JPH09170110A - Production of rayon having far-infrared-radiation characteristic as well as antimicrobial effect, deodorizing ability and insectproofness - Google Patents

Production of rayon having far-infrared-radiation characteristic as well as antimicrobial effect, deodorizing ability and insectproofness

Info

Publication number
JPH09170110A
JPH09170110A JP27728096A JP27728096A JPH09170110A JP H09170110 A JPH09170110 A JP H09170110A JP 27728096 A JP27728096 A JP 27728096A JP 27728096 A JP27728096 A JP 27728096A JP H09170110 A JPH09170110 A JP H09170110A
Authority
JP
Japan
Prior art keywords
weight
added
mixed
base material
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27728096A
Other languages
Japanese (ja)
Other versions
JP2876309B2 (en
Inventor
Nobuhide Maeda
信秀 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIEGARANIN KK
Original Assignee
JIEGARANIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIEGARANIN KK filed Critical JIEGARANIN KK
Priority to JP27728096A priority Critical patent/JP2876309B2/en
Publication of JPH09170110A publication Critical patent/JPH09170110A/en
Application granted granted Critical
Publication of JP2876309B2 publication Critical patent/JP2876309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a rayon by incorporating viscouse with a composite ceramic having far-infrared-radiation characteristics as well as antimicrobial effect, deodorizing ability and insectproofing effect during rayon production process. SOLUTION: First, a composite ceramic is prepared by the following process: a mixture of serpentine as the base material selected from ceramics having far-infrared-radiation characteristics as well as antimicrobial effect and deodorizing ability with silica or zinc oxide is incorporated, as auxiliary, with either zinc oxide (except that it is used as an ingredient of the above mixture), tourmaline, zeolite or calcium oxide, followed by agitation and then baking. Next, during rayon production process, viscose is incorporated with the above composite ceramic to obtain the objective rayon having far-infrared-radiation characteristics as well as antimicrobial effect, deodorizing ability and insectproofness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、抗菌性、脱臭性お
よび防虫性を有すると共に、遠赤外線放射特性を有する
レーヨンの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing rayon having antibacterial properties, deodorizing properties, insect repellent properties, and far infrared radiation properties.

【0002】[0002]

【従来の技術】従来、抗菌性、脱臭性および防虫性を有
すると共に、遠赤外線放射特性を有するレーヨンは存在
していなかった。
2. Description of the Related Art Heretofore, rayon having antibacterial properties, deodorizing properties and insect repellent properties as well as far infrared radiation properties has not been present.

【0003】[0003]

【発明が解決しようとする課題】上記のように、従来は
抗菌性、脱臭性および防虫性を有すると共に、遠赤外線
放射特性を有するレーヨンは存在していなかったため、
レーヨンを木綿や合成繊維と混紡して作られた、特に病
院における下着、シ―ツ、ふとんカバ―、その他台所の
布巾等はクリ―ニングや洗浄をしても、汚臭や雑菌が除
去されず、極めて不衛生であり、更にノミやダニ等の衛
生害虫に対する防虫性もなく、また下着やシーツの場合
遠赤外線を放射しないので、皮膚表面温度を昇温させる
ことができず、血流も促進させることができないという
問題点があった。
As described above, since rayon having antibacterial properties, deodorizing properties and insect repellent properties as well as far infrared radiation properties has not been available,
Underwear, sheets, futon covers in hospitals, and other kitchen cloths made of rayon mixed with cotton and synthetic fibers are cleaned and cleaned to remove odors and germs. However, it is extremely unsanitary, has no insect repellency against hygienic pests such as fleas and mites, and does not emit far-infrared rays in underwear and sheets, so it cannot raise the skin surface temperature and blood flow. There was a problem that it could not be promoted.

【0004】本発明はかかる問題点を解決すべくなした
もので、抗菌性、脱臭性および防虫性を有すると共に、
遠赤外線放射特性を有するレーヨンの製造方法を提供し
ようとするものである。
The present invention has been made to solve the above problems, and has antibacterial properties, deodorizing properties and insect repellent properties.
It is an object of the present invention to provide a method for manufacturing rayon having far infrared radiation characteristics.

【0005】[0005]

