JPH09171119A - Dispersion compensation fiber - Google Patents

Dispersion compensation fiber

Info

Publication number
JPH09171119A
JPH09171119A JP8276062A JP27606296A JPH09171119A JP H09171119 A JPH09171119 A JP H09171119A JP 8276062 A JP8276062 A JP 8276062A JP 27606296 A JP27606296 A JP 27606296A JP H09171119 A JPH09171119 A JP H09171119A
Authority
JP
Japan
Prior art keywords
refractive index
core
clad
doped
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8276062A
Other languages
Japanese (ja)
Inventor
Akira Oibe
晃 及部
Atsushi Umeda
淳 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP8276062A priority Critical patent/JPH09171119A/en
Publication of JPH09171119A publication Critical patent/JPH09171119A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a dispersion compensation fiber which eliminates the worry about composite secondary strain. SOLUTION: This dispersion compensation fiber consists of a center core 1 which is uniformly doped with germanium dioxide, an outer core 2 which is disposed on the outer periphery of the center core 1 and is so doped with the germanium dioxide as to decrease the geranium dioxide gradually toward the outer peripheral direction and a clad 3 which is disposed on the outer periphery of the outer core 2 and is uniformly doped with fluorine. This outer core 2 is doped with the fluorine in such a manner that the viscosity on at least its outer periphery side is equaled to the viscosity of the clad 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、分散補償器、特に
1.55μm波長帯の分散補償器に利用できる分散補償ファ
イバに関するものである。
TECHNICAL FIELD The present invention relates to a dispersion compensator, and more particularly to a dispersion compensator.
The present invention relates to a dispersion compensating fiber that can be used for a dispersion compensator in the 1.55 μm wavelength band.

【0002】[0002]

【従来の技術】近年の技術革新により、エルビウムドー
プファイバを用いた1.55μm帯光増幅器が実用段階を迎
えつつあり、光CATV等の分配システムや長距離大容
量伝送への応用が注目されている。これに伴い、既存の
1.3μm用光伝送システムにおいても、1.55μm帯での
高速伝送を行いたいという要求が高まっている。しか
し、標準的な1.3μm用単一モードファイバは、波長1.5
5μmにおいて、17ps/nm/km程度の正の波長分散を有す
るため、これを補償する手段が必要になっている。
2. Description of the Related Art Due to recent technological innovation, a 1.55 μm band optical amplifier using an erbium-doped fiber is approaching a practical stage, and its application to a distribution system such as an optical CATV and a long-distance large-capacity transmission is drawing attention. . With this, existing
Even in the 1.3 μm optical transmission system, there is an increasing demand for high-speed transmission in the 1.55 μm band. However, the standard 1.3 μm single mode fiber has a wavelength of 1.5
Since it has a positive chromatic dispersion of about 17 ps / nm / km at 5 μm, a means for compensating for this is needed.

【0003】現在、最も有望な補償手段の一つとして、
上記正の波長分散とは逆符号の負の波長分散を有する光
ファイバ、いわゆる分散補償ファイバを既存の 1.3μm
用伝送システムに挿入して分散を相殺する方法が提案さ
れている。従来の分散補償ファイバは、二酸化ゲルマニ
ウム(GeO2)がほぼ均一にドープされた(=比屈折率差が
ほぼ均一である)センタコアと、該センタコア外周に設
けられ、かつ、GeO2が外周方向に向けて徐々に少なくな
るようにドープされた(=比屈折率差が外周方向に向か
って徐々に小さくなる)アウタコアと、該アウタコア外
周に設けられ、かつ、フッ素(F)がドープされたクラッ
ドにより形成されている。
Currently, as one of the most promising compensation means,
An optical fiber having a negative chromatic dispersion with a sign opposite to that of the positive chromatic dispersion, a so-called dispersion compensating fiber, is used for the existing 1.3 μm.
A method for canceling the dispersion has been proposed by inserting it into a transmission system for business use. The conventional dispersion compensating fiber is provided with a center core in which germanium dioxide (GeO2) is almost uniformly doped (= the relative refractive index difference is substantially uniform), and is provided on the outer circumference of the center core, and GeO2 is directed toward the outer circumference. It is formed by an outer core that is gradually decreased (= the relative refractive index difference gradually decreases in the outer circumferential direction), and a clad that is provided on the outer circumference of the outer core and is doped with fluorine (F). ing.

