JPH09174255A - Method of cladding titanium on carbon steel - Google Patents

Method of cladding titanium on carbon steel

Info

Publication number
JPH09174255A
JPH09174255A JP34015595A JP34015595A JPH09174255A JP H09174255 A JPH09174255 A JP H09174255A JP 34015595 A JP34015595 A JP 34015595A JP 34015595 A JP34015595 A JP 34015595A JP H09174255 A JPH09174255 A JP H09174255A
Authority
JP
Japan
Prior art keywords
titanium
carbon steel
electron beam
clad
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34015595A
Other languages
Japanese (ja)
Inventor
Takashi Shige
重  隆司
Seiji Beppu
征二 別府
Sumio Mori
純雄 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP34015595A priority Critical patent/JPH09174255A/en
Publication of JPH09174255A publication Critical patent/JPH09174255A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a titanium cladding with an excellent quality film thickness on carborn steel. SOLUTION: Wire shaped titanium 2 is arranged on the base stock of carbon steel 1 at approximately 0.5mm spaces apart. The titanium 2 is irradiated by an electron beam 3. In this case, the electron beam 3 is oscillated while the beam focus is shifted so that the irradiation energy density is 3-6Kw/cm<2> by the electron beam 3. Consequently, the titanium 2 is melted, and also the carbon steel 1 is preheated with wettability improved, forming a clad part 4 (titanium cladding) with an excellent quality film thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭素鋼へのチタン
クラッド方法に関し、厚膜で品質の良いチタンクラッド
を得るよう工夫したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium clad method for carbon steel, which is devised so as to obtain a high quality titanium clad with a thick film.

【0002】[0002]

【従来の技術】炭素鋼の耐食性を向上させるため、炭素
鋼上にチタンやチタン合金(以下両者を「チタン」で表
す)を被覆することが行われている。チタンの被覆方法
としては、イオンプレーティング法などのPVD法や、
プラズマ溶射法などが一般には知られている。
2. Description of the Related Art In order to improve the corrosion resistance of carbon steel, titanium or a titanium alloy (both of which are hereinafter referred to as "titanium") is coated on the carbon steel. As a titanium coating method, a PVD method such as an ion plating method,
The plasma spraying method and the like are generally known.

【0003】イオンプレーティング法によれば、チタン
の膜厚は10μm程度にしかならない。一方、プラズマ
溶射法によれば、膜厚を厚くすることはできるが、内部
に気孔ができるという欠点がある。
According to the ion plating method, the film thickness of titanium is only about 10 μm. On the other hand, according to the plasma spraying method, the film thickness can be increased, but there is a drawback that pores are formed inside.

【0004】廃棄物を充填して地層処分する容器には、
良好で且つ確実な耐食性を確保する必要がある。そこで
上記容器の部材として、炭素鋼の表面に気孔等のない良
好なチタンを約1mm以上の膜厚で被覆(クラッド)し
た部材を用いることが検討されている。
Containers for filling waste and forming geological disposal include:
It is necessary to ensure good and reliable corrosion resistance. Therefore, it has been considered to use, as the member of the container, a member obtained by coating the surface of carbon steel with good titanium having no pores or the like in a thickness of about 1 mm or more (cladding).

【0005】気孔等のない良好なチタンを約1mm以上
の膜厚で被覆(クラッド)するためには、上述したイオ
ンプレーティング法などのPVD法や、プラズマ溶射法
は採用できない。つまりイオンプレーティング法では膜
厚が不足し、プラズマ溶射法では内部に気孔ができ被膜
の品質が悪く、両方法とも採用できないのである。
In order to coat (clad) good titanium having no pores with a film thickness of about 1 mm or more, the PVD method such as the above-mentioned ion plating method or the plasma spraying method cannot be adopted. That is, the film thickness is insufficient in the ion plating method, and pores are formed inside the plasma spraying method, and the quality of the coating is poor, so both methods cannot be used.

【0006】そこで、肉厚が1mm程度以上で欠陥のな
いチタンクラッド方法としては、図4に示す多層肉盛法
や、図5に示す爆着法(または圧延法)を採用せざるを
えなかった。
Therefore, as a titanium clad method having a wall thickness of about 1 mm or more and having no defects, there is no choice but to employ the multilayer overlay method shown in FIG. 4 or the explosion deposition method (or rolling method) shown in FIG. It was

【0007】図4に示す多層肉盛法では、チタン1との
間で脆弱な金属間化合物を形成しない金属の組み合わせ
とするため、炭素鋼1の上に銅5を肉盛し、さらにバナ
ジウム6を肉盛した後、チタン2を最終肉盛する。図5
に示す爆着法(または圧延法)では、メタルジェットの
作用で脆弱な金属間化合物を残さない施工法で、炭素鋼
1の上にチタン2をクラッドすることが実用化されてい
る。
In the multilayer overlaying method shown in FIG. 4, in order to form a combination of metals that do not form a brittle intermetallic compound with titanium 1, copper 5 is overlayed on carbon steel 1 and vanadium 6 After overlaying, the titanium 2 is finally overlayed. FIG.
In the explosive deposition method (or rolling method) shown in (1), clad titanium 2 on carbon steel 1 is put into practical use by a construction method that does not leave a brittle intermetallic compound under the action of a metal jet.