【課題を解決するための手段】本発明は、粒径5μm以
下の蛇紋石微粉末を基材とすると共に、該基材が20〜
80重量%に対して、粒径5μm以下の硅石の微粉末を
混合材として、該混合材を10〜40重量%の割合で前
記基材に添加混合すると共に、更に粒径5μm以下の酸
化亜鉛の微粉末を助材として、該助材を10〜40重量
%の割合で前記基材に添加混合して、混合機および粉砕
機に順次複数回に亘って投入して、前記基材と混合材お
よび助材とを混合攪拌および粉砕して均一に混合し、然
る後200〜500℃の仮焼温度で焼成機により焼成し
て得られた複合セラミックスを、レーヨン製造工程中の
混合工程において、ビスコースを投入した混合機に5〜
10重量%投入するか、または脱泡工程において、ビス
コースを投入した紡糸タンクに5〜10重量%投入し
て、前記ビスコースに前記複合セラミックスを添加混入
するという手段、粒径5μm以下の蛇紋石微粉末を基材
とすると共に、該基材が20〜80重量%に対して、粒
径5μm以下の硅石の微粉末を混合材として、該混合材
を10〜40重量%の割合で前記基材に添加混合すると
共に、更に粒径5μm以下の電気石の微粉末を助材とし
て、該助材を10〜40重量%の割合で前記基材に添加
混合して、混合機および粉砕機に順次複数回に亘って投
入して、前記基材と混合材および助材とを混合攪拌およ
び粉砕して均一に混合し、然る後200〜500℃の仮
焼温度で焼成機により焼成して得られた複合セラミック
スを、レーヨン製造工程中の混合工程において、ビスコ
ースを投入した混合機に5〜10重量%投入するか、ま
たは脱泡工程において、ビスコースを投入した紡糸タン
クに5〜10重量%投入して、前記ビスコースに前記複
合セラミックスを添加混入するという手段、粒径5μm
以下の蛇紋石微粉末を基材とすると共に、該基材が10
〜40重量%に対して、粒径5μm以下の酸化亜鉛の微
粉末を混合材として、該混合材を10〜40重量%の割
合で前記基材に添加混合すると共に、更に粒径5μm以
下のゼオライトの微粉末を助材として、該助材を20〜
80重量%の割合で前記基材に添加混合して、混合機お
よび粉砕機に順次複数回に亘って投入して、前記基材と
混合材および助材とを混合攪拌および粉砕して均一に混
合し、然る後200〜500℃の仮焼温度で焼成機によ
り焼成して得られた複合セラミックスを、レーヨン製造
工程中の混合工程において、ビスコースを投入した混合
機に5〜10重量%投入するか、または脱泡工程におい
て、ビスコースを投入した紡糸タンクに5〜10重量%
投入して、前記ビスコースに前記複合セラミックスを添
加混入するという手段、粒径5μm以下の蛇紋石微粉末
を基材とすると共に、該基材が10〜40重量%に対し
て、粒径5μm以下の酸化亜鉛の微粉末を混合材とし
て、該混合材を10〜40重量%の割合で前記基材に添
加混合すると共に、更に粒径5μm以下の酸化カルシウ
ムの微粉末を助材として、該助材を20〜80重量%の
割合で前記基材に添加混合して、混合機および粉砕機に
順次複数回に亘って投入して、前記基材と混合材および
助材とを混合攪拌および粉砕して均一に混合し、然る後
200〜500℃の仮焼温度で焼成機により焼成して得
られた複合セラミックスを、レーヨン製造工程中の混合
工程において、ビスコースを投入した混合機に5〜10
重量%投入するか、または脱泡工程において、ビスコー
スを投入した紡糸タンクに5〜10重量%投入して、前
記ビスコースに前記複合セラミックスを添加混入すると
いう手段、のいずれかを採用することにより、上記問題
点を解決した。
According to the present invention, a serpentine fine powder having a particle size of 5 μm or less is used as a base material, and the base material is composed of 20 to 50 μm.
80% by weight of fine silica powder having a particle size of 5 μm or less is used as a mixed material, and the mixed material is added to and mixed with the base material at a ratio of 10 to 40% by weight, and zinc oxide having a particle size of 5 μm or less is further added. The fine powder is used as an auxiliary material, and the auxiliary material is added to and mixed with the base material at a ratio of 10 to 40% by weight, and the mixture is put into a mixer and a crusher several times sequentially to mix with the base material. The mixed ceramic obtained by sintering and mixing the material and the auxiliary material with a sintering machine at a calcining temperature of 200 to 500 ° C. is then mixed in a rayon manufacturing process. , 5 to the viscose mixer
10% by weight or 5-10% by weight in a spinning tank containing viscose in the defoaming step to add and mix the composite ceramics into the viscose, a serpentine having a particle size of 5 μm or less. The fine stone powder is used as a base material, and the base material is 20 to 80% by weight, and fine silica powder having a particle size of 5 μm or less is used as a mixing material. A mixer and a pulverizer are added to and mixed with the base material, and further, fine powder of tourmaline having a particle size of 5 μm or less is used as an auxiliary material, and the auxiliary material is added and mixed at a ratio of 10 to 40% by weight to the base material. , And the mixture and the auxiliary material are mixed, stirred, pulverized and uniformly mixed, and then calcined by a calciner at a calcination temperature of 200 to 500 ° C. The composite ceramics obtained by In the mixing step in the middle, 5 to 10% by weight is added to the mixer into which viscose is added, or in the defoaming step, 5 to 10% by weight is added to the spinning tank into which viscose is added to the viscose. Means of adding and mixing the composite ceramics, particle size 5 μm
The following serpentine fine powder is used as a base material, and the base material is 10
With respect to ˜40% by weight, fine powder of zinc oxide having a particle size of 5 μm or less is used as a mixing material, and the mixing material is added and mixed at a ratio of 10 to 40% by weight to the base material. With the fine powder of zeolite as an auxiliary material, the auxiliary material is 20 to
80% by weight is added to and mixed with the base material, and the mixture is sequentially charged into a mixer and a pulverizer several times, and the base material, the mixing material and the auxiliary material are mixed and stirred and pulverized to be uniform. The composite ceramics obtained by mixing and then firing at a calcining temperature of 200 to 500 ° C. by a calciner are used in a mixing step in the rayon manufacturing process in an amount of 5 to 10% by weight in a mixer into which viscose is added. 5% to 10% by weight in the spinning tank charged with viscose in the degassing step.
Means for adding and mixing the composite ceramics into the viscose, using serpentine fine powder having a particle size of 5 μm or less as a base material, and the base material having a particle size of 5 μm for 10 to 40% by weight. The following zinc oxide fine powder was used as a mixing material, and the mixing material was added to and mixed with the base material at a ratio of 10 to 40% by weight, and further, calcium oxide fine powder having a particle diameter of 5 μm or less was used as an auxiliary material. The auxiliary material is added to and mixed with the base material at a ratio of 20 to 80% by weight, and then sequentially charged into a mixer and a pulverizer several times to mix and stir the base material, the mixing material and the auxiliary material. The composite ceramics obtained by pulverizing and uniformly mixing and then firing at a calcining temperature of 200 to 500 ° C. are mixed in a mixing machine in a rayon manufacturing process with viscose. 5-10
1% by weight, or in the defoaming step, 5 to 10% by weight is added to a spinning tank containing viscose and the composite ceramics is added and mixed into the viscose. Solves the above problems.