【0004】このような、分散補償ファイバの一例を、
図4に半径方向における各ドーパント濃度を石英ガラス
の屈折率を基準とする比屈折率差(以下、単に「比屈折
率差」という)として、図5に半径方向における比屈折
率差の分布として示す。前記分散補償ファイバは、前記
センタコアの比屈折率差Δ[GeO2]が+1.8%、前記クラッ
ドの比屈折率差Δ[F] が−0.4%である。したがって、前
記センタコアと前記クラッドの比屈折率差Δは2.2%であ
る。なお、アウタコアの比屈折率差Δ[GeO2]は、前記セ
ンタコアとの境界面でほぼセンタコアと同じ値であり、
前記クラッドの境界面でほぼクラッドと同じ値となって
いる。
An example of such a dispersion compensating fiber is
FIG. 4 shows each dopant concentration in the radial direction as a relative refractive index difference based on the refractive index of silica glass (hereinafter, simply referred to as “relative refractive index difference”), and FIG. 5 as a distribution of the relative refractive index difference in the radial direction. Show. In the dispersion compensating fiber, the relative refractive index difference Δ [GeO2] of the center core is + 1.8%, and the relative refractive index difference Δ [F] of the clad is −0.4%. Therefore, the relative refractive index difference Δ between the center core and the clad is 2.2%. The relative refractive index difference Δ [GeO2] of the outer core is almost the same value as the center core at the boundary surface with the center core,
The boundary surface of the clad has almost the same value as the clad.

【0005】ここで、既存の1.3 μm用伝送システムに
挿入される分散補償ファイバは、収納スペースの問題等
によりできるだけ短いほうが望ましい。したがって、単
位長さ当たりの負の波長分散が大きい分散補償ファイバ
の必要性が高まっている。一般に、分散補償ファイバ
は、センタコアとクラッド間の比屈折率差Δを大きくす
ることによって負の波長分散を増大させることができ
る。また、分散補償ファイバは、前記センタコアと前記
クラッドとの間に、比屈折率分布が外周方向に向かって
徐々に小さくなっていくアウタコアを有している。この
ため、分散補償ファイバは、通常の光ファイバにおいて
コア−クラッド間の比屈折率差を大きくしたときに生ず
る構造欠陥ロスの増加という問題は生じない。
Here, it is desirable that the dispersion compensating fiber inserted into the existing transmission system for 1.3 μm be as short as possible due to a problem of storage space and the like. Therefore, there is an increasing need for a dispersion compensating fiber having a large negative chromatic dispersion per unit length. In general, the dispersion compensating fiber can increase the negative chromatic dispersion by increasing the relative refractive index difference Δ between the center core and the clad. Further, the dispersion compensating fiber has an outer core between the center core and the clad, in which the relative refractive index distribution gradually decreases toward the outer peripheral direction. Therefore, the dispersion compensating fiber does not have the problem of an increase in structural defect loss that occurs when the relative refractive index difference between the core and the clad is increased in an ordinary optical fiber.

【0006】しかしながら、前述した分散補償ファイバ
は、アウタコアの屈折率を外周方向にむけて徐々に小さ
くしているので、線引工程においてアウタコア相当部に
クラッド相当部より粘度が小さい部分が生じる。この結
果、前述した分散補償ファイバは、その部分に張力が集
中し、残留応力が発生して偏波モード分散が生じてしま
うという欠点があり、実用には適さなかった。この偏波
モード分散は通常のシステムに使用する分には悪影響は
ないが、例えば光CATVのアナログ画像信号を伝送し
たときには複合2次歪の増加原因となることがあった。
However, in the above-mentioned dispersion compensating fiber, since the refractive index of the outer core is gradually reduced toward the outer peripheral direction, a portion having a viscosity smaller than that of the clad is generated in the outer core corresponding portion in the drawing step. As a result, the above-mentioned dispersion compensating fiber is not suitable for practical use because it has a drawback that the tension is concentrated on that portion and residual stress is generated to cause polarization mode dispersion. This polarization mode dispersion does not adversely affect the amount used in a normal system, but may cause an increase in composite second-order distortion when an analog image signal of optical CATV is transmitted, for example.

