JPH09175840A - Low-reflection glass substrate for solar cell - Google Patents

Low-reflection glass substrate for solar cell

Info

Publication number
JPH09175840A
JPH09175840A JP7341722A JP34172295A JPH09175840A JP H09175840 A JPH09175840 A JP H09175840A JP 7341722 A JP7341722 A JP 7341722A JP 34172295 A JP34172295 A JP 34172295A JP H09175840 A JPH09175840 A JP H09175840A
Authority
JP
Japan
Prior art keywords
film
glass substrate
thin film
solar cell
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7341722A
Other languages
Japanese (ja)
Inventor
Kensuke Makita
研介 牧田
Atsushi Takamatsu
敦 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP7341722A priority Critical patent/JPH09175840A/en
Publication of JPH09175840A publication Critical patent/JPH09175840A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a glass substrate for a solar cell, having sufficiently suppressed reflection on the surface of the glass substrate to sufficiently increase the transmittance of sunlight and contributing to improve the conversion efficiency of a solar cell. SOLUTION: This low-reflection glass substrate for a solar cell is produced by forming a thin film 3 having a refractive index of n1 =1.7 to 1.9 and a thickness of d1 =70 to 85nm as the 1st thin film layer on a surface of a glass substrate 1 for solar cell and forming a thin film 4 having a refractive index of n=1.4 to 1.5 and a thickness of d2 =90 to 100nm as the 2nd thin film layer on the 1st thin film layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池に用いら
れる反射を低減した透明ガラス基板に関し、より可視光
の透過率を高め、太陽光入射量を通常のガラス基板より
増加させ、変換効率を得て優れた太陽電池をうることが
できる、太陽電池用低反射ガラス基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent glass substrate used in a solar cell, which has reduced reflection, and has a higher transmittance of visible light, an increased amount of incident sunlight, and a higher conversion efficiency. The present invention relates to a low reflection glass substrate for a solar cell, which can obtain an excellent solar cell.

【0002】[0002]

【従来の技術】従来から、低反射ガラス基板が使用され
ていた。例えば特開平2-60173 号公報には、Inp 太陽電
池が記載されており、太陽光入射側が n型層である n-p
型のInp 太陽電池において、前記 n型層上に形成された
表面電極および絶縁性の反射防止膜と、前記反射防止膜
上に形成された導電膜とを備え、前記表面電極と前記導
電膜が電気的に接続していることが開示されている。
2. Description of the Related Art Conventionally, a low reflection glass substrate has been used. For example, Japanese Unexamined Patent Publication (Kokai) No. 2-60173 describes an Inp solar cell, which has an np-type layer on the sunlight incident side.
Type Inp solar cell, comprising a surface electrode and an insulating antireflection film formed on the n-type layer, and a conductive film formed on the antireflection film, wherein the surface electrode and the conductive film are It is disclosed that they are electrically connected.

【0003】そのなかで、前記反射防止膜としては、例
えばSi3N4 、SiO2、ZnS などを単層であるいは多層で用
い、導電膜としてはITO(酸化インジュウムすず) 、酸化
すず、酸化インジュウムなど用いることができ、表面電
極の厚さは反射防止膜よりも厚くすること、反射防止膜
および導電膜を太陽光の反射損失が最小となるように
し、かつ導電膜をできるだけ薄くすることが好ましい。
Among them, as the antireflection film, for example, Si 3 N 4 , SiO 2 , ZnS or the like is used in a single layer or in multiple layers, and as the conductive film, ITO (indium tin oxide), tin oxide, indium oxide is used. It is preferable that the thickness of the surface electrode be thicker than that of the antireflection film, that the antireflection film and the conductive film have minimum reflection loss of sunlight, and that the conductive film is as thin as possible. .

【0004】またさらに、反射防止膜の条件として、そ
の屈折率をn 、その厚さをd 、光の波長をλとしたと
き、nd=λ/4 を用いる。Si3N4 膜とITO 膜は共に屈折
率n が2.0 にほぼ等しく、出力が最大となる最適な太陽
光の波長λを、太陽光スペクトルとInp 太陽電池の波長
感度特性より求めるとおよそ550nm となるので、最適な
反射防止膜の厚さd は、d=1/n ・λ/4=550 /8nm=6
8.8nmとなる。これによってITO 膜とSi3N4 膜の膜厚と
の和を、波長550 〜600nm の太陽光に対して反射が最低
となるように70nm一定としたことが記載されている。
Further, as a condition of the antireflection film, nd = λ / 4 is used, where n is its refractive index, d is its thickness, and λ is the wavelength of light. The refractive index n of both the Si 3 N 4 film and the ITO film is approximately equal to 2.0, and the optimum wavelength λ of sunlight that maximizes the output is approximately 550 nm when calculated from the sunlight spectrum and the wavelength sensitivity characteristics of the Inp solar cell. Therefore, the optimum antireflection film thickness d is d = 1 / n.λ / 4 = 550 / 8nm = 6
It becomes 8.8 nm. It is described that the sum of the thickness of the ITO film and the film thickness of the Si 3 N 4 film is kept constant at 70 nm so that the reflection is minimum for sunlight having a wavelength of 550 to 600 nm.

【0005】この他例えば、特開昭61-2372 号公報に
は、太陽電池の表面にITO 膜を単独で反射防止膜とした
ことが記載されている。
In addition to this, for example, Japanese Patent Laid-Open No. 61-2372 describes that an ITO film alone is used as an antireflection film on the surface of a solar cell.

【0006】[0006]

【発明が解決しようとする課題】前述した例えば特開平
2-60173 号公報に記載のInp 太陽電池では、太陽電池用
ガラス基板における太陽光の反射を充分低減し、その透
過率を充分高めたものとは言い難いく、さらに反射損失
および吸収損失を改善し高効率をなす必要があるもので
あった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the Inp solar cell described in Japanese Patent No. 2-60173, it is difficult to say that the solar cell glass substrate has sufficiently reduced the reflection of sunlight and its transmittance has been sufficiently improved. Furthermore, the reflection loss and the absorption loss are improved. However, it was necessary to achieve high efficiency.