【0006】[0006]

【発明の実施の形態】本発明者は、単一成分のセラミッ
クスにつき、夫々抗菌率と脱臭率および遠赤外線放射率
につき、個々に測定し、抗菌率または脱臭率並びに遠赤
外線放射率において優れたものを抽出すると共に、前記
各セラミックスを基材、混合材および助材のいずれかと
して採用してこれを一定比率で混合攪拌し、然る後仮焼
して抗菌性および脱臭性を有すると共に、遠赤外線放射
特性を有し、更に防虫性をも有する複合セラミックスを
製造し、そして該複合セラミックスをレーヨン製造工程
中においてビスコースに添加混入することにより、抗菌
性、脱臭性および防虫性を有すると共に、遠赤外線放射
特性を有するレーヨンを完成した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventor measured the antibacterial rate, the deodorizing rate and the far-infrared emissivity of each of the single component ceramics individually, and was excellent in the antibacterial rate or the deodorizing rate and the far-infrared emissivity. Along with extracting the thing, each of the above-mentioned ceramics is adopted as one of the base material, the mixing material and the auxiliary material and mixed and stirred at a fixed ratio, and then calcined to have antibacterial and deodorant properties, By producing a composite ceramic having far-infrared radiation characteristics and also having insect repellent properties, and by adding and mixing the composite ceramics with viscose in the rayon production process, it has antibacterial properties, deodorizing properties and insect repellent properties. , Rayon with far infrared radiation characteristics was completed.

【0007】本発明に使用される抗菌性、脱臭性および
防虫性を有すると共に、遠赤外線放射特性を有する複合
セラミックスを構成する単一成分のセラミックスの抗菌
率と脱臭率および平均放射率を測定したところ、表1、
表2に示す測定値を得た。
The antibacterial rate, deodorizing rate, and average emissivity of the single-component ceramics constituting the composite ceramics having far-infrared radiation characteristics as well as having antibacterial, deodorizing, and insect repellent properties used in the present invention were measured. By the way, Table 1,
The measured values shown in Table 2 were obtained.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【表2】 [Table 2]

【0010】表1の結果から、蛇紋石が大腸菌に対して
86%、ブドウ状球菌に対して96%の抗菌率を有する
と共に、臭気の発生源であるアンモニアに対して95
%、硫化水素に対して90%の脱臭率を有し、硅石は硫
化水素に対して100%、アンモニアに対しては93%
の脱臭率を有するが、抗菌性はほとんどなく、酸化亜鉛
は硫化水素に対して100%の脱臭率を有するが、アン
モニアに対してはほとんど脱臭性がなく、抗菌性もほと
んどなく、また、電気石は大腸菌に対して87%、ブド
ウ状球菌に対して83%の抗菌率を有するが、アンモニ
アや硫化水素に対しては中程度の脱臭性しかなく、ゼオ
ライトはアンモニアに対しては90%、硫化水素に対し
て80%の脱臭率を有するが、抗菌性はほとんどなく、
酸化カルシウムはアンモニアや硫化水素に対して80%
の脱臭率を有し、大腸菌に対して85%、ブドウ状球菌
に対して95%の高い抗菌率を有していることが判っ
た。更に、表2の結果より前記各セラミックスとも遠赤
外線放射率が85〜96%で高いことが判った。
From the results shown in Table 1, serpentine has an antibacterial rate of 86% against Escherichia coli and 96% against staphylococci, and 95% against ammonia which is a source of odor.
%, Deodorization rate of 90% for hydrogen sulfide, silica stone is 100% for hydrogen sulfide, 93% for ammonia
Has a deodorizing rate of almost 100%, but has almost no antibacterial property. Zinc oxide has a deodorizing rate of 100% for hydrogen sulfide, but has little deodorizing property for ammonia, little antibacterial property, and electric power. Stone has an antibacterial rate of 87% against Escherichia coli and 83% against staphylococci, but has only moderate deodorizing properties against ammonia and hydrogen sulfide, and zeolite has 90% against ammonia, It has a deodorization rate of 80% against hydrogen sulfide, but has almost no antibacterial properties.
Calcium oxide is 80% of ammonia and hydrogen sulfide
It was found that they had a high deodorizing rate of 85% against E. coli and 95% against Staphylococcus. Further, from the results of Table 2, it was found that the far infrared emissivity of each of the above ceramics was as high as 85 to 96%.

【0011】上記の結果より、本発明者は大腸菌とブド
ウ状球菌のいずれに対しても高い抗菌率を有すると共
に、アンモニアや硫化水素に対しても高い脱臭率を有
し、且つ放射率が比較的高い蛇紋石を本発明に使用する
複合セラミックスの基材として採用し、この基材となる
蛇紋石に、混合材として硅石または酸化亜鉛を添加混合
し、更に助材として、酸化亜鉛(混合材として酸化亜鉛
を用いた場合は除外する)、電気石、ゼオライト、酸化
カルシウムのいずれかを前記基材に添加混合することに
よって、抗菌性、脱臭性および防虫性を有すると共に、
遠赤外線を放射する複合セラミックスが得られると考
え、前記各セラミックスをその各配合比率を種々変えて
抗菌率、脱臭率、ノミやダニ等の衛生害虫に対する防虫
性を示す忌避率および遠赤外線放射率について測定し
た。
From the above results, the present inventor has a high antibacterial rate against both Escherichia coli and staphylococcus, a high deodorizing rate against ammonia and hydrogen sulfide, and a comparative emissivity. Adopting a highly serpentine as a base material of the composite ceramics used in the present invention, and adding silica or zinc oxide as a mixing material to the base material serpentine, and further adding zinc oxide (mixing material Exclude when zinc oxide is used as), by adding and mixing tourmaline, zeolite, or calcium oxide to the base material, while having antibacterial properties, deodorizing properties and insect repellent properties,
We believe that composite ceramics that emit far-infrared rays can be obtained, and the above-mentioned ceramics are variously changed in their respective mixing ratios, and antibacterial rate, deodorizing rate, repellent rate and far-infrared emissivity showing insecticidal activity against sanitary pests such as fleas and mites Was measured.