【0007】[0007]

【発明が解決しようとする課題】複合2次歪が増加する
と、ビットエラーレートの増加や偏波分散ロス(PD
L)の発生という問題が生じる。したがって、複合2次
歪の生じない、すなわち偏波モード分散を有さず、か
つ、短い長さで大きな負の波長分散を有する分散補償フ
ァイバの開発が急がれていた。
When the complex second-order distortion increases, the bit error rate increases and the polarization dispersion loss (PD) increases.
The problem of occurrence of L) arises. Therefore, there has been an urgent need to develop a dispersion-compensating fiber that does not cause complex second-order distortion, that is, has no polarization mode dispersion and has a large negative chromatic dispersion in a short length.

【0008】[0008]

【課題を解決するための手段】本発明の目的は、偏波モ
ード分散が生じず、かつ、短い長さで大きな負の波長分
散を有する分散補償ファイバを提供することにある。本
願発明は、GeO2がほぼ均一にドープされたセンタコア
と、該センタコア外周に設けられかつGeO2が外周方向に
向けて徐々に少なくなるようにドープされたアウタコア
と、該アウタコア外周に設けられかつフッ素がドープさ
れたクラッドからなる分散補償ファイバにおいて、前記
アウタコアは、少なくとも外周側の粘度が前記クラッド
と同等になるようにフッ素がドープされていることを特
徴とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a dispersion compensating fiber in which polarization mode dispersion does not occur and which has a large negative chromatic dispersion in a short length. The present invention, a center core GeO2 is almost uniformly doped, an outer core provided on the outer periphery of the center core and GeO2 is gradually reduced toward the outer peripheral direction, and fluorine provided on the outer periphery of the outer core In the dispersion compensating fiber made of a doped clad, the outer core is doped with fluorine so that the viscosity of the outer core is at least equal to that of the clad.

【0009】本願発明においては、実質的に負の波長分
散の大きさを決定するセンタコア・クラッド間の比屈折
率差を大きくし、構造欠陥ロスの増加という問題を回避
するために、アウタコアの屈折率を外周方向にむけて徐
々に小さくしていく。この場合、分散補償ファイバは、
線引工程において、アウタコア相当部にクラッド相当部
より粘度が小さい部分が生じないので、その部分に張力
が集中し、残留応力が発生することはない。このため、
製造された分散補償ファイバは、上述した理由による偏
波モード分散、従って、複合2次歪が発生する心配がな
い。
In the present invention, in order to avoid the problem of increased structural defect loss by increasing the relative refractive index difference between the center core and the clad, which substantially determines the magnitude of negative wavelength dispersion, the refractive index of the outer core is reduced. The ratio gradually decreases toward the outer circumference. In this case, the dispersion compensating fiber is
In the drawing step, a portion having a lower viscosity than the clad portion does not occur in the outer core corresponding portion, so that the tension is concentrated in that portion and residual stress does not occur. For this reason,
The manufactured dispersion compensating fiber is free from the polarization mode dispersion due to the above-mentioned reasons, and hence, the composite second-order distortion does not occur.

【0010】[0010]

【発明の実施の形態】本発明の一実施形態を図面を参照
して詳細に述べる。分散補償ファイバは、図1に示すよ
うに、比屈折率差がほぼ均一であるセンタコア1と、セ
ンタコア1外周に設けられかつ比屈折率差が外周方向に
向かって徐々に小さくなるアウタコア2と、アウタコア
2外周に設けられかつフッ素がドープされたクラッド3
により形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the dispersion compensating fiber includes a center core 1 having a substantially uniform relative refractive index difference, and an outer core 2 provided on the outer periphery of the center core 1 and having a relative refractive index difference gradually decreasing toward the outer peripheral direction. Cladding 3 provided on the outer periphery of the outer core 2 and doped with fluorine
Is formed.