【0007】また、これら太陽電池などに用いられるSi
O2やITO の透明導電膜を形成させたガラス基板では、ガ
ラスからアルカリ成分が溶出し導電性が劣化するのを防
ぐために、一般にSiO2薄膜を形成したものが、用いられ
る。(パッシベ−ション膜)しかし、この方法では屈折
率の低いSiO2薄膜と比較的屈折率の高い導電膜が接して
形成されることとなり、光の干渉作用で反射率が上が
り、太陽光の入射光量が減少することとなる。
Si used in these solar cells and the like
In the case of a glass substrate on which a transparent conductive film of O 2 or ITO is formed, a SiO 2 thin film is generally used in order to prevent the alkaline component from being eluted from the glass and deteriorating the conductivity. (Passivation film) However, in this method, a SiO 2 thin film having a low refractive index and a conductive film having a relatively high refractive index are formed in contact with each other, and the reflectance increases due to the interference of light and the incidence of sunlight. The amount of light will be reduced.

【0008】[0008]

【課題を解決するための手段】本発明は、従来のかかる
欠点に鑑みてなしたものであって、例えば片面にSiO2
の代わりに屈折率がガラス基板と透明導電膜の間の値を
持つ薄膜を形成せしめ、太陽光の反射を減少させるよう
にした太陽電池用透明ガラス基板と、該太陽電池用透明
ガラス基板におけるもう一方の片面(非導電膜側)に、
屈折率と膜厚が上記同様の薄膜とさらにこの薄膜上に比
較的低い屈折率( n=1.4 〜1.5 程度)で膜厚がの積層
膜である特異に屈折率と膜厚を特定した2層系に適宜組
み合わせた積層薄膜層を形成せしめたことで、太陽光の
ガラス基板表面(外表面)での反射をさらに低下させて
太陽光透過率を高め、変換効率をも高めて優れるものと
した太陽電池用透明低反射ガラス基板を、簡便に効率よ
く提供するののである。
The present invention has been made in view of the above-mentioned drawbacks of the prior art. For example, instead of a SiO 2 film on one side, the refractive index is set to a value between the glass substrate and the transparent conductive film. A transparent glass substrate for a solar cell, which is formed by forming a thin film having the above and is configured to reduce reflection of sunlight, and the other surface (non-conductive film side) of the transparent glass substrate for a solar cell,
A thin film having the same refractive index and film thickness as described above, and a two-layer structure in which the thin film having a relatively low refractive index (n = 1.4 to about 1.5) and a specific film thickness is specified. By forming a laminated thin film layer that is appropriately combined with the system, the reflection of sunlight on the glass substrate surface (outer surface) is further reduced, the sunlight transmittance is increased, and the conversion efficiency is also improved to be excellent. The transparent low reflection glass substrate for solar cells is simply and efficiently provided.

【0009】すなわち、本発明は、太陽電池用ガラス基
板の片面に、ガラス面側から薄膜(1) 層として屈折率が
n1=1.7 〜1.9 であってかつ膜厚がd1=70 〜85nmの範囲
で薄膜を形成し、次いで該薄膜(1) 層の上に、薄膜(2)
層として屈折率がn2=1.4 〜1.5 であってかつ膜厚がd2
=90 〜100nm である薄膜を被覆積層して成ることを特徴
とする太陽電池用低反射ガラス基板。
That is, the present invention provides a thin film (1) layer having a refractive index of one surface of a glass substrate for solar cells from the glass surface side.
A thin film is formed in the range of n 1 = 1.7 to 1.9 and d 1 = 70 to 85 nm, and then the thin film (2) is formed on the thin film (1) layer.
The layer has a refractive index of n 2 = 1.4 to 1.5 and a film thickness of d 2
A low reflection glass substrate for a solar cell, which is formed by coating and laminating thin films having a thickness of 90 to 100 nm.

【0010】ならびに、前記太陽電池用低反射ガラス基
板のもう一方の片面に、屈折率がn3=1.45〜2.00であっ
てかつ膜厚がd3=60 〜120nm である薄膜(3) 層を形成し
たことを特徴とする上述した太陽電池用低反射ガラス基
板。
A thin film (3) layer having a refractive index of n 3 = 1.45 to 2.00 and a film thickness of d 3 = 60 to 120 nm is formed on the other surface of the low reflection glass substrate for solar cell. The low reflection glass substrate for a solar cell described above, which is formed.

【0011】また、前記薄膜(1) 層と前記薄膜(3) 層に
おける屈折率n1とn3、ならびに膜厚d1とd3が、同等であ
ることを特徴とする上述した太陽電池用低反射ガラス基
板。さらに、前記太陽電池用低反射ガラス基板におい
て、薄膜(3) 層の上に、透明導電性薄膜を形成したこと
を特徴とする上述した太陽電池用低反射ガラス基板。
Further, the above-mentioned solar cell characterized in that the thin film (1) layer and the thin film (3) layer have the same refractive index n 1 and n 3 and the film thickness d 1 and d 3 , respectively. Low reflection glass substrate. Furthermore, in the low reflection glass substrate for a solar cell, a transparent conductive thin film is formed on the thin film (3) layer, wherein the low reflection glass substrate for a solar cell described above.

【0012】さらにまた、前記透明導電膜が、屈折率が
n0=1.8 〜2.2 であってかつ膜厚がd0=500〜700nm であ
ることを特徴とする上述した太陽電池用低反射ガラス基
板をそれぞれ提供するものである。
Furthermore, the transparent conductive film has a refractive index
The low-reflection glass substrates for solar cells described above are characterized by having n 0 = 1.8 to 2.2 and a film thickness of d 0 = 500 to 700 nm.

【0013】[0013]