【0012】前記測定の結果、基材が蛇紋石、混合材が
硅石、助材が酸化亜鉛の場合、それぞれ蛇紋石20〜8
0重量%、硅石10〜40重量%、酸化亜鉛10〜40
重量%とするのが好ましく、特に好ましくは蛇紋石50
重量%、硅石25重量%、酸化亜鉛25重量%とするこ
とが推奨され、また、基材が蛇紋石、混合材が硅石、助
材が電気石の場合、それぞれ蛇紋石20〜80重量%、
硅石10〜40重量%、電気石10〜40重量%とする
のが好ましく、特に好ましくは蛇紋石50重量%、硅石
25重量%、電気石25重量%とすることが推奨され、
更に、基材が蛇紋石、混合材が酸化亜鉛、助材がゼオラ
イトの場合、それぞれ蛇紋石10〜40重量%、酸化亜
鉛10〜40重量%、ゼオライト20〜80重量%とす
るのが好ましく、特に好ましくは蛇紋石25重量%、酸
化亜鉛25重量%、ゼオライト50重量%とすることが
推奨され、また更に、基材が蛇紋石、混合材が酸化亜
鉛、助材が酸化カルシウムの場合、それぞれ蛇紋石10
〜40重量%、酸化亜鉛10〜40重量%、酸化カルシ
ウム20〜80重量%とするのが好ましく、特に好まし
くは蛇紋石25重量%、酸化亜鉛25重量%、酸化カル
シウム50重量%とすることが推奨されることが判っ
た。
As a result of the above-mentioned measurement, when the base material is serpentine, the mixed material is silica stone, and the auxiliary material is zinc oxide, serpentine 20 to 8 respectively.
0% by weight, silica 10-40% by weight, zinc oxide 10-40
It is preferably 50% by weight, particularly preferably serpentine 50
% By weight, silica 25% by weight, and zinc oxide 25% by weight are recommended, and when the base material is serpentine, the mixture material is silica stone, and the auxiliary material is tourmaline, respectively, serpentine 20 to 80% by weight,
Silica stone 10 to 40 wt%, tourmaline 10 to 40 wt% are preferable, and serpentine stone 50 wt%, silica stone 25 wt%, tourmaline 25 wt% are particularly preferable,
Further, when the base material is serpentine, the mixture material is zinc oxide, and the auxiliary material is zeolite, the serpentine content is preferably 10 to 40% by weight, zinc oxide is 10 to 40% by weight, and zeolite is 20 to 80% by weight, Particularly preferably, serpentine 25% by weight, zinc oxide 25% by weight, and zeolite 50% by weight are recommended. Further, when the base material is serpentine, the mixture material is zinc oxide, and the auxiliary material is calcium oxide, respectively, Serpentine 10
-40% by weight, zinc oxide 10-40% by weight, and calcium oxide 20-80% by weight are preferable, and serpentine 25% by weight, zinc oxide 25% by weight, and calcium oxide 50% by weight are particularly preferable. It turned out to be recommended.

【0013】そして、本発明で採用する複合セラミック
スを構成する単一成分のセラミックスである蛇紋石、硅
石、酸化亜鉛、電気石、ゼオライト、酸化カルシウムを
夫々表3に示す好ましい混合率により混合して製造され
た複合セラミックスの放射率、忌避率、抗菌率および脱
臭率を測定した結果を表4に示す。なお、表4における
記号1〜4は表3の記号1〜4と対応している。
Then, serpentine, silica, zinc oxide, tourmaline, zeolite, and calcium oxide, which are single-component ceramics constituting the composite ceramics adopted in the present invention, are mixed at the respective preferable mixing ratios shown in Table 3. Table 4 shows the results of measuring the emissivity, the repellent rate, the antibacterial rate, and the deodorizing rate of the manufactured composite ceramics. The symbols 1 to 4 in Table 4 correspond to the symbols 1 to 4 in Table 3.

【0014】[0014]

【表3】 [Table 3]

【0015】[0015]

【表4】 [Table 4]

【0016】前記表4の結果から、いずれの複合セラミ
ックスも、その複合セラミックスを構成する各単一成分
の各セラミックスの相乗効果により抗菌率および脱臭率
において高い数値が出て、抗菌性および脱臭性において
優れていると共に、遠赤外線放射特性および衛生害虫に
対する防虫性を示す忌避効果においても優れていること
が判った。
From the results shown in Table 4, all the composite ceramics have high antibacterial and deodorizing values due to the synergistic effect of the ceramics of the single components constituting the composite ceramics. It was found that in addition to being excellent in the above, it is also excellent in far-infrared radiation characteristics and repellent effect showing insect repellent property against sanitary pests.

【0017】以下本発明に採用する抗菌性、脱臭性およ
び防虫性を有すると共に、遠赤外線放射特性を有する複
合セラミックスの製造方法について更に詳細に説明す
る。前記複合セラミックスを構成する各単一成分の各セ
ラミックスの粒径は、5μm以下の微粉末を使用する必
要があり、そしてこれら各セラミックスを混合すると、
各セラミックスの比重、水分、湿度等の物理的特性が夫
々異なると共に、これら原材料である前記各セラミック
スは粒径が5μm以下の微粉末であるため、凝集化が安
易に作用して、前記各セラミックスを均一に混合するこ
とは極めて容易ではない。
The method for producing a composite ceramic having antibacterial properties, deodorizing properties, insect repellency and far-infrared radiation characteristics adopted in the present invention will be described in more detail below. It is necessary to use fine powder having a particle size of 5 μm or less for each ceramic of each single component constituting the composite ceramics, and when these ceramics are mixed,
The respective ceramics have different physical characteristics such as specific gravity, water content, humidity, etc., and since each of the ceramics as the raw material is a fine powder having a particle size of 5 μm or less, agglomeration easily acts and the ceramics It is not very easy to mix evenly.