【0011】上記分散補償ファイバは、半径方向におい
てそれぞれ図2及び図3に示すドーパント濃度と比屈折
率差を有している。ここで、図2は、半径方向における
ドーパント濃度を石英ガラスの屈折率を基準とする比屈
折率差を、図3は半径方向における比屈折率差を示して
いる。図中、符号5はセンタコア対応部、符号6はアウ
タコア対応部、符号7はクラッド対応部で、図4,5に
おいても同様である。
The dispersion compensating fiber has a dopant concentration and a relative refractive index difference shown in FIGS. 2 and 3, respectively, in the radial direction. Here, FIG. 2 shows the relative refractive index difference in which the dopant concentration in the radial direction is based on the refractive index of quartz glass, and FIG. 3 shows the relative refractive index difference in the radial direction. In the figure, reference numeral 5 is a center core corresponding portion, reference numeral 6 is an outer core corresponding portion, and reference numeral 7 is a clad corresponding portion. The same applies to FIGS.

【0012】上述した分散補償ファイバは、以下のよう
にして製造した。すなわち、まず、VAD法によってセ
ンタコア及びアウタコアとなるGeO2ドープ石英多孔質母
材を作製した。ここで、従来、SiF4雰囲気中で石英多孔
質母材を焼結させる際、スート密度の高低によりフッ素
のドープ量が変化することが知られている。従って、石
英多孔質母材の作製に際しては、バーナ位置、酸素ガス
量及び水素ガス量等を制御することにより、アウタコア
に相当する部分のスート密度が半径方向外側に向かって
低くなるように制御した。このようにして作製した多孔
質母材を表1に示す条件で脱水・焼結させて、センタコ
アの外側にアウタコアが形成されたコア用ロッドを得
た。
The dispersion compensating fiber described above was manufactured as follows. That is, first, a GeO 2 -doped quartz porous base material to be the center core and the outer core was prepared by the VAD method. Here, it is conventionally known that when sintering a porous silica preform in a SiF4 atmosphere, the doping amount of fluorine changes depending on the soot density. Therefore, in the production of the quartz porous base material, the soot density of the portion corresponding to the outer core was controlled so as to decrease toward the outer side in the radial direction by controlling the burner position, the oxygen gas amount, the hydrogen gas amount, and the like. . The porous base material thus produced was dehydrated and sintered under the conditions shown in Table 1 to obtain a core rod having an outer core formed outside the center core.

【0013】次いで、該コア用ロッドを外径12mmに延伸
し、表面にフッ酸エッチングを施した後、外付け法によ
って外周にΔ[F]=−0.4%のフッ素ドープ石英ガラスから
なるクラッドを形成し光ファイバ用多孔質母材を製造し
た。該光ファイバ用多孔質母材を表2に示す条件で脱水
・焼結させて光ファイバ母材を得た。
Next, the core rod is drawn to have an outer diameter of 12 mm, and the surface is subjected to hydrofluoric acid etching. Then, a clad made of fluorine-doped quartz glass with Δ [F] =-0.4% is attached to the outer periphery by an external attachment method. Then, a porous preform for optical fiber was manufactured. The optical fiber preform was obtained by dehydrating and sintering the porous preform for optical fiber under the conditions shown in Table 2.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 この結果得られた光ファイバ母材は図3に示すような比
屈折率差分布を有する。また、各ドーパント濃度は図2
に示す通りである。
[Table 2] The optical fiber preform obtained as a result has a relative refractive index difference distribution as shown in FIG. Also, the concentration of each dopant is shown in FIG.
As shown in FIG.