【発明の実施の形態】ここで、太陽電池用低反射ガラス
基板として、太陽電池用ガラス基板の片面に、ガラス面
側から薄膜(1) 層として屈折率がn1=1.7 〜1.9 であっ
てかつ膜厚がd1=70 〜85nmの範囲で薄膜を形成し、次い
で該薄膜(1) 層の上に、薄膜(2) 層として屈折率がn2
1.4 〜1.5 であってかつ膜厚がd2=90 〜100nm である薄
膜を被覆積層して成ることとしたのは、薄膜(1) につい
ては光学的に所定の屈折率になればよいので、例えばSi
O2膜にTiO2(単独でn=2.20)、あるいはZrO2(単独でn=
1.90)、または酸化タンタルなどを混ぜたもので屈折率
がn1=1.7 〜1.9 であればよいし、該所定の値より増減
すると分光反射率が極小値を示す波長での反射率が0%
より高くなり低反射特性が低下する。また薄膜2につい
ては屈折率がn2=1.4 〜1.5 であることから、屈折率が
1.45であるSiO2膜が相当である。これら薄膜(1) および
(2) の膜厚についてはどちらの膜も膜厚が厚くなりすぎ
ると分光反射率が極小値を示す波長が長波長側にシフト
し、また薄くなると短波長にシフトし、いずれも反射率
が増加(つまり、透過率が減少)する。例えば分光反射
率が極小値を示す波長は、視感度が最も高い約555nm に
なるようにする。このため薄膜1では膜厚がd1=70 〜85
nmの範囲、薄膜2では膜厚がd2=90 〜100nm である。
BEST MODE FOR CARRYING OUT THE INVENTION Here, as a low reflection glass substrate for a solar cell, a thin film (1) layer having a refractive index of n 1 = 1.7 to 1.9 on one side of the glass substrate for a solar cell is used. And, a thin film is formed in a film thickness range of d 1 = 70 to 85 nm, and then a thin film (2) layer having a refractive index of n 2 =
The reason that the thin film having a thickness of 1.4 to 1.5 and a film thickness of d 2 = 90 to 100 nm is laminated is that the thin film (1) has an optical predetermined refractive index. For example Si
O 2 film TiO 2 (alone n = 2.20), or ZrO 2 (alone n =
1.90), or a mixture of tantalum oxide and the like, and the refractive index is n 1 = 1.7 to 1.9. When the refractive index is increased or decreased from the predetermined value, the reflectance at the wavelength at which the spectral reflectance exhibits a minimum value is 0%.
It becomes higher and the low reflection property deteriorates. In addition, since the refractive index of the thin film 2 is n 2 = 1.4 to 1.5, the refractive index is
The SiO 2 film, which is 1.45, is considerable. These thin films (1) and
Regarding the film thickness of (2), when the film thickness of both films is too thick, the wavelength at which the spectral reflectance has a minimum value shifts to the long wavelength side, and when it becomes thin, the wavelength shifts to the short wavelength side, and the reflectance is both It increases (that is, the transmittance decreases). For example, the wavelength at which the spectral reflectance has a minimum value is set to about 555 nm, which has the highest luminosity. Therefore, the thin film 1 has a film thickness of d 1 = 70 to 85
In the range of nm, the thickness of the thin film 2 is d 2 = 90 to 100 nm.

【0014】また、前記太陽電池用低反射ガラス基板の
もう一方の片面に、屈折率がn3=1.45〜2.00であってか
つ膜厚がd3=60 〜120nm である薄膜(3) 層を形成したこ
ととしたのは、薄膜(3) についてはガラス基板のナトリ
ウムが拡散するのを防ぐパッシペ−ション膜であって、
SiO2膜単独(単独でn=1.45)もしくはSiO2膜にTiO2(単
独でn=2.20)やZrO2(単独でn=1.90)を混ぜたものであ
ればよく、特にその上に成膜する導電膜、例えばネサ膜
とともに低反射効果が出るような屈折率と膜厚であれば
よいものであり、その値として屈折率がn3=1.45〜2.00
で、かつ膜厚がd3=60 〜120nm である。
A thin film (3) layer having a refractive index of n 3 = 1.45 to 2.00 and a film thickness of d 3 = 60 to 120 nm is formed on the other surface of the low reflection glass substrate for solar cells. What was formed was a passivation film that prevents diffusion of sodium in the glass substrate for thin film (3).
The SiO 2 film alone (n = 1.45 alone) or the SiO 2 film mixed with TiO 2 (n = 2.20 alone) or ZrO 2 (n = 1.90 alone) is especially preferable. It is sufficient that the refractive index and the film thickness are such that a low reflection effect can be obtained together with the conductive film, for example, the Nesa film, and the refractive index is n 3 = 1.45 to 2.00.
And the film thickness is d 3 = 60 to 120 nm.

【0015】また、前記薄膜(1) と前記薄膜(3) におけ
る屈折率n1とn3、ならびに膜厚d1とd3が、それぞれ同等
であることが、前記範囲ないの屈折率と膜厚であれば、
低反射化の上でも障害とならないし、製造上簡便化で
き、好ましいものである。
Further, the refractive indexes n 1 and n 3 and the film thicknesses d 1 and d 3 of the thin film (1) and the thin film (3) are not equal to each other within the above range. If thick,
It is preferable because it does not hinder the reduction of the reflection and simplifies the production.

【0016】さらに、前記薄膜(1) については、SiO2
TiO2、ZrO2、Al2O3 、B2O3のうちの2種以上を混合した
ものから成ることが好ましく、屈折率が比較的高いTiO2
(2.20程度)、ZrO2(1.90程度)と屈折率が比較的低い
SiO2(1.45程度)、Al2O3 (1.65程度)、B2O3(1.60程
度)とを種々組み合わせて混合することで、自由にコン
トロールして屈折率が1.7 〜1.9 になるような複合膜を
得易く、かつ耐久性に優れるものとなるからである。
Further, regarding the thin film (1), SiO 2 ,
TiO 2, ZrO 2, Al 2 O 3, B 2 is preferably made of a mixture of two or more of O 3, a relatively high refractive index TiO 2
(About 2.20), ZrO 2 (about 1.90) and relatively low refractive index
By combining SiO 2 (about 1.45), Al 2 O 3 (about 1.65), and B 2 O 3 (about 1.60) in various combinations, it is possible to freely control and obtain a composite with a refractive index of 1.7 to 1.9. This is because the film is easy to obtain and has excellent durability.

【0017】さらにまた、前記透明導電膜については、
屈折率がn0=1.8 〜2.2 で、かつ膜厚がd0=500〜700nm
である膜、例えばネサ膜、ITO 膜等であり、前記屈折率
および膜厚の範囲にあるものであればよい。
Furthermore, regarding the transparent conductive film,
Refractive index n 0 = 1.8-2.2 and film thickness d 0 = 500-700nm
Film such as NES film, ITO film, and the like, as long as they are within the ranges of the refractive index and the film thickness.

【0018】さらにまた、ガラス基板としては、板厚が
約2mm程度の透明なフロ−トガラス(Fl2 )が最も好ま
しく、薄ければガラス基板としての強度が低くなりす
ぎ、厚すぎれば透過率が低くなり太陽電池の性能が低下
する。板厚は1.0 〜3.0mm 程度が好ましく、1.5 〜2.5m
m 程度がよりこのましいものである。
Further, as the glass substrate, a transparent float glass (Fl2) having a plate thickness of about 2 mm is most preferable, and if it is thin, the strength as a glass substrate becomes too low, and if it is too thick, the transmittance becomes low. The performance of the solar cell deteriorates. The plate thickness is preferably 1.0 to 3.0 mm, 1.5 to 2.5 m
About m is more desirable.