【0018】そこで本発明者は、表3に示すような好ま
しい混合率により前記基材と混合材および助材とを夫々
所定比率で混合機に投入して混合攪拌した後、その混合
物を粉砕機に投入して粉砕し、そして更に、前記粉砕し
たものを再び混合機に投入して混合攪拌し、その後また
粉砕機に投入して粉砕するという工程を順次約30分間
繰返すという手段を採用することにより、基材と混合材
および助材とが均一に混合された複合セラミックスを製
造することができた。
Therefore, the inventor of the present invention introduced the base material, the mixing material and the auxiliary material into the mixer at a predetermined ratio at a preferable mixing ratio as shown in Table 3, mixing and stirring the mixture, and then crushing the mixture. A method of sequentially repeating about 30 minutes, that is, the steps of charging into a crusher, crushing, and then charging the crushed material into a mixer again, mixing and stirring, and then charging into a crusher and crushing again. As a result, it was possible to manufacture a composite ceramic in which the base material, the mixed material, and the auxiliary material were uniformly mixed.

【0019】そして、前記均一に混合された複合セラミ
ックスの化学特性の安定化を図るため、複合セラミック
スを200〜500℃の仮焼温度で焼成機により焼成し
て、抗菌性、脱臭性および防虫性を有すると共に、遠赤
外線放射特性を有する複合セラミックスとするのであ
る。
In order to stabilize the chemical properties of the uniformly mixed composite ceramics, the composite ceramics are fired at a calcination temperature of 200 to 500 ° C. by a calcination machine to obtain antibacterial properties, deodorizing properties and insect repellent properties. And a far-infrared radiation characteristic.

【0020】なお、前記複合セラミックスの材料である
各セラミックスの水素イオン濃度は、表5に示すように
アルカリ性状を呈している。また、前記各セラミックス
より成る複合セラミックスも表6に示すようにアルカリ
性状を呈している。なお、表6における記号1〜4は表
3の記号1〜4と対応している。
The hydrogen ion concentration of each ceramic, which is a material of the composite ceramics, is alkaline as shown in Table 5. Also, the composite ceramics composed of each of the above ceramics has an alkaline property as shown in Table 6. Symbols 1 to 4 in Table 6 correspond to symbols 1 to 4 in Table 3.

【0021】[0021]

【表5】 [Table 5]

【0022】[0022]

【表6】 [Table 6]

【0023】表5記載の水素イオン濃度を有する各セラ
ミックスを複合した本発明に採用される複合セラミック
スの水素イオン濃度は、前記のように200℃〜500
℃で焼成されているので、表6に示すように非常に安定
してアルカリ性状を呈し、水素イオン濃度の経時変化が
ない。更に、これら複合セラミックスは仮焼によって結
晶化されて、電界エネルギー(陽イオン)を発生する機
能を有する複合セラミックスになる。前記複合セラミッ
クスがアルカリ性状を呈するのは、その焼成加工中に不
純物がガス化されるので、単一成分のセラミックスより
もアルカリ性に移行するからである。
The hydrogen ion concentration of the composite ceramics adopted in the present invention in which each ceramic having the hydrogen ion concentration shown in Table 5 is compounded is 200 ° C. to 500 ° C. as described above.
Since it is calcined at ° C., as shown in Table 6, it exhibits an extremely stable alkaline property, and the hydrogen ion concentration does not change with time. Further, these composite ceramics are crystallized by calcination to become composite ceramics having a function of generating electric field energy (cation). The reason why the composite ceramic exhibits an alkaline property is that impurities are gasified during the sintering process, so that the composite ceramic becomes more alkaline than a single component ceramic.

【0024】前記表4〜表6から前記製造方法によって
得られた複合セラミックスは、陽イオンを有する複合セ
ラミックスであり、アルカリ域の水素イオンになり、1
年以上という長時間に亘って経時変化がなく安定してい
て、脱臭機構は分解作用であるという特性を有し、その
結果前記製造方法によって得られた複合セラミックス
は、遠赤外線放射特性を有する外に、抗菌性、脱臭性お
よび防虫性を兼ね備えていることが判る。
The composite ceramics obtained by the above manufacturing method from Tables 4 to 6 are composite ceramics having cations and become hydrogen ions in the alkaline region.
It has the property that it does not change over time for a long time of more than one year and is stable, and that the deodorization mechanism is a decomposition action. In addition, it is understood that it has antibacterial properties, deodorizing properties and insect repellent properties.

【0025】一般的に生菌の表層(壁)は陰イオンであ
って、そのため中性領域(pH7.0〜7.5)でしか
生息が不可能であるが、前記製造方法によって得られた
複合化された複合セラミックスの最大の特性として陽イ
オンを発生するので、陰イオンである菌体の表層(壁)
が、前記複合セラミックスの陽イオンによって破壊され
ると同時に、菌体蛋白質が変成して、呼吸困難となり死
滅するのである。
In general, the surface layer (wall) of living bacteria is an anion, and therefore can only live in the neutral region (pH 7.0 to 7.5). The biggest characteristic of the composite ceramics is that it generates cations as the greatest property, so the surface layer (wall) of bacterial cells that are anions
However, at the same time as being destroyed by the cations of the composite ceramics, the bacterial protein is denatured to cause respiratory distress and die.

【0026】更に、硫化水素およびアンモニア等に対す
る脱臭作用は、物理的吸着または化学的吸着等の一般的
作用ではなく、分解作用のため飽和状態にならないの
で、抗菌力と同様に、脱臭力を半恒久的に有すると共
に、毒性をも有していないのである。
Furthermore, the deodorizing effect on hydrogen sulfide and ammonia is not a general effect such as physical adsorption or chemical adsorption, but does not become saturated due to the decomposing effect. It is permanent and has no toxicity.