【0016】すなわち、センタコア1の比屈折率差Δ[G
eO2]= +2.0%、クラッド3の比屈折率差Δ[F]=−0.2%、
アウタコア2の外周部では比屈折率差Δ[GeO2]= +0.3
%、クラッド3の内周部では比屈折率差Δ[F]=−0.3%と
なっている。なお、GeO2とFは何れも石英ガラスの粘度
を下げることが分かっている。このとき、GeO2とFは、
アウタコア2の外周部とクラッド3の内周部における比
屈折率差がΔ[GeO2]/ Δ[F] =−3の関係を満足するよ
うにドープすると、光ファイバの線引工程において、両
者の粘度が等しくなる。すなわち、比屈折率差において
同量のGeO2とFを石英ガラスに加えると、FはGeO2の3
倍、石英ガラスの粘度を下げるのである。
That is, the relative refractive index difference Δ [G of the center core 1
eO2] = + 2.0%, relative refractive index difference Δ [F] = − 0.2% of the cladding 3,
In the outer peripheral portion of the outer core 2, the relative refractive index difference Δ [GeO2] = +0.3
%, And the relative refractive index difference Δ [F] = − 0.3% at the inner peripheral portion of the clad 3. Both GeO2 and F are known to reduce the viscosity of quartz glass. At this time, GeO2 and F are
Doping so that the relative refractive index difference between the outer peripheral portion of the outer core 2 and the inner peripheral portion of the clad 3 satisfies the relationship of Δ [GeO2] / Δ [F] = − 3. The viscosities are equal. That is, if the same amount of GeO2 and F are added to the silica glass in the relative refractive index difference, F will be 3 of GeO2.
Double the viscosity of the quartz glass.

【0017】ここで、各コアにおけるGeO2及びFの比屈
折率差への寄与分、Δ[GeO2]及びΔ[F] は、上記した条
件と同一条件で作成した光ファイバ用多孔質母材をSiF4
を含まない雰囲気で焼結して得た光ファイバ母材の屈折
率分布と比較することにより求めた。以上のようにして
製造された光ファイバ母材から分散補償ファイバを線引
し、直ちに紫外線硬化型樹脂の被覆層を施した。このよ
うにして、アウタコア径2.5μm、クラッド径125μ
m、被覆径240μm、条長約10Kmの分散補償ファイバを
3本得た。
Here, the contributions of GeO2 and F to the relative refractive index difference in each core, Δ [GeO2] and Δ [F], are the porous preforms for optical fibers prepared under the same conditions as described above. SiF4
It was determined by comparison with the refractive index distribution of the optical fiber preform obtained by sintering in an atmosphere not containing. A dispersion compensating fiber was drawn from the optical fiber preform manufactured as described above, and immediately a coating layer of an ultraviolet curable resin was applied. In this way, the outer core diameter is 2.5 μm and the clad diameter is 125 μm.
m, a coating diameter of 240 μm and a strip length of about 10 km were obtained.

【0018】製造した前記分散補償ファイバの偏波モー
ド分散をジョーンズ行列法により測定したところ、3本
の値はそれぞれ、0.089ps/Km-1/2、0.123ps/Km-1/2、0.
108ps/Km-1/2といづれも0.1ps/Km-1/2前後であった。標
準的な1.3 μm用単一モードファイバの偏波モード分散
値(0.099ps/Km-1/2) と同等の値である。比較例とし
て、図4に示すように径方向にGeO2がほぼ均一にドープ
されたセンタコア対応部5と、センタコア対応部5外周
に設けられかつGeO2が外周方向に向けて徐々に少なくな
るようにドープされたアウタコア対応部6と、アウタコ
ア対応部6外周に設けられかつフッ素がドープされたク
ラッド対応部7からなる従来の分散補償ファイバを3本
製造した。
When the polarization mode dispersion of the manufactured dispersion compensating fiber was measured by the Jones matrix method, the three values were 0.089 ps / Km -1/2 , 0.123 ps / Km -1/2 and 0.
Also Izure and 108ps / Km -1/2 0.1ps / Km -1/2 was around. It is equivalent to the polarization mode dispersion value (0.099ps / Km -1/2 ) of the standard 1.3 μm single-mode fiber. As a comparative example, as shown in FIG. 4, a center core corresponding portion 5 in which GeO2 is substantially uniformly doped in the radial direction and a center core corresponding portion 5 are provided on the outer periphery and GeO2 is doped so that the GeO2 gradually decreases toward the outer peripheral direction. Three conventional dispersion compensating fibers including the outer core corresponding portion 6 and the clad corresponding portion 7 provided on the outer periphery of the outer core corresponding portion 6 and doped with fluorine were manufactured.