【0019】なお、コスト的に不利ではあるが、オプチ
ファインの使用も可能であることは言うまでもない。ま
た強化ガラスまたは強度アップガラス、曲げガラス等と
しても使用できることは言うまでもない。さらに、ガラ
ス基板が無機質でも有機質でもよいことは言うに及ばな
い。
Needless to say, although it is disadvantageous in terms of cost, it is possible to use Optifine. It goes without saying that it can also be used as tempered glass, strength-up glass, bent glass, or the like. Further, it goes without saying that the glass substrate may be inorganic or organic.

【0020】前述したとおり、本発明の太陽電池用低反
射ガラス基板は、従来の太陽電池用ガラス基板より、太
陽光反射率を低減でき、太陽光発電に必要な太陽光(可
視光域)の入射光量が、例えば最大6%程度高まるもの
となり、太陽電池における光変換効率アップに充分寄与
することができるものとなる。
As described above, the low reflection glass substrate for a solar cell of the present invention can reduce the sunlight reflectance as compared with the conventional glass substrate for a solar cell, and can reduce sunlight (visible light range) required for photovoltaic power generation. The amount of incident light is increased by, for example, about 6% at the maximum, which can sufficiently contribute to increase the light conversion efficiency in the solar cell.

【0021】また、本発明の太陽電池用低反射ガラス基
板は、アモルファス太陽電池に用いられることはもちろ
ん、結晶質太陽電池にも使用できるものである。
The low reflection glass substrate for solar cells of the present invention can be used not only for amorphous solar cells but also for crystalline solar cells.

【0022】[0022]

【実施例】以下、実施例により本発明を具体的に説明す
る。ただし本発明は係る実施例に限定されるものではな
い。
The present invention will be described below in detail with reference to examples. However, the present invention is not limited to such an embodiment.

【0023】実施例1 先ずTiのアルコキシドとSiのアルコキシドとをモル比で
55:45となるように混合した混合アルコキシドに、溶質
濃度が約 0.45mol/l となるようエタノ−ル希釈溶液を
調製し、ついで厚さ2mmのクリアガラスの外面をマスキ
ングテ−プでマスクし、前記調製溶液に浸漬し約3.8mm
/秒の速度でディッピング成膜した後、マスキングテ−
プを剥がし、約250 ℃で約10分間程度加熱し、薄膜(1)
のゲル膜を得た。
Example 1 First, Ti alkoxide and Si alkoxide were used in a molar ratio.
Prepare a diluted solution of ethanol in a mixed alkoxide of 55:45 so that the solute concentration is about 0.45 mol / l, and then mask the outer surface of a 2 mm thick clear glass with a masking tape. Approximately 3.8mm by immersing in the above prepared solution
After the dipping film is formed at the speed of 1 / sec, the masking tape
Peel off the film and heat at about 250 ° C for about 10 minutes to form a thin film (1).
A gel film of

【0024】このガラスの無膜面に同様にマスキングテ
−プを貼り、溶質濃度約0.25mol /l に調製したSiのア
ルコキシドのイソプロピルアルコ−ル希釈溶液に浸漬
し、約3.0mm /秒の速度で成膜した後、マスキングテ−
プを剥がし、約250 ℃で約10分間程度加熱し、薄膜(2)
のゲル膜を得た。〔図1に示す。〕 さらに、このガラスの膜積層面に同様にマスキングテ−
プを貼り、溶質濃度約0.25mol /l に調製したSiのアル
コキシドのイソプロピルアルコ−ル希釈溶液に浸漬し、
約2.9mm /秒の速度で成膜した後、マスキングテ−プを
剥がし、約250℃で約10分間程度加熱して薄膜(3) のゲ
ル膜を得た。〔図2に示す。〕 次いで、該被膜付きガラス基板を約 500℃で約30分間キ
ュアーリングした。
Similarly, a masking tape was attached to the non-film surface of this glass, and the glass was dipped in a dilute solution of Si alkoxide in isopropyl alcohol prepared to have a solute concentration of about 0.25 mol / l, and the speed was about 3.0 mm / sec. After forming a film with
Peel off and heat at about 250 ° C for about 10 minutes to form a thin film (2).
A gel film of [As shown in FIG. ] Further, a masking tape is similarly applied to the film-laminated surface of this glass.
And dip it in a dilute solution of Si alkoxide in isopropyl alcohol adjusted to a solute concentration of about 0.25 mol / l.
After forming a film at a rate of about 2.9 mm / sec, the masking tape was peeled off, and the film was heated at about 250 ° C. for about 10 minutes to obtain a thin gel film (3). [As shown in FIG. Next, the coated glass substrate was cured at about 500 ° C. for about 30 minutes.

【0025】得られた図2に示す太陽電池用低反射ガラ
ス基板は、表1に示すように、該基板の一方の面に薄
膜(1) として屈折率n1が約1.79でかつ膜厚d1が約77nmで
あり、図3に示すように、その上に薄膜(2) として屈折
率n2が約1.45でかつ膜厚d2が約95nmの積層膜を持つ低反
射ガラスであり、またガラスの他面には薄膜(3として屈
折率n3が約1.45でかつ膜厚d3が約100nm の単層のパッシ
ベ−ション膜になっている。該薄膜(3) の上に、厚さd0
約600nm の導電膜7であるネサ膜(n0=2.00 )を積層す
る〔図3に示す。〕と、低反射面(薄膜(1) 、(2) 側)
から、垂直方向に入射する可視光に対して、その表面反
射率は、低反射膜がない従来の太陽電池用ガラス基板
(パッシベ−ション膜付きガラス基板)の約17.18 %か
ら約14.23%に約3%程度低下させることができた。ま
た、可視光透過率は、低反射膜がない従来の太陽電池用
ガラス基板の約81.70 %から約84.61 %に約3%程度増
加できた。
The obtained low reflection glass substrate for solar cell 1 shown in FIG. 2 is, as shown in Table 1, a thin film (1) having a refractive index n 1 of about 1.79 and a film thickness on one surface of the substrate. d 1 is about 77 nm, and as shown in FIG. 3, a low reflection glass having a laminated film having a refractive index n 2 of about 1.45 and a film thickness d 2 of about 95 nm as a thin film (2) thereon, On the other side of the glass, there is a thin film (3 as a single-layer passivation film with a refractive index n 3 of about 1.45 and a film thickness d 3 of about 100 nm. D 0
A Nesa film (n 0 = 2.00) which is a conductive film 7 having a thickness of about 600 nm is laminated [shown in FIG. 3]. ] And a low reflection surface (thin film (1), (2) side)
Therefore, the surface reflectance of visible light incident in the vertical direction is about 17.18% to about 14.23% of the conventional solar cell glass substrate (glass substrate with passivation film) without a low reflection film. It could be reduced by about 3%. Further, the visible light transmittance could be increased by about 3% from about 81.70% of the conventional glass substrate for a solar cell having no low reflection film to about 84.61%.