【0027】本発明製造方法の素材となる複合セラミッ
クスの粒子の粒径は、レーヨンの生産に支障のない程度
に充分小さいことが好ましい。比較的太いレーヨンの場
合は粒径5〜15μm程度のものの利用も可能である
が、通常は0.1〜5μm程度のもの、特に0.2〜
1.5μm程度のものが好適である。逆に粒径が0.1
μm以下の場合は粒子の凝集が起り易く、不都合なこと
が多い。
The particle size of the composite ceramic particles used as the material for the production method of the present invention is preferably sufficiently small so as not to hinder the production of rayon. In the case of relatively thick rayon, those having a particle size of about 5 to 15 μm can be used.
Those having a thickness of about 1.5 μm are preferred. Conversely, the particle size is 0.1
When the particle size is less than μm, aggregation of particles is likely to occur, which is often inconvenient.

【0028】前記製造方法により製造された複合セラミ
ックスを、公知のレーヨンの製造工程中の混合工程にお
ける、ビスコースの品質を一定、均一にするため混合機
に入れて混合する混合工程において、前記混合機に好ま
しくは5〜10重量%、特に好ましくは8重量%の比率
で投入して、該複合セラミックスをビスコースに添加混
入する。
In the mixing step of mixing the composite ceramics manufactured by the above manufacturing method in a known rayon manufacturing step in order to make the quality of viscose constant and uniform, the mixing step is carried out. The composite ceramics are added to the viscose and mixed in, preferably in an amount of 5 to 10% by weight, particularly preferably 8% by weight.

【0029】または、前記複合セラミックスの混合工程
における添加混入に代えて、混合工程、濾過工程の後、
ビスコースを紡糸タンクに入れて脱泡する脱泡工程にお
いて、前記紡糸タンクに好ましくは5〜10重量%、特
に好ましくは8重量%の比率で複合セラミックスを投入
して、該複合セラミックスをビスコースに添加混入して
もよい。
Alternatively, instead of adding and mixing in the mixing step of the composite ceramics, after the mixing step and the filtration step,
In the defoaming step of putting the viscose into the spinning tank and defoaming, the composite ceramic is charged into the spinning tank at a ratio of preferably 5 to 10% by weight, particularly preferably 8% by weight. May be added.

【0030】そして、前記工程においてビスコースに複
合セラミックスを添加混入した後は、公知のレーヨン製
造工程によりレーヨンを製造する。
After adding and mixing the composite ceramics to the viscose in the above step, rayon is manufactured by a known rayon manufacturing step.

【0031】前記特に好ましい混合率によって得られた
表3の記号1〜4に示す複合セラミックスをセルロース
に添加混入して得られたレーヨンにつき、抗菌率、脱臭
率、忌避率および放射率についてテストしたところ、表
7に示す結果が得られた。
The rayon obtained by adding and mixing the composite ceramics shown in the symbols 1 to 4 of Table 3 obtained by the above particularly preferable mixing rate to cellulose was tested for antibacterial rate, deodorizing rate, repelling rate and emissivity. However, the results shown in Table 7 were obtained.

【0032】[0032]

【表7】 [Table 7]

【0033】本発明製造方法に用いられる複合セラミッ
クスは遠赤外線放射特性を有するが、混合するセラミッ
クスの種類を異にした複合セラミックスを用いて本発明
製造方法で製造したレーヨンと汎用レーヨンの遠赤外線
放射率を測定したところ、図1に示すように、本発明製
造方法に係るレーヨンの遠赤外線放射率が、波長5μm
前後より20μmにかけて80%以上と汎用レーヨンに
比して極めて高いことが判った。図中の記号1〜4は表
3の記号1〜4と対応しており、好ましい混合率により
製造された各複合セラミックスを夫々添加混入したレー
ヨンを示している。また、本発明製造方法に係る前記各
レーヨンの水素イオン濃度を測定したところ、いずれも
7.0〜7.8で中性であった。
The composite ceramics used in the manufacturing method of the present invention has far infrared radiation characteristics, but far infrared radiation of rayon and general-purpose rayon manufactured by the manufacturing method of the present invention using composite ceramics having different kinds of mixed ceramics. When the ratio was measured, as shown in FIG. 1, the far-infrared emissivity of the rayon according to the manufacturing method of the present invention was found to be 5 μm at the wavelength.
It was found to be 80% or more over 20 μm from the front and back, which was extremely higher than that of general-purpose rayon. Symbols 1 to 4 in the figure correspond to symbols 1 to 4 in Table 3, and show rayon in which the respective composite ceramics produced by the preferable mixing ratio are added and mixed. Further, when the hydrogen ion concentration of each rayon according to the production method of the present invention was measured, all were 7.0 to 7.8 and were neutral.

【0034】前記表7および図1で示すように、本発明
製造方法によって得られたレーヨンは、93〜95%の
遠赤外線放射率を有すると共に、89〜93.5%の抗
菌率、87〜95.4%の脱臭率を有し、更に衛生害虫
に対する忌避率も90〜93%と極めて高く、汎用のレ
ーヨンにはない抗菌性、脱臭性、防虫性および遠赤外線
放射特性が付与されていることが判った。
As shown in Table 7 and FIG. 1, the rayon obtained by the manufacturing method of the present invention has a far infrared ray emissivity of 93 to 95%, an antibacterial rate of 89 to 93.5%, and an antibacterial rate of 87 to 87. It has a deodorization rate of 95.4% and a repellent rate against sanitary pests as extremely high as 90 to 93%, and is provided with antibacterial properties, deodorizing properties, insect repellent properties and far-infrared radiation properties not found in general-purpose rayon. I knew that.