【0008】[0008]

【発明が解決しようとする課題】ところで、図4に示す
多層肉盛法では、施工方法が複雑であり、また高価なバ
ナジウム6を用いるためコスト高となる欠点がある。ま
た、図5に示す爆着法(または圧延法)では、曲面,コ
ーナ部などの局部施工には適さず、また、補修等には利
用できない。
By the way, the multilayer overlaying method shown in FIG. 4 has a drawback that the construction method is complicated and the cost is high because the expensive vanadium 6 is used. Further, the explosive deposition method (or rolling method) shown in FIG. 5 is not suitable for local construction such as curved surfaces and corners, and cannot be used for repairs.

【0009】本発明は、上記従来技術に鑑み、欠陥(気
孔等)がなく、局部的にも施工でき,信頼性の高い,肉
厚が1mm程度以上の厚肉にチタンをクラッドすること
のできる、炭素鋼へのチタンクラッド方法を提供するも
のである。
In view of the above-mentioned prior art, the present invention has no defects (pores, etc.), can be locally applied, and is highly reliable, and titanium can be clad to a thick wall having a thickness of about 1 mm or more. , A method of clad titanium to carbon steel is provided.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明は、母材である炭素鋼の上に、ワイヤ状または短冊状
の複数のチタンを微小な隙間をとって配置し、電子ビー
ムの焦点を前記チタンからずらした状態で、電子ビーム
をオシレートさせつつ真空中で前記チタンに照射して溶
融肉盛溶接を行うことを特徴とする。前記隙間の長さは
約0.5mmとしたり、電子ビームによる前記チタンへ
の照射エネルギー密度が3〜6Kw/cm2 の均一分布
となる程度に、前記電子ビームの焦点を前記チタンから
はずした状態で照射することを特徴とする。
According to the present invention for solving the above-mentioned problems, a plurality of wire-shaped or strip-shaped titanium particles are arranged on a carbon steel as a base material with a minute gap, and an electron beam It is characterized in that the overlay welding is performed by irradiating the titanium in a vacuum while oscillating an electron beam in a state where the focal point is deviated from the titanium, to perform the weld overlay welding. A state in which the electron beam is defocused from the titanium such that the length of the gap is about 0.5 mm, or the irradiation energy density of the electron beam onto the titanium has a uniform distribution of 3 to 6 Kw / cm 2. It is characterized by irradiating with.

【0011】[0011]

【発明の実施の形態】以下に本発明の実施の形態につい
て説明する。図1及び図2に示すように本実施の形態で
は、真空中において、母材となる炭素鋼1の上に、ワイ
ヤ状のチタン2を微小な隙間(約0.5mm)をとって
配置する。そして、真空中において電子ビーム3を、デ
ィフォーカス状態でオシレートさせつつチタン2の表面
に照射する。つまり、電子ビーム3の焦点をチタン2の
表面からずらし、チタン2への照射エネルギー密度が3
〜6Kw/cm2 程度となるように焦点をずらして照射
する。このようにすることにより、チタン2は真空中で
溶融して肉盛溶接がおこなわれる。この場合、溶融速度
は100mm/min程度とする。かくて肉盛部4が形
成され、肉厚が1mm程度以上のチタンクラッドが形成
される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. As shown in FIGS. 1 and 2, in the present embodiment, in a vacuum, wire-shaped titanium 2 is arranged on carbon steel 1 as a base material with a minute gap (about 0.5 mm). . Then, the surface of the titanium 2 is irradiated with the electron beam 3 in a vacuum while oscillating in a defocused state. That is, the focus of the electron beam 3 is shifted from the surface of the titanium 2 so that the irradiation energy density on the titanium 2 is 3
The irradiation is performed by shifting the focus so that the irradiation amount is about 6 Kw / cm 2 . By doing so, the titanium 2 is melted in vacuum and overlay welding is performed. In this case, the melting rate is about 100 mm / min. Thus, the built-up portion 4 is formed, and the titanium clad having a wall thickness of about 1 mm or more is formed.

【0012】本実施の形態では、真空中で電子ビーム3
により肉盛溶接をするので、チタン2の酸化が防止さ
れ、酸化による脆弱な皮膜(脆化層)の発生を防止でき
る。
In this embodiment, the electron beam 3 is used in vacuum.
Since the overlay welding is carried out by this, the oxidation of titanium 2 can be prevented, and the generation of a brittle film (embrittlement layer) due to oxidation can be prevented.

【0013】また、ディフォーカス状態で電子ビーム3
をチタン2に照射して、チタン2への照射エネルギー密
度を3〜6Kw/cm2 程度と小さくして、即ち、入熱
を低くしているため、炭素鋼1とチタン2との間に脆弱
な金属間化合物は形成されない。また入熱を低くしてい
るので、母材である炭素鋼1の溶融は極力小さくなり母
材の希釈化が防止でき且つチタン2を選択的に溶融でき
る。
Further, in the defocused state, the electron beam 3
Is applied to titanium 2 to reduce the irradiation energy density to titanium 2 to about 3 to 6 Kw / cm 2 , that is, because the heat input is low, carbon steel 1 and titanium 2 are fragile. No intermetallic compound is formed. Further, since the heat input is low, the melting of the carbon steel 1 as the base material is minimized, the dilution of the base material can be prevented, and the titanium 2 can be selectively melted.

【0014】更に、チタン2の相互間に隙間をあけてい
るので、炭素鋼1は、隙間を介して照射された電子ビー
ム3により加熱(予熱)されたり、溶融したチタン2か
らの熱伝導により加熱(予熱)され、予熱状態となる。
このように炭素鋼1が予熱されるので、チタン2の「ぬ
れ性」が改善され良好な肉盛溶接が行なわれる。
Furthermore, since a gap is provided between the titanium 2, the carbon steel 1 is heated (preheated) by the electron beam 3 irradiated through the gap, or due to heat conduction from the molten titanium 2. It is heated (preheated) and enters a preheated state.
Since the carbon steel 1 is preheated in this manner, the "wettability" of the titanium 2 is improved and good overlay welding is performed.

【0015】なお、チタン2としては図3に示すような
短冊状のものを用いることもできる。短冊状のチタン2
を用いたときにも、上述したのと同様な状態(隙間状態
や電子ビームの照射状態)にして溶融肉盛をする。
The titanium 2 may have a strip shape as shown in FIG. Strip of titanium 2
Also when using, the melt overlay is performed in the same state as described above (gap state or electron beam irradiation state).

【0016】また、ワイヤ状や短冊状のチタン2を、予
め炭素鋼1の上に設置するなく、送給装置(図示省略)
により適当な隙間を保持した状態でチタン2を炭素鋼1
の上に連続供給して、肉盛溶接を得るようにしてもよ
い。
Further, the wire-shaped or strip-shaped titanium 2 is not installed on the carbon steel 1 in advance, but a feeder (not shown) is used.
Titanium 2 with carbon steel 1 while maintaining an appropriate gap
May be continuously fed on to obtain overlay welding.

【0017】なお、炭素鋼1の希釈が多い場合には、本
方法を繰り返し施工して、高純度の肉盛層を得て耐食性
を向上させることも可能である。
When the carbon steel 1 is highly diluted, it is possible to repeatedly apply this method to obtain a high-purity overlay layer and improve the corrosion resistance.

【0018】[0018]

【発明の効果】本発明によれば、ワイヤ状または短冊状
のチタンを隙間をあけて炭素鋼上に配置して、電子ビー
ムをディフォーカス状態で真空中で照射するようにした
ため、チタンは加熱溶融するとともに炭素鋼は高温に予
熱され、予熱された炭素鋼上に溶融されたチタンがあた
かも真空ロウ付けのような状態で肉盛溶接されるので、
母材である炭素鋼の希釈は少なく品質の良いチタンクラ
ッドが形成できる。また本発明によれば、局部的にチタ
ンクラッドを施すことや補修等にも利用できる。
According to the present invention, since wire-shaped or strip-shaped titanium is placed on carbon steel with a gap between them and the electron beam is irradiated in vacuum in a defocused state, titanium is heated. As it melts, the carbon steel is preheated to a high temperature, and the melted titanium is overlay welded on the preheated carbon steel as if it were vacuum brazing.
The carbon steel as the base material is less diluted, and a high-quality titanium clad can be formed. Further, according to the present invention, the titanium clad can be locally applied or used for repair.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を示す斜視図。FIG. 1 is a perspective view showing a method of the present invention.

【図2】ワイヤ状のチタン及びチタンの配置状態を示す
断面図。
FIG. 2 is a cross-sectional view showing a wire-shaped titanium and an arrangement state of titanium.

【図3】短冊状のチタン及びチタンの配置状態を示す断
面図。
FIG. 3 is a cross-sectional view showing strip-shaped titanium and an arrangement state of titanium.

【図4】多層肉盛法によるチタンクラッドを示す断面
図。
FIG. 4 is a cross-sectional view showing a titanium clad by a multilayer overlay method.

【図5】爆着法によるチタンクラッドを示す断面図。FIG. 5 is a cross-sectional view showing a titanium clad by the explosive deposition method.

【符号の説明】[Explanation of symbols]

1 炭素鋼 2 チタン 3 電子ビーム 4 肉盛部 5 銅 6 バナジウム 1 Carbon Steel 2 Titanium 3 Electron Beam 4 Overlay 5 Copper 6 Vanadium

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 母材である炭素鋼の上に、ワイヤ状また
は短冊状の複数のチタンを微小な隙間をとって配置し、 電子ビームの焦点を前記チタンからずらした状態で、電
子ビームをオシレートさせつつ真空中で前記チタンに照
射して溶融肉盛溶接を行うことを特徴とする炭素鋼への
チタンクラッド方法。
1. A plurality of wire-shaped or strip-shaped titanium particles are arranged on a carbon steel as a base material with a minute gap therebetween, and the electron beam is focused on the electron beam while the focus of the electron beam is shifted. A titanium cladding method for carbon steel, which comprises irradiating the titanium in a vacuum while performing oscillating to perform a weld overlay welding.
【請求項2】 前記隙間の長さは約0.5mmであるこ
とを特徴とする請求項1の炭素鋼へのチタンクラッド方
法。
2. The method for clad titanium on carbon steel according to claim 1, wherein the length of the gap is about 0.5 mm.
【請求項3】 電子ビームによる前記チタンへの照射エ
ネルギー密度が3〜6Kw/cm2 の均一分布となる程
度に、前記電子ビームの焦点を前記チタンからはずした
状態で照射することを特徴とする請求項1の炭素鋼への
チタンクラッド方法。
3. The electron beam is irradiated in a state where the focal point of the electron beam is deviated from the titanium so that the irradiation energy density of the electron beam to the titanium has a uniform distribution of 3 to 6 Kw / cm 2. A method of clad titanium to carbon steel according to claim 1.
JP34015595A 1995-12-27 1995-12-27 Method of cladding titanium on carbon steel Withdrawn JPH09174255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34015595A JPH09174255A (en) 1995-12-27 1995-12-27 Method of cladding titanium on carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34015595A JPH09174255A (en) 1995-12-27 1995-12-27 Method of cladding titanium on carbon steel

Publications (1)

Publication Number Publication Date
JPH09174255A true JPH09174255A (en) 1997-07-08

Family

ID=18334261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34015595A Withdrawn JPH09174255A (en) 1995-12-27 1995-12-27 Method of cladding titanium on carbon steel

Country Status (1)

Country Link
JP (1) JPH09174255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107999949A (en) * 2017-11-30 2018-05-08 中国航发沈阳黎明航空发动机有限责任公司 A kind of electron beam welding method for packing of titanium alloy multilayer metal plate material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107999949A (en) * 2017-11-30 2018-05-08 中国航发沈阳黎明航空发动机有限责任公司 A kind of electron beam welding method for packing of titanium alloy multilayer metal plate material

Similar Documents

Publication Publication Date Title
EP0098306B1 (en) Welding method using laser beam
JP5024475B1 (en) Laser welded steel pipe manufacturing method
JP5595913B2 (en) Laser lap welding method of galvanized steel sheet
JP2004261870A (en) Joint design for laser welding zinc coated steel
US5142119A (en) Laser welding of galvanized steel
JP5494158B2 (en) Laser arc brazing method
JP2007136489A (en) Method for welding different materials
JP4326492B2 (en) Dissimilar materials joining method using laser welding
GB2059843A (en) Method of metallurgically joining metals respectively of relatively high and low melting points
JP2003164983A (en) Welding method for metallic member
CN111715998A (en) Laser welding method
JP2002178178A (en) Laser lap welding method for metal with surface coating
JP3767375B2 (en) Method of lap welding of galvanized steel sheet and welded thin sheet
JP3034294B2 (en) Laser welding method and laser welding device
KR100530718B1 (en) Apparatus for Eliminating of Coating Material on Coated Metal Plate and Welding Method Using That
US6525293B2 (en) Method for closing and/or joining a connecting joint or joining seam between two pieces of galvanized sheet metal
JPH09174255A (en) Method of cladding titanium on carbon steel
JP4931506B2 (en) Dissimilar material joining method
JP2007007690A (en) Method for joining precoated metallic sheet
US5343015A (en) Laser assisted high frequency welding
JP2002331375A (en) Lap laser beam welding method for galvanized sheet iron
JP2003170285A (en) Welding method for aluminum
JP4337721B2 (en) High energy density beam welding product, high energy density beam welding method, and welding auxiliary device used therefor
JP2006116600A (en) Method for joining different materials
Cui et al. Hybrid laser-metal inert gas keyhole welding of thick steel/Al butt joints

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304