【0026】なお、本発明での成膜方法は、ディッピン
グ法のほか、例えばスピンコ−ト法、カ−テンコ−ト
法、ロ−ルコ−ト法等でも可能である。実施例2 実施例1と同様に、TiのアルコキシドとSiのアルコキシ
ドとをモル比が58:42となるように混合した混合アルコ
キシドに、酸化物換算の溶質濃度が約3.0 wt%となるよ
うイソプロパノ−ル希釈溶液を調製した。このゾル液を
約18m /分の速度で回転するロ−ルコ−ト上に均一に供
給し、この下を2mm厚みのクリアガラス基板を搬送ベル
ト上に乗せ、約12m /分の速度で該ロ−ルの回転と逆向
きに移動させて、ガラス基板上にゾル液を塗布し、この
後、このガラス基板を約250 ℃で約30分間乾燥させて、
薄膜(1) を得た。
In addition to the dipping method, the film forming method according to the present invention may be, for example, a spin coat method, a cart coat method, a roll coat method or the like. Example 2 As in Example 1, a mixed alkoxide obtained by mixing a Ti alkoxide and a Si alkoxide in a molar ratio of 58:42 was mixed with isopropanol so that the solute concentration in terms of oxide was about 3.0 wt%. A diluted solution was prepared. This sol solution is uniformly supplied onto a roll coat which rotates at a speed of about 18 m / min, and a clear glass substrate having a thickness of 2 mm is placed on a conveyor belt under the roll coat at a speed of about 12 m / min. -Move in the opposite direction to the rotation of the glass substrate to apply the sol liquid on the glass substrate, and then dry this glass substrate at about 250 ° C for about 30 minutes,
A thin film (1) was obtained.

【0027】次に、濃度1.8wt %(酸化物換算)にイソ
プロパノ−ル希釈溶液で調製したSiのアルコキシドを、
約6m/分の速度で回転するロ−ルコ−ト上に均一に供給
し、この下を上記クリアガラス基板を約4m/分の速度で
該ロ−ルの回転と逆向きに移動させて、薄膜(1) 上に薄
膜(2) を積層し、この後、このガラス基板を約250 ℃で
約30分間程度乾燥させ薄膜(2) を得た。〔図1に示
す。〕 次いで、TiのアルコキシドとSiのアルコキシドとをモル
比が80:20となるように混合した混合アルコキシドに、
酸化物換算の溶質濃度が約3.0 wt%となるようイソプロ
パノ−ル希釈溶液を調製し、このゾル液を約18m /分の
速度で回転するロ−ルコ−ト上に均一に供給した。前記
2層積層したガラス基板の未成膜面を上側にして、ロ−
ルコ−トの下を約8.5m/分の速度で該ロ−ルの回転と逆
向きに移動させて、該ガラス基板上にゾル液を塗布し、
この後、このガラス基板を約250℃で約30分間程度乾燥
させ薄膜(3) を得た。〔図2に示す。〕 次に、該被膜付きガラス基板を約500 ℃で約30分間程度
キュアーリングした。
Next, Si alkoxide prepared with a dilute solution of isopropanol to a concentration of 1.8 wt% (as oxide) was added to
It is uniformly supplied onto a roll coat which rotates at a speed of about 6 m / min, and the clear glass substrate is moved under this at a speed of about 4 m / min in the opposite direction to the rotation of the roll, The thin film (2) was laminated on the thin film (1), and then this glass substrate was dried at about 250 ° C. for about 30 minutes to obtain a thin film (2). [As shown in FIG. Next, a mixed alkoxide in which a Ti alkoxide and a Si alkoxide are mixed at a molar ratio of 80:20,
An isopropanol-diluted solution was prepared so that the solute concentration in terms of oxide was about 3.0 wt%, and this sol solution was uniformly supplied onto a roll coat rotating at a speed of about 18 m / min. With the non-deposited surface of the two-layer laminated glass substrate facing up,
The sol liquid is applied on the glass substrate by moving the lower part of the rukot at a speed of about 8.5 m / min in the direction opposite to the rotation of the roll,
Then, this glass substrate was dried at about 250 ° C. for about 30 minutes to obtain a thin film (3). [As shown in FIG. Next, the coated glass substrate was cured at about 500 ° C. for about 30 minutes.

【0028】得られた図2に示す太陽電池用低反射ガラ
ス基板は、表1に示すように、該基板の一方の面に薄膜
(1) として屈折率n1が約1.79でかつ膜厚d1が約77nmであ
り、図3に示すように、その上に薄膜(2) として屈折率
n2が約1.45でかつ膜厚d2が約95nmの積層膜を持つ低反射
ガラスであり、またガラスの他面には薄膜(3) として屈
折率n3が約2.00でかつ膜厚d3が約100nm の単層のパッシ
ベ−ション膜になっている。該薄膜(3) の上に、厚さd0
約600nm のネサ膜(n0=2.00 )を積層する〔図3に示
す。〕と、低反射面(薄膜(1) 、(2) 側)から、垂直方
向に入射する可視光に対して、その表面反射率は、低反
射膜がない従来の太陽電池用ガラス基板(パッシベ−シ
ョン膜付きガラス基板)の約17.35 %から約12.04 %に
約5%程度低下させることができた。また、可視光透過
率は、低反射膜がない従来の太陽電池用ガラス基板の約
81.70 %から約86.80 %に約5%程度増加できた。
The obtained low reflection glass substrate for solar cell shown in FIG. 2 has a thin film on one surface of the substrate as shown in Table 1.
As (1), the refractive index n 1 is about 1.79 and the film thickness d 1 is about 77 nm, and as shown in FIG.
It is a low reflection glass having a laminated film with n 2 of about 1.45 and a film thickness d 2 of about 95 nm.The other surface of the glass is a thin film (3) with a refractive index n 3 of about 2.00 and a film thickness d 3 Is a single-layer passivation film of about 100 nm. On top of the thin film (3) a thickness d 0
A Nesa film (n 0 = 2.00) of about 600 nm is laminated [shown in FIG. 3]. ] And the surface reflectance of visible light incident vertically from the low reflection surface (thin films (1) and (2) side) is the same as that of a conventional glass substrate for solar cells (passive coating) without a low reflection film. -Glass substrate with ionization film) from about 17.35% to about 12.04% by about 5%. In addition, the visible light transmittance is about the same as that of a conventional glass substrate for solar cells without a low reflection film.
It was possible to increase by about 5% from 81.70% to about 86.80%.