【0035】本発明によって得られたレーヨンは、主と
して木綿、合成繊維等を混紡して使用するが、その混紡
の比率は用途等によって異なる。そして、主なる用途は
服地、和装地、裏地、下着、肌着や毛布等である。
The rayon obtained by the present invention is mainly used by mixing cotton, synthetic fibers and the like, and the ratio of the mixed spinning varies depending on the use and the like. The main applications are clothing, kimono, lining, underwear, underwear and blankets.

【0036】前記のように遠赤外線放射率が高い本発明
製造方法に係るレーヨンを混紡した下着、肌着を着用す
ると、体温で遠赤外線の放射効率が高まり、それにより
皮膚表面温度を昇温させる効果があり、更に遠赤外線の
放射により生体水が活性化されて血流も促進されるの
で、疲労回復等の効果がある。また、本発明製造方法に
係るレーヨンはpH7.0〜7.8の中性であるため、
人体に被着する下着、肌着の素材として最適である。
When underwear or underwear mixed with the rayon according to the production method of the present invention having a high far-infrared emissivity as described above is worn, the radiation efficiency of far-infrared rays increases at body temperature, thereby increasing the skin surface temperature. Furthermore, since the biological water is activated by the radiation of far infrared rays and the blood flow is also promoted, there is an effect such as recovery from fatigue. In addition, since the rayon according to the production method of the present invention is neutral at pH 7.0 to 7.8,
Ideal as a material for underwear and underwear to be applied to the human body.

【0037】[0037]

【発明の効果】本発明製造方法の素材となる抗菌性、脱
臭性および衛生害虫に対する防虫性を有する複合セラミ
ックスが、アルカリ性状を呈し、且つ水素イオン濃度の
経時変化がなく、陽イオンを発生して一般生菌を死滅さ
せて抗菌性を有すると共に、硫化水素およびアンモニア
を分解して脱臭性をも有し、その抗菌性と脱臭性は恒久
的にその作用を有するため、本発明製造方法によって得
られたレーヨンは前記複合セラミックスにより抗菌性と
脱臭性を合わせ保有し、木綿または合成繊維と混紡する
ことにより、特に病院に於けるシーツ、ふとんカバーや
その他、布巾、靴下等に使用され、その用途は極めて広
い。また、本発明製造方法によって得られたレーヨンは
遠赤外線放射特性を有するので、該レーヨンを木綿等と
混紡した下着や肌着として利用することにより、皮膚表
面温度を昇温させると共に、血流を促進させるという効
果がある。更に、本発明製造方法によって得られたレー
ヨンはノミやダニ等の衛生害虫に対する忌避率が高く、
ダニ等の衛生害虫が寄りつかず防虫性があるという優れ
た効果を有する。
EFFECTS OF THE INVENTION A composite ceramic having antibacterial properties, deodorizing properties and insecticidal properties against sanitary pests, which is a raw material for the production method of the present invention, exhibits alkaline properties and does not change the hydrogen ion concentration with time, and generates cations. It has an antibacterial property by killing general viable bacteria, and also has a deodorizing property by decomposing hydrogen sulfide and ammonia, and its antibacterial property and deodorizing property have its effect permanently. The obtained rayon possesses both antibacterial and deodorant properties due to the above composite ceramics, and by being mixed with cotton or synthetic fiber, it is used especially in hospitals such as sheets, futon covers and other cloths, socks, etc. The use is extremely wide. Further, since the rayon obtained by the production method of the present invention has a far-infrared radiation characteristic, by using the rayon as underwear or underwear mixed with cotton or the like, the skin surface temperature is raised and the blood flow is promoted. It has the effect of making it work. Furthermore, the rayon obtained by the production method of the present invention has a high repellent rate against hygienic pests such as fleas and mites,
It has an excellent effect that hygiene pests such as mites do not come close to each other and have insect repellent properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明製造方法によって得られたレーヨンと汎
用のレーヨンの放射率を示す分布図である。
FIG. 1 is a distribution chart showing the emissivity of rayon obtained by the production method of the present invention and general-purpose rayon.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】粒径5μm以下の蛇紋石微粉末を基材とす
ると共に、該基材が20〜80重量%に対して、粒径5
μm以下の硅石の微粉末を混合材として、該混合材を1
0〜40重量%の割合で前記基材に添加混合すると共
に、更に粒径5μm以下の酸化亜鉛の微粉末を助材とし
て、該助材を10〜40重量%の割合で前記基材に添加
混合して、混合機および粉砕機に順次複数回に亘って投
入して、前記基材と混合材および助材とを混合攪拌およ
び粉砕して均一に混合し、然る後200〜500℃の仮
焼温度で焼成機により焼成して得られた複合セラミック
スを、レーヨン製造工程中の混合工程において、ビスコ
ースを投入した混合機に5〜10重量%投入するか、ま
たは脱泡工程において、ビスコースを投入した紡糸タン
クに5〜10重量%投入して、前記ビスコースに前記複
合セラミックスを添加混入することを特徴とする抗菌
性、脱臭性および防虫性を有すると共に、遠赤外線放射
特性を有するレーヨンの製造方法。
1. A serpentine fine powder having a particle size of 5 μm or less is used as a base material.
A fine powder of silica stone having a particle size of 1 μm or less is used as a mixed material.
The mixture is added to and mixed with the base material at a ratio of 0 to 40% by weight, and further the fine powder of zinc oxide having a particle size of 5 μm or less is used as an auxiliary material, and the auxiliary material is added to the base material at a ratio of 10 to 40% by weight. After mixing, the mixture is put into a mixer and a crusher several times in sequence, and the base material, the mixing material and the auxiliary material are mixed and stirred and crushed to uniformly mix, and then at 200 to 500 ° C. The composite ceramics obtained by firing at a calcining temperature at a calciner are added to a mixer having viscose added in an amount of 5 to 10% by weight in the mixing step in the rayon manufacturing process, or in the defoaming step, 5-10% by weight is added to the spinning tank containing the course, and the composite ceramics is added and mixed into the viscose, which has antibacterial properties, deodorizing properties and insect repellent properties, and far infrared radiation properties. Rayon Manufacturing method.
【請求項2】粒径5μm以下の蛇紋石微粉末を基材とす
ると共に、該基材が20〜80重量%に対して、粒径5
μm以下の硅石の微粉末を混合材として、該混合材を1
0〜40重量%の割合で前記基材に添加混合すると共
に、更に粒径5μm以下の電気石の微粉末を助材とし
て、該助材を10〜40重量%の割合で前記基材に添加
混合して、混合機および粉砕機に順次複数回に亘って投
入して、前記基材と混合材および助材とを混合攪拌およ
び粉砕して均一に混合し、然る後200〜500℃の仮
焼温度で焼成機により焼成して得られた複合セラミック
スを、レーヨン製造工程中の混合工程において、ビスコ
ースを投入した混合機に5〜10重量%投入するか、ま
たは脱泡工程において、ビスコースを投入した紡糸タン
クに5〜10重量%投入して、前記ビスコースに前記複
合セラミックスを添加混入することを特徴とする抗菌
性、脱臭性および防虫性を有すると共に、遠赤外線放射
特性を有するレーヨンの製造方法。
2. Serpentine fine powder having a particle size of 5 μm or less is used as a base material.
A fine powder of silica stone having a particle size of 1 μm or less is used as a mixed material.
Add to and mix with the base material at a ratio of 0 to 40% by weight, and further add fine powder of tourmaline having a particle size of 5 μm or less as an auxiliary material to the base material at a ratio of 10 to 40% by weight. After mixing, the mixture is put into a mixer and a crusher several times in sequence, and the base material, the mixing material and the auxiliary material are mixed and stirred and crushed to uniformly mix, and then at 200 to 500 ° C. The composite ceramics obtained by firing at a calcining temperature at a calciner are added to a mixer having viscose added in an amount of 5 to 10% by weight in the mixing step in the rayon manufacturing process, or in the defoaming step, 5-10% by weight is added to the spinning tank containing the course, and the composite ceramics is added and mixed into the viscose, which has antibacterial properties, deodorizing properties and insect repellent properties, and far infrared radiation properties. Rayon Production method.
【請求項3】粒径5μm以下の蛇紋石微粉末を基材とす
ると共に、該基材が10〜40重量%に対して、粒径5
μm以下の酸化亜鉛の微粉末を混合材として、該混合材
を10〜40重量%の割合で前記基材に添加混合すると
共に、更に粒径5μm以下のゼオライトの微粉末を助材
として、該助材を20〜80重量%の割合で前記基材に
添加混合して、混合機および粉砕機に順次複数回に亘っ
て投入して、前記基材と混合材および助材とを混合攪拌
および粉砕して均一に混合し、然る後200〜500℃
の仮焼温度で焼成機により焼成して得られた複合セラミ
ックスを、レーヨン製造工程中の混合工程において、ビ
スコースを投入した混合機に5〜10重量%投入する
か、または脱泡工程において、ビスコースを投入した紡
糸タンクに5〜10重量%投入して、前記ビスコースに
前記複合セラミックスを添加混入することを特徴とする
抗菌性、脱臭性および防虫性を有すると共に、遠赤外線
放射特性を有するレーヨンの製造方法。
3. A base material comprising a fine serpentine powder having a particle size of 5 μm or less, and a base material having a particle size of 5 to 40% by weight.
A fine powder of zinc oxide having a particle size of 5 μm or less is used as an auxiliary material, and a fine powder of zeolite having a particle size of 5 μm or less is further mixed with the base material at a ratio of 10 to 40% by weight. The auxiliary material is added to and mixed with the base material at a ratio of 20 to 80% by weight, and the mixture is put into a mixer and a pulverizer several times in order. Crush and mix uniformly, then 200-500 ° C
In the mixing step in the rayon manufacturing process, the composite ceramics obtained by firing at a calcination temperature of 5 to 10% by weight is added to the mixing machine containing viscose, or in the defoaming step, 5 to 10% by weight is added to a spinning tank containing viscose, and the composite ceramics is added and mixed into the viscose to have antibacterial properties, deodorizing properties and insect repellent properties, and far infrared radiation properties. A method for producing rayon.
【請求項4】粒径5μm以下の蛇紋石微粉末を基材とす
ると共に、該基材が10〜40重量%に対して、粒径5
μm以下の酸化亜鉛の微粉末を混合材として、該混合材
を10〜40重量%の割合で前記基材に添加混合すると
共に、更に粒径5μm以下の酸化カルシウムの微粉末を
助材として、該助材を20〜80重量%の割合で前記基
材に添加混合して、混合機および粉砕機に順次複数回に
亘って投入して、前記基材と混合材および助材とを混合
攪拌および粉砕して均一に混合し、然る後200〜50
0℃の仮焼温度で焼成機により焼成して得られた複合セ
ラミックスを、レーヨン製造工程中の混合工程におい
て、ビスコースを投入した混合機に5〜10重量%投入
するか、または脱泡工程において、ビスコースを投入し
た紡糸タンクに5〜10重量%投入して、前記ビスコー
スに前記複合セラミックスを添加混入することを特徴と
する抗菌性、脱臭性および防虫性を有すると共に、遠赤
外線放射特性を有するレーヨンの製造方法。
4. A base material comprising a fine serpentine powder having a particle size of 5 μm or less, and a base material having a particle size of 5 to 40% by weight.
A fine powder of zinc oxide having a particle size of 5 μm or less is used as a mixture, and the mixed material is added to and mixed with the base material at a ratio of 10 to 40% by weight. The auