C., and a practically sufficient shrinkage can be obtained. In addition, a non-shrinkable film having good dimensional stability can be obtained because it is difficult to shrink by being blown again or kept at a high temperature with a clip of a tenter and kept at a high temperature to be heat-fixed.

【0014】テンター延伸成形法の場合は、押出機から
シート状に押出された樹脂を、冷却ロールで冷却固化
し、加温したロールで再加熱してから、回転速度に差の
ついたロールで縦方向に延伸し、ついで両端をレールに
沿って移動するクリップで把持し、テンターのなかで加
熱して横方向に延伸する。延伸後クリップで把持したま
ま延伸温度に近い温度を保つことにより熱固定され、非
収縮性フィルムとなり、延伸後急冷すれば収縮性のフィ
ルムを得ることができる。このほかにテンター内でクリ
ップの移動に伴い縦横同時に2軸延伸する同時2軸成形
法でも延伸成形することができる。延伸倍率はインフレ
再ブロー法と同様に2〜10倍の範囲である。
In the case of the tenter stretch molding method, the resin extruded in a sheet form from the extruder is cooled and solidified by a cooling roll, reheated by a heated roll, and then by a roll having a different rotational speed. It is stretched in the machine direction, then both ends are gripped by clips that move along the rails, heated in a tenter and stretched in the cross direction. After stretching, the film is heat-fixed by holding it at a temperature close to the stretching temperature while being gripped by a clip, and becomes a non-shrinkable film. If the film is rapidly cooled after stretching, a shrinkable film can be obtained. In addition, stretch molding can also be carried out by a simultaneous biaxial molding method in which biaxial stretching is carried out simultaneously in the longitudinal and lateral directions as the clip moves in the tenter. The stretching ratio is in the range of 2 to 10 times as in the inflation reblowing method.

【0015】延伸成形されたフィルムは、コロナ放電処
理やフレーム処理等、従来フィルムに使われている表面
改質を加えることができ、フィルムの表面を活性化し
て、印刷インキの付着性を向上させたり、他のフィルム
と貼り合わせる時に接着性を向上することができる。得
られたフィルムは、柔軟で強度に優れ、透明性が良く、
青果物や加工食品、医療、事務用品や文具、その他種々
の商品の包装に使用できる。本発明による延伸フィルム
は、優れた強度を持つので、肉厚の薄いフィルムでも商
品を充分保護し、包装の軽量化に役立つ。また、高透明
であるので内容物の確認をし易いだけではなく、商品を
美しくアピールすることができる。さらに収縮性を付与
したフィルムは、収縮包装フィルムとして、従来のPV
CやPS収縮フィルムの使われている用途に使用するこ
とができ、強度やヒートシール性が優れているため、商
品の保護性が高い。以下に実施例によって本発明を詳し
く説明する。しかしながら、本発明は以下の実施例に限
定されるものではない。
The stretch-formed film can be subjected to corona discharge treatment, flame treatment, or other surface modification conventionally used for films, to activate the surface of the film and improve the adhesion of printing ink. Alternatively, the adhesiveness can be improved when it is attached to another film. The obtained film is flexible, has excellent strength, good transparency,
It can be used for packaging fruits and vegetables, processed foods, medical supplies, office supplies and stationery, and various other products. Since the stretched film according to the present invention has excellent strength, even a thin film can sufficiently protect a product and help to reduce the weight of packaging. Further, since it is highly transparent, it is not only easy to check the contents, but also the product can be appealed beautifully. The film that has been made more shrinkable is a conventional PV film that can be used as a shrink wrapping film.
It can be used in applications where C and PS shrink films are used, and because of its excellent strength and heat sealability, it offers high product protection. The present invention will be described in detail below with reference to examples. However, the present invention is not limited to the following examples.

【0016】[0016]

【実施例】【Example】

実施例1. メルトフローレートが1g/10分、密度
が0.920g/cm3である市販の線状低密度ポリエチ
レン樹脂A(エチレン・ヘキセン共重合体、ヘキセン含
量:8重量%)を80重量%と、メルトフローレートが
3.5g/10分で、密度が0.895、Mw/Mnが
2.1の市販の樹脂B(エチレン・ヘキセン共重合体、
ヘキセン含量:18.5重量%)を20重量%混合し
て、アンチブロッキング剤として粒径2μmの微粒子シ
リカを樹脂100重量部に対して0.2重量部、滑剤と
して「ニュートロンS」(日本精化社商品名)を0.0
5重量部になるように配合した材料を、インフレ再ブロ
ー延伸成形機で2軸延伸してフィルムに成形した。成形
は口径70mmの単軸押出機からチューブ状に押出され
た溶融樹脂を水で冷却し、引き取りロールで水をきり、
円筒型の加熱炉の中で再ブローしながら120℃に加熱
し縦5倍、横5倍に延伸して、厚さ20μmの柔軟で高
透明なフィルムを得た。
Embodiment 1 FIG. 80% by weight of a commercially available linear low-density polyethylene resin A (ethylene / hexene copolymer, hexene content: 8% by weight) having a melt flow rate of 1 g / 10 minutes and a density of 0.920 g / cm 3 and a melt A commercially available resin B (ethylene / hexene copolymer, having a flow rate of 3.5 g / 10 minutes, a density of 0.895 and an Mw / Mn of 2.1,
20% by weight of hexene content: 18.5% by weight), 0.2 parts by weight of fine particle silica having a particle size of 2 μm as an anti-blocking agent per 100 parts by weight of resin, and “Nutron S” (Japan) as a lubricant. Seikasha brand name) 0.0
The material blended so as to be 5 parts by weight was biaxially stretched by an inflation re-blow stretch molding machine to form a film. Molding is performed by cooling the molten resin extruded into a tube shape from a single-screw extruder with a diameter of 70 mm with water and draining the water with a take-up roll.
While reblowing in a cylindrical heating furnace, the film was heated to 120 ° C. and stretched 5 times lengthwise and 5 times widthwise to obtain a flexible and highly transparent film having a thickness of 20 μm.

【0017】実施例2. 実施例1の樹脂Aを50重量
%、樹脂Bを50重量%にして、実施例1と同様にアン
チブロッキング剤と滑剤を配合して、テンター延伸成形
機で2軸延伸してフィルムに成形した。成形は口径10
0mmの単軸押出機から、シート状に押出された溶融樹
脂を冷却ロールで冷却固化し、複数の加熱ロールで11
0℃に加熱し、回転数の異なるロールで、縦方向に5倍
に延伸し、次いで両端をクリップで把持し、テンターの
中で110℃に加熱して横方向に5倍延伸して、続いて
クリップで把持しているフィルム両端の間隔を幅方向に
5%狭めながら105℃で熱固化して、厚さ20μmの
柔軟で高透明なフィルムを得た。
Embodiment 2 FIG. The resin A of Example 1 was 50% by weight, the resin B was 50% by weight, the antiblocking agent and the lubricant were blended in the same manner as in Example 1, and biaxially stretched by a tenter stretching machine to form a film. . Molded diameter is 10
Molten resin extruded into a sheet from a 0 mm single-screw extruder is cooled and solidified by a cooling roll,
It is heated to 0 ° C., stretched 5 times in the machine direction with rolls having different rotation speeds, then both ends are gripped with clips, heated to 110 ° C. in a tenter and stretched 5 times in the transverse direction. The film was heat-solidified at 105 ° C. while narrowing the distance between both ends of the film held by the clip by 5% in the width direction to obtain a flexible and highly transparent film having a thickness of 20 μm.

【0018】実施例3. 実施例1の樹脂Aを40重量
%、樹脂Bを30重量%と、メルトフローレートが0.
7g/10分であり、密度が0.924g/cm3の市販
の高圧法低密度ポリエチレン(分岐状PE)を30重量
%を混合して、実施例1と同様にアンチブロッキング剤
と滑剤を配合した材料を、実施例1と同様に成形して、
厚さ20μmの柔軟で高透明なフィルムを得た。
Embodiment 3 FIG. The resin A of Example 1 was 40% by weight, the resin B was 30% by weight, and the melt flow rate was 0.
30 g by weight of a commercially available high-pressure low-density polyethylene (branched PE) having a density of 7 g / 10 minutes and a density of 0.924 g / cm 3 was mixed, and an anti-blocking agent and a lubricant were blended in the same manner as in Example 1. The obtained material was molded in the same manner as in Example 1,
A flexible and highly transparent film having a thickness of 20 μm was obtained.

【0019】実施例4. 実施例2の材料を、テンター
延伸成形機で1軸延伸してフィルムに成形した。成形は
口径100mmの単軸押出機から、シート状に押出され
た溶融樹脂を冷却ロールで冷却固化し、縦方向に延伸し
ないで、両端をクリップで把持し、テンターの中で11
0℃に加熱して横方向に5倍延伸して、厚さ20μmの
柔軟で高透明なフィルムを得た。
Embodiment 4 FIG. The material of Example 2 was uniaxially stretched by a tenter stretch molding machine to form a film. The molding was performed by using a single screw extruder with a diameter of 100 mm to cool and solidify the molten resin extruded into a sheet with a cooling roll, and without stretching in the longitudinal direction, grasp both ends with clips and
The film was heated to 0 ° C. and stretched 5 times in the transverse direction to obtain a flexible and highly transparent film having a thickness of 20 μm.

【0020】比較例1. 実施例1の樹脂A単体に、実
施例1と同様にアンチブロッキング剤と滑剤を配合し
て、実施例1の方法で成形したが、延伸時にチューブが
破裂して、延伸成形ができなかった。
Comparative Example 1 Similar to Example 1, the anti-blocking agent and the lubricant were added to the resin A of Example 1 alone and molded by the method of Example 1, but the tube ruptured during stretching and stretch molding could not be performed.

【0021】比較例2. 実施例1の樹脂Aを92重量
%と、樹脂Bを5重量%、及び実施例1と同様にアンチ
ブロッキング剤と滑剤を配合して、実施例1の方法で成
形したが、延伸時にチューブが上下左右に揺れて、延伸
成形ができなかった。
Comparative Example 2 92% by weight of Resin A of Example 1, 5% by weight of Resin B, and an antiblocking agent and a lubricant were blended in the same manner as in Example 1 and molded by the method of Example 1, but the tube was It shook vertically and horizontally, and stretch molding could not be performed.

【0022】比較例3. 実施例1の樹脂Aを20重量
%と、樹脂Bを80重量%、及び実施例1と同様にアン
チブロッキング剤と滑剤を配合して、実施例1の方法で
成形したが、チューブが部分的に溶融して穴が開き、延
伸成形ができなかった。
Comparative Example 3. 20% by weight of Resin A of Example 1, 80% by weight of Resin B, and an antiblocking agent and a lubricant were blended in the same manner as in Example 1 and molded by the method of Example 1, but the tube was partially It melted into a hole and opened, and stretch molding could not be performed.

【0023】比較例4. 実施例3の樹脂Aを70重量
%と、実施例3で使用したのと同じ分岐状PEを30重
量%、及び実施例1と同様にアンチブロッキング剤と滑
剤を同様に配合して、実施例1の方法で成形して、厚さ
20μmの柔軟で高透明なフィルムを得た。
Comparative Example 4. 70% by weight of Resin A of Example 3, 30% by weight of the same branched PE used in Example 3, and the same anti-blocking agent and lubricant as in Example 1 were used. The film was molded by the method 1 to obtain a flexible and highly transparent film having a thickness of 20 μm.

【0024】比較例5. 実施例3の樹脂Aにアンチブ
ロッキング剤と滑剤を同様に配合して、通常のインフレ
成形法を用い、延伸せずに、厚さ20μmの柔軟なフィ
ルムを得た。
Comparative Example 5. An anti-blocking agent and a lubricant were mixed in the same manner as in Resin A of Example 3, and a flexible film having a thickness of 20 μm was obtained without stretching by the usual inflation molding method.

【0025】比較例6. 比較例1の材料を、テンター
延伸成形機で1軸延伸してフィルムに成形した。成形は
口径100mmの単軸押出機から、シート状に押出され
た溶融樹脂を冷却ロールで冷却固化し、縦方向に延伸し
ないで、両端をクリップで把持し、テンターの中で11
0℃に加熱して横方向に5倍延伸したところ、シートが
破断して延伸フィルムを得ることができなかった。実施
例1〜4及び比較例4、5の各フィルムの物性データー
を表1に示す。
Comparative Example 6. The material of Comparative Example 1 was uniaxially stretched by a tenter stretch molding machine to form a film. The molding was performed by using a single screw extruder with a diameter of 100 mm to cool and solidify the molten resin extruded into a sheet with a cooling roll, and without stretching in the longitudinal direction, grasp both ends with clips and
When heated to 0 ° C. and stretched 5 times in the transverse direction, the sheet broke and a stretched film could not be obtained. Table 1 shows the physical property data of the films of Examples 1 to 4 and Comparative Examples 4 and 5.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例1〜4のフィルムは引張強度やヒー
トシール強度が強く、霞み度が小さいことから透明性が
良く、実施例1、3、4の熱固定してないフィルムは熱
収縮性を発現する。これにたいして比較例1、2、3、
6の場合は、フィルムが安定して延伸成形できず、比較
例4のフィルムは延伸成形は何とかできるものの強度が
劣る。また、比較例5の無延伸フィルムに比べて、実施
例のフィルムの性能の優位性は明らかである。さらに、
実施例のフィルムは高強度でありながら柔軟な感触を持
っていた。以上、本発明のフィルムは、成形性に優れ、
柔軟で強度、透明性等に優れているため、商品の包装に
使用して優れた性能を発揮する。
The films of Examples 1 to 4 have high tensile strength and heat seal strength, and have a low degree of haze, and thus have good transparency. The films of Examples 1, 3, and 4 which are not heat-set have heat shrinkability. Express. Comparative examples 1, 2, 3,
In the case of 6, the film could not be stably stretch-molded, and the film of Comparative Example 4 could be stretch-molded, but the strength was poor. In addition, the superiority of the performance of the film of the example is apparent as compared with the unstretched film of the comparative example 5. further,
The films of the examples had a high-strength yet soft feel. As described above, the film of the present invention has excellent moldability,
Since it is flexible and has excellent strength and transparency, it exhibits excellent performance when used for packaging products.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 密度が0.915〜0.935g/cm3
のエチレン・α−オレフィン共重合体樹脂(ただし、α
−オレフィンの炭素数は4〜8である)30〜90重量
%と、密度が0.915g/cm3未満であって、数平均
分子量Mnに対する重量平均分子量Mwの比Mw/Mn
が3以下のエチレン・α−オレフィン共重合体樹脂(た
だし、α−オレフィンの炭素数は4〜8である)70〜
10重量%との樹脂組成物からなる延伸フィルム。
1. A density of 0.915 to 0.935 g / cm 3
Ethylene / α-olefin copolymer resin (provided that α
-The carbon number of the olefin is 4 to 8) 30 to 90% by weight, the density is less than 0.915 g / cm 3 , and the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn.
Of 3 or less ethylene / α-olefin copolymer resin (provided that the α-olefin has 4 to 8 carbon atoms) 70 to
A stretched film comprising a resin composition with 10% by weight.
JP33948395A 1995-12-26 1995-12-26 Oriented film Pending JPH09176399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33948395A JPH09176399A (en) 1995-12-26 1995-12-26 Oriented film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33948395A JPH09176399A (en) 1995-12-26 1995-12-26 Oriented film

Publications (1)

Publication Number Publication Date
JPH09176399A true JPH09176399A (en) 1997-07-08

Family

ID=18327898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33948395A Pending JPH09176399A (en) 1995-12-26 1995-12-26 Oriented film

Country Status (1)

Country Link
JP (1) JPH09176399A (en)

Similar Documents

Publication Publication Date Title
US4769421A (en) Butene-rich butene-1-propylene copolymer shrink film
US3634552A (en) Polymer blend compositions comprising polypropylene and ethylene/butene copolymer
JP2554362B2 (en) Low temperature heat shrinkable film
WO1996009931A1 (en) Heat-shrinkable polypropylene laminate film
US4766178A (en) Butene-rich butene-1 propylene copolymer composition
EP1332868B1 (en) Multilayer film
WO2021025039A1 (en) Packaging laminate film and heat-shrinkable laminate film
US5904964A (en) Process for manufacturing heat-shrinkable polyethylene film
JP7018781B2 (en) Heat shrinkable laminated film
JP2974198B2 (en) Polyolefin-based shrink laminated film and method for producing the same
JP3973800B2 (en) Polyethylene resin composition for biaxial stretching
JP4838948B2 (en) Polyethylene multilayer heat shrinkable film
EP0233400B1 (en) Butene-1/propylene copolymer blends
JPH09176399A (en) Oriented film
JP2002187245A (en) Polyolefin resin heat-shrinkable multilayer film
JPH06115027A (en) Laminated stretch shrink film
EP0434322B1 (en) Improved heat shrinkable polyolefin film
JPH06115026A (en) Multi-layer stretch shrink film
JP7124980B2 (en) biaxially oriented polypropylene film
JP2011240619A (en) Styrene heat-shrinkable film for over-wrap packing
JPS6239226A (en) Manufacture of double packaging bag
JP2957660B2 (en) Heat shrinkable laminated film
JPH02127041A (en) Film for twist wrapping
JP2003136650A (en) Low temperature heat-shrinkable multilayered film excellent in transparency and glossiness
CA2207698C (en) Multilayered polyolefin high shrinkage, low shrink force shrink film

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040326

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040330

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20040720

Free format text: JAPANESE INTERMEDIATE CODE: A02