【0029】なお、本発明での成膜方法は、ロ−ルコ−
ト法のほか、例えばスピンコ−ト法、カ−テンコ−ト
法、ディッピング法等でも可能である。実施例3 実施例1と同様に、TiのアルコキシドとSiのアルコキシ
ドとをモル比が55:45となるように混合した混合アルコ
キシドに、溶質濃度が約0.45mol /l のエタノ−ル希釈
溶液を調製し、次いで厚さ2mmのクリアガラス基板を前
記調製溶液に浸漬し約3.8mm /秒程度でディッピング成
膜した後、約250 ℃で約10分間程度加熱し、薄膜(1) お
よび薄膜(3) のゲル膜を得た。薄膜(1) の上に、実施例
2と同様な方法で薄膜(2) を塗布し、この後、このガラ
ス基板を約250 ℃で約30分間程度乾燥させ薄膜(2) を得
た。〔図2に示す。〕 次いで、該被膜付きガラス基板を約500 ℃で約30分間程
度熱処理した。
The film forming method according to the present invention is a roll roll method.
Besides the spin coating method, for example, a spin coating method, a cart coating method, a dipping method or the like is also possible. Example 3 As in Example 1, a mixed alkoxide obtained by mixing a Ti alkoxide and a Si alkoxide in a molar ratio of 55:45 was mixed with a diluted solution of ethanol having a solute concentration of about 0.45 mol / l. After preparing, then dipping a clear glass substrate with a thickness of 2 mm into the above-prepared solution to form a dipping film at about 3.8 mm / sec, and then heating at about 250 ° C. for about 10 minutes, the thin film (1) and the thin film (3 ) Was obtained. The thin film (2) was applied onto the thin film (1) in the same manner as in Example 2, and then the glass substrate was dried at about 250 ° C. for about 30 minutes to obtain a thin film (2). [As shown in FIG. Next, the coated glass substrate was heat-treated at about 500 ° C. for about 30 minutes.

【0030】得られた図2に示す太陽電池用低反射ガラ
ス基板は、表1に示すように、薄膜(1) と(3) として屈
折率n1とn3が約1.79でかつ膜厚d1とd3が約77nmであり、
薄膜(1) の上に薄膜(2) として屈折率n2が約1.45でかつ
膜厚d2が約95nmの積層膜を持つ低反射ガラスであり、図
3に示すように、該薄膜(3) の上に、厚さd0約600nmの
ネサ膜(n0=2.00 )を積層すると、低反射面(薄膜(1)
、(2) 側)から、垂直方向に入射する可視光に対し
て、その表面反射率は、低反射膜がない従来の太陽電池
用ガラス基板(パッシベ−ション膜付きガラス基板)の
約17.35 %から約11.27 %に約6%程度低下させること
ができた。また、可視光透過率は、低反射膜がない従来
の太陽電池用ガラス基板の約81.70 %から約87.59 %に
約6%程度増加できた。比較例1 厚さ2mmのクリアガラス基板の外面をマスキングテ−プ
でマスクし、溶質濃度約0.25mol /l に調製したSiのア
ルコキシドのイソプロピルアルコール希釈溶液に浸漬
し、約2.9mm /秒の速度で成膜した後、マスキングテ−
プを剥がし、約250 ℃で約10分間程度加熱して薄膜(3)
を得た。〔図4に示す。〕 次いで、該被膜付きガラス基板を約500 ℃で約30分間程
度熱処理した。
The obtained low reflection glass substrate for a solar cell shown in FIG. 2 is, as shown in Table 1, thin films (1) and (3) having a refractive index n 1 and n 3 of about 1.79 and a film thickness d. 1 and d 3 are about 77 nm,
A low reflection glass having a laminated film having a refractive index n 2 of about 1.45 and a film thickness d 2 of about 95 nm on the thin film (1) as shown in FIG. ), A Nesa film (n 0 = 2.00) with a thickness d 0 of about 600 nm is laminated on the low reflection surface (thin film (1)
, (2) side), the surface reflectance of visible light incident in the vertical direction is about 17.35% of that of a conventional solar cell glass substrate (glass substrate with a passivation film) without a low reflection film. It was possible to reduce it from about 11.27% to about 6%. In addition, the visible light transmittance could be increased by about 6% from about 81.70% of the conventional glass substrate for solar cells without a low reflection film to about 87.59%. Comparative Example 1 The outer surface of a clear glass substrate having a thickness of 2 mm was masked with a masking tape, immersed in a dilute solution of Si alkoxide in isopropyl alcohol prepared to have a solute concentration of about 0.25 mol / l, and a speed of about 2.9 mm / sec. After forming a film with
Peel off the tape and heat at about 250 ° C for about 10 minutes to form a thin film (3).
I got [As shown in FIG. Next, the coated glass substrate was heat-treated at about 500 ° C. for about 30 minutes.

【0031】得られた図4に示す太陽電池用ガラス基板
は、表1に示すように、屈折率n3が約1.45でかつ膜厚d3
が約100nm の単層のパッシベ−ションシリカ膜付きのガ
ラス基板である。このパッシベ−ションシリカ膜上に厚
さ約600nm の実施例と同様なネサ膜を積層すると、垂直
方向に入射する可視光に対して、その表面反射率は、約
17.18 %と高く、可視光透過率は、約81.70 %と低い。
The obtained glass substrate for solar cells shown in FIG. 4 has a refractive index n 3 of about 1.45 and a film thickness d 3 as shown in Table 1.
Is a glass substrate with a single-layer passivation silica film of about 100 nm. If a Nesa film having a thickness of about 600 nm similar to that of the embodiment is laminated on this passivation silica film, its surface reflectance with respect to visible light incident in the vertical direction is about
The high visible light transmittance is 17.18% and the low visible light transmittance is about 81.70%.

【0032】比較例2 実施例1と同様に、TiのアルコキシドとSiのアルコキシ
ドとをモル比で80:20となるように混合した混合アルコ
キシドに、酸化物換算の溶質濃度が約3.0 wt%となるよ
うイソプロパノール希釈溶液を調製し、このゾル液を約
18m /分の速度で回転するロ−ルコ−ト上に均一に供給
し、この下を厚さ2mmのフロ−トガラス基板を約8.5m/
分の速度で該ロ−ルの回転と逆向きに移動させて、ガラ
ス基板上にゾル液を塗布し、この後、該ガラス基板を約
250 ℃で約30分間程度乾燥させて薄膜(3) を得た。〔図
4に示す。〕 次いでこれを約500 ℃で約30分間程度熱処理をした。
Comparative Example 2 As in Example 1, a mixed alkoxide obtained by mixing a Ti alkoxide and a Si alkoxide in a molar ratio of 80:20 had a solute concentration in terms of oxide of about 3.0 wt%. Prepare a dilute solution of isopropanol so that
It is uniformly supplied onto a roll coat rotating at a speed of 18 m / min, and below this a float glass substrate having a thickness of 2 mm is approximately 8.5 m / min.
The roll is moved in the direction opposite to the rotation of the roll at a speed of a minute to apply the sol liquid onto the glass substrate, and then the glass substrate is moved to about
A thin film (3) was obtained by drying at 250 ° C for about 30 minutes. [As shown in FIG. Next, this was heat-treated at about 500 ° C. for about 30 minutes.

【0033】得られた図4で示す太陽電池用ガラス基板
は、表1に示すように、屈折率n3が約2.00でかつ膜厚d3
が約100nm の単層のパッシベ−ションシリカ膜付きのガ
ラス基板である。このパッシベ−ション膜上に厚さ約60
0nm の実施例と同様なネサ膜を積層すると、垂直方向に
入射する可視光に対して、その表面反射率は、約15.17
%と高く、可視光透過率は、約83.71 %と比較例1の太
陽電池用ガラス基板に比べて可視光透過率は高いが、本
発明がめざす所期の性能をクリアしていないものであっ
た。
The obtained glass substrate for a solar cell shown in FIG. 4 has a refractive index n 3 of about 2.00 and a film thickness d 3 as shown in Table 1.
Is a glass substrate with a single-layer passivation silica film of about 100 nm. A thickness of about 60 is applied on this passivation film.
When the same NESA film as in the example of 0 nm is laminated, the surface reflectance for visible light incident in the vertical direction is about 15.17.
%, And the visible light transmittance is about 83.71%, which is higher than that of the glass substrate for a solar cell of Comparative Example 1, but does not satisfy the intended performance of the present invention. It was

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【発明の効果】以上詳述したように、本発明によれば、
特定した屈折率ならびに膜厚の薄膜をガラス基板の片面
または両面に適宜組み合わせ、特に少なくとも空気側ガ
ラス面に2層でなる積層膜を設けたことにより、従来の
太陽電池用ガラス基板より、太陽光反射率を低減でき、
太陽光発電に必要な太陽光(可視光域)の入射光量が、
例えば最大6%程度高まるものとなり、太陽電池におけ
る光変換効率アップに充分寄与することができるものと
なる有用な太陽電池用低反射ガラス基板を提供できるも
のである。
As described in detail above, according to the present invention,
By appropriately combining thin films having the specified refractive index and film thickness on one side or both sides of a glass substrate, in particular, by providing a laminated film of two layers on at least the air side glass surface, it is possible to obtain more sunlight than conventional glass substrates for solar cells. The reflectance can be reduced,
The incident light amount of sunlight (visible light range) required for solar power generation is
For example, it is possible to provide a useful low-reflection glass substrate for a solar cell, which can be increased by about 6% at the maximum and can sufficiently contribute to increase the light conversion efficiency in the solar cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の太陽電池用低反射ガラス基板の一例を
部分的拡大して示す側断面図である。
FIG. 1 is a partially enlarged side sectional view showing an example of a low reflection glass substrate for a solar cell of the present invention.

【図2】各実施例における、本発明の太陽電池用低反射
ガラス基板を部分的拡大して示す側断面図である。
FIG. 2 is a side sectional view showing a partially enlarged low reflection glass substrate for a solar cell of the present invention in each example.

【図3】図2に示す本発明の太陽電池用低反射ガラス基
板に導電膜(ネサ膜)を積層した状態を部分的拡大して
示す側断面図である。
FIG. 3 is a side cross-sectional view showing a partially enlarged state of a conductive film (nesa film) laminated on the low reflection glass substrate for a solar cell of the present invention shown in FIG.

【図4】比較例1における、太陽電池用ガラス基板を部
分的拡大して示す側断面図である。
FIG. 4 is a side cross-sectional view showing a partially enlarged glass substrate for a solar cell in Comparative Example 1.

【符号の説明】 太陽電池用低反射ガラス基板 2 ガラス基板 3 薄膜(1) 4 薄膜(2) 5 薄膜(3) 7 導電膜 太陽電池用ガラス基板 9 可視光透過率T 10 可視光反射率R1 11 可視光反射率R2 12 a−Si側 13 空気側[Explanation of Codes] 1 low reflection glass substrate for solar cell 2 glass substrate 3 thin film (1) 4 thin film (2) 5 thin film (3) 7 conductive film 8 glass substrate for solar cell 9 visible light transmittance T 10 visible light reflection Ratio R 1 11 Visible light reflectance R 2 12 a-Si side 13 Air side

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池用ガラス基板の片面に、ガラス
面側から薄膜(1) 層として屈折率がn1=1.7 〜1.9 であ
ってかつ膜厚がd1=70 〜85nmの範囲で薄膜を形成し、次
いで該薄膜(1) 層の上に、薄膜(2) 層として屈折率がn2
=1.4 〜1.5であってかつ膜厚がd2=90 〜100nm である
薄膜を被覆積層して成ることを特徴とする太陽電池用低
反射ガラス基板。
1. A thin film (1) layer having a refractive index of n 1 = 1.7 to 1.9 and a film thickness of d 1 = 70 to 85 nm as a thin film (1) layer on one surface of a glass substrate for a solar cell from the glass surface side. On the thin film (1) layer, and the refractive index n 2
= 1.4 to 1.5 and a film thickness of d 2 = 90 to 100 nm, which is formed by coating and laminating thin films for solar cells.
【請求項2】 前記太陽電池用低反射ガラス基板のもう
一方の片面に、屈折率がn3=1.45〜2.00であってかつ膜
厚がd3=60 〜120nm である薄膜(3) 層を形成したことを
特徴とする請求項1記載の太陽電池用低反射ガラス基
板。
2. A thin film (3) layer having a refractive index n 3 = 1.45 to 2.00 and a film thickness d 3 = 60 to 120 nm on the other surface of the low reflection glass substrate for solar cells. The low reflection glass substrate for a solar cell according to claim 1, which is formed.
【請求項3】 前記薄膜(1) 層と前記薄膜(3) 層におけ
る屈折率n1とn3、ならびに膜厚d1とd3が、同等であるこ
とを特徴とする請求項2記載の太陽電池用低反射ガラス
基板。
3. The thin film (1) layer and the thin film (3) layer have the same refractive index n 1 and n 3 and the same film thickness d 1 and d 3 , respectively. Low reflection glass substrate for solar cells.
【請求項4】 前記太陽電池用低反射ガラス基板におい
て、薄膜(3) 層の上に、透明導電性薄膜を形成したこと
を特徴とする請求項2乃至3記載の太陽電池用低反射ガ
ラス基板。
4. The low reflection glass substrate for solar cells according to claim 2, wherein in the low reflection glass substrate for solar cells, a transparent conductive thin film is formed on the thin film (3) layer. .
【請求項5】 前記透明導電膜が、屈折率がn0=1.8 〜
2.2 であってかつ膜厚がd0=500〜700nm であることを特
徴とする請求項4記載の太陽電池用低反射ガラス基板。
5. The transparent conductive film has a refractive index of n 0 = 1.8
The low reflection glass substrate for a solar cell according to claim 4, wherein the thickness is 2.2 and the film thickness is d 0 = 500 to 700 nm.
JP7341722A 1995-12-27 1995-12-27 Low-reflection glass substrate for solar cell Pending JPH09175840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7341722A JPH09175840A (en) 1995-12-27 1995-12-27 Low-reflection glass substrate for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7341722A JPH09175840A (en) 1995-12-27 1995-12-27 Low-reflection glass substrate for solar cell

Publications (1)

Publication Number Publication Date
JPH09175840A true JPH09175840A (en) 1997-07-08

Family

ID=18348275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7341722A Pending JPH09175840A (en) 1995-12-27 1995-12-27 Low-reflection glass substrate for solar cell

Country Status (1)

Country Link
JP (1) JPH09175840A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054455A2 (en) * 1999-05-18 2000-11-22 Nippon Sheet Glass Co., Ltd. Photoelectric conversion device and substrate for photoelectric conversion device
WO2001042155A1 (en) * 1999-12-13 2001-06-14 Nippon Sheet Glass Co., Ltd. Low-reflection glass article
US20090235974A1 (en) * 2008-01-14 2009-09-24 Massachusetts Institute Of Technology Solar concentrator and devices and methods using them
JP2011149710A (en) * 2010-01-19 2011-08-04 Seiko Epson Corp Timepiece cover glass and timepiece

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1054455A2 (en) * 1999-05-18 2000-11-22 Nippon Sheet Glass Co., Ltd. Photoelectric conversion device and substrate for photoelectric conversion device
US6380480B1 (en) * 1999-05-18 2002-04-30 Nippon Sheet Glass Co., Ltd Photoelectric conversion device and substrate for photoelectric conversion device
EP1054455A3 (en) * 1999-05-18 2004-04-14 Nippon Sheet Glass Co., Ltd. Photoelectric conversion device and substrate for photoelectric conversion device
EP1533850A2 (en) * 1999-05-18 2005-05-25 Nippon Sheet Glass Company, Limited Photoelectric conversion device and substrate for photoelectric conversion device
EP1533850A3 (en) * 1999-05-18 2005-08-10 Nippon Sheet Glass Company, Limited Photoelectric conversion device and substrate for photoelectric conversion device
WO2001042155A1 (en) * 1999-12-13 2001-06-14 Nippon Sheet Glass Co., Ltd. Low-reflection glass article
US6921578B2 (en) 1999-12-13 2005-07-26 Nippon Sheet Glass Co., Ltd. Low-reflection glass article
US20090235974A1 (en) * 2008-01-14 2009-09-24 Massachusetts Institute Of Technology Solar concentrator and devices and methods using them
JP2011149710A (en) * 2010-01-19 2011-08-04 Seiko Epson Corp Timepiece cover glass and timepiece
US8867320B2 (en) 2010-01-19 2014-10-21 Seiko Epson Corporation Timepiece cover glass and timepiece

Similar Documents

Publication Publication Date Title
AU2009277894B2 (en) Broadband reflecting mirror
AU2018220915A1 (en) Coated plate, preparation method thereof and solar module
KR101194257B1 (en) Transparent substrate for solar cell having a broadband anti-reflective multilayered coating thereon and method for preparing the same
US20070030569A1 (en) Broad band antireflection coating and method of making same
US20090101209A1 (en) Method of making an antireflective silica coating, resulting product, and photovoltaic device comprising same
US20190348547A1 (en) Curved-surface coated plate, preparation method thereof and solar module
JP4565105B2 (en) Optical thin film for solar cell and method for producing the same
EA021230B1 (en) Glass substrate provided with a stack of thin films with thermal properties, comprising high refractive index layers, and glazing panel comprising said glass substrate
US9688572B2 (en) Low-emissivity coating and functional construction material for window and door including same
WO2023116878A1 (en) Coated glass and laminated glass
KR101788368B1 (en) Low-emissivity coating film, method for preparing the same and functional building material for windows comprising the same
CN102424533B (en) Difunctional coated glass capable of reducing visible light reflection and reflecting near infrared ray and preparation method thereof
US8659822B2 (en) Multilayered infrared light reflective structure
JPS63206333A (en) Heat ray reflecting glass of single plate
CN112194383A (en) Low-emissivity glass and preparation method thereof
KR101194258B1 (en) Transparent substrate for solar cell having a broadband anti-reflective multilayered coating thereon and method for preparing the same
RU2019129499A (en) COATED HEAT-TREATABLE PRODUCT WITH REFLECTIVE IR RADIATION LAYERS BASED ON ZIRCONIUM NITRIDE AND INDIA-TIN OXIDE
KR101456220B1 (en) Transparent substrate having an anti-reflective multilayered coating thereon and method for preparing the same
JPH09175840A (en) Low-reflection glass substrate for solar cell
JPS6088482A (en) Photoelectric conversion device
KR102261133B1 (en) Transparent substrate having an anti-reflective multilayered coating thereon and method for preparing the same
CN219476691U (en) Conductive glass and photovoltaic module having the same
KR20010029503A (en) Coated glass
CN220823659U (en) Packaging glass of laminated battery assembly
KR20150002517A (en) Transparent substrate having an anti-reflective multilayered coating thereon and method for preparing the same