【0019】ここで、センタコア対応部5の比屈折率差
Δ[GeO2]は+1.8%、クラッド対応部7の比屈折率差Δ
[F] は−0.4%であった。したがって、両者の比屈折率差
Δは2.2%である。なお、その屈折率分布は図5の通りで
あり、本実施形態において製造した分散補償ファイバの
屈折率分布を示した図3とほぼ同一の形状となってい
た。
Here, the relative refractive index difference Δ [GeO2] of the center core corresponding portion 5 is + 1.8%, and the relative refractive index difference Δ of the clad corresponding portion 7 is Δ.
[F] was −0.4%. Therefore, the relative refractive index difference Δ between the two is 2.2%. The refractive index distribution is as shown in FIG. 5, and the shape is almost the same as that of FIG. 3 showing the refractive index distribution of the dispersion compensating fiber manufactured in this embodiment.

【0020】このようにして得た分散補償ファイバの偏
波モード分散をジョーンズ行列法により測定したとこ
ろ、3本の値はそれぞれ、0.790ps/Km-1/2、0.420ps/Km
-1/2、0.334ps/Km-1/2といづれも標準的な1.3 μm用単
一モードファイバの偏波モード分散値(0.099ps/Km-1/2)
よりかなり大きな値であった。
When the polarization mode dispersion of the dispersion compensating fiber thus obtained was measured by the Jones matrix method, the three values were 0.790 ps / Km -1/2 and 0.420 ps / Km, respectively.
-1/2 and 0.334ps / Km -1/2 are standard polarization mode dispersion values of standard single-mode fiber for 1.3 μm (0.099ps / Km -1/2 )
It was a much larger value.

【0021】[0021]

【発明の効果】本発明によれば、線引工程においてアウ
タコア相当部にクラッド相当部より粘度が小さい部分が
生じないので、その部分に張力が集中し、残留応力が発
生することはない。したがって、上述した理由による偏
波モード分散が発生せず、複合2次歪の心配がない。
According to the present invention, since a portion having a lower viscosity than the clad equivalent portion does not occur in the outer core equivalent portion in the drawing step, the tension is concentrated in that portion and residual stress does not occur. Therefore, polarization mode dispersion does not occur due to the above-mentioned reasons, and there is no concern about composite second-order distortion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明に係わる分散補償ファイバの斜
視図である。
FIG. 1 is a perspective view of a dispersion compensating fiber according to the present invention.

【図2】図2は、本発明に係わる分散補償ファイバの半
径方向における各ドーパント濃度を石英ガラスの屈折率
を基準とする比屈折率差として示したドーパント濃度分
布図である。
FIG. 2 is a dopant concentration distribution diagram showing each dopant concentration in the radial direction of the dispersion compensating fiber according to the present invention as a relative refractive index difference based on the refractive index of silica glass.

【図3】図3は、本発明に係わる分散補償ファイバの半
径方向における比屈折率差を示した比屈折率差分布図で
ある。
FIG. 3 is a relative refractive index difference distribution diagram showing the relative refractive index difference in the radial direction of the dispersion compensating fiber according to the present invention.

【図4】図4は、比較例に係わる分散補償ファイバの半
径方向における各ドーパント濃度を石英ガラスの屈折率
を基準とする比屈折率差として示したドーパント濃度分
布図である。
FIG. 4 is a dopant concentration distribution diagram showing each dopant concentration in the radial direction of the dispersion compensating fiber according to the comparative example as a relative refractive index difference based on the refractive index of silica glass.

【図5】図5は、比較例に係わる分散補償ファイバの半
径方向における比屈折率差を示した比屈折率差分布図で
ある。
FIG. 5 is a relative refractive index difference distribution diagram showing the relative refractive index difference in the radial direction of the dispersion compensating fiber according to the comparative example.

【符号の説明】[Explanation of symbols]

1…センタコア 2…アウタコア 3…クラッド 1 ... Center core 2 ... Outer core 3 ... Clad

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 二酸化ゲルマニウムがほぼ均一にドープ
されたセンタコアと、該センタコア外周に設けられ、か
つ、二酸化ゲルマニウムが外周方向に向けて徐々に少な
くなるようにドープされたアウタコアと、該アウタコア
外周に設けられ、かつ、フッ素がドープされたクラッド
からなる分散補償ファイバにおいて、 前記アウタコアは、少なくとも外周側の粘度が前記クラ
ッドと同等になるようにフッ素がドープされていること
を特徴とする分散補償ファイバ。
1. A center core substantially uniformly doped with germanium dioxide, an outer core provided on the outer periphery of the center core, and doped with germanium dioxide so that the amount of germanium dioxide gradually decreases in the outer peripheral direction, and an outer periphery of the outer core. Dispersion compensating fiber provided with a clad doped with fluorine, wherein the outer core is doped with fluorine so that at least the viscosity on the outer peripheral side is equal to that of the clad. .
JP8276062A 1995-10-20 1996-10-18 Dispersion compensation fiber Pending JPH09171119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8276062A JPH09171119A (en) 1995-10-20 1996-10-18 Dispersion compensation fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-272443 1995-10-20
JP27244395 1995-10-20
JP8276062A JPH09171119A (en) 1995-10-20 1996-10-18 Dispersion compensation fiber

Publications (1)

Publication Number Publication Date
JPH09171119A true JPH09171119A (en) 1997-06-30

Family

ID=26550204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8276062A Pending JPH09171119A (en) 1995-10-20 1996-10-18 Dispersion compensation fiber

Country Status (1)

Country Link
JP (1) JPH09171119A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940567A (en) * 1998-02-20 1999-08-17 Photon-X, Inc. Optical fibers having an inner core and an outer core
KR100472055B1 (en) * 2002-10-10 2005-03-10 한국전자통신연구원 Transmission optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940567A (en) * 1998-02-20 1999-08-17 Photon-X, Inc. Optical fibers having an inner core and an outer core
KR100472055B1 (en) * 2002-10-10 2005-03-10 한국전자통신연구원 Transmission optical fiber

Similar Documents

Publication Publication Date Title
US5995695A (en) Dispersion compensating optical fiber
US5555340A (en) Optical transmission system with dispersion compensating optical fiber
US10295733B2 (en) Single mode fibre with a trapezoid core, showing reduced losses
JP4999063B2 (en) Optical fiber
JP2000356724A (en) Optical fiber in which color dispersion is compensated
EP1403669A2 (en) Dispersion-compensating module
WO2005015303A1 (en) Nonlinear optical fiber and optical signal processing device using the optical fiber
US5799123A (en) Dispersion compensating fiber
US6442320B1 (en) Limited mode dispersion compensating optical fiber
JP2007297254A (en) Optical fiber
JP4434172B2 (en) Dispersion compensating optical fiber
US6612756B1 (en) Dispersion shifted fiber for wavelength division multiplex fiber optic transmission systems
JPH09171119A (en) Dispersion compensation fiber
JP2002082250A (en) Low non-linear single mode optical fiber
US20020000104A1 (en) Methods of making preform and optical fiber
US7849713B2 (en) Optical fibre having low splice loss and method for making it
JP2002053344A (en) Glass preform for optical fiber and optical fiber
JP3758981B2 (en) Optical fiber
JP3643012B2 (en) Dispersion compensating optical fiber
JP3840977B2 (en) Dispersion compensating optical fiber
US6898361B2 (en) Dispersion-compensating optical fiber and optical transmission line
JP3803297B2 (en) Dispersion compensating optical fiber and dispersion compensating optical fiber module
US20040033040A1 (en) Optical fiber and an optical transmission system using the optical fiber
JP3933522B2 (en) Optical fiber
JP2003270469A (en) Dispersion-correction fiber with high figure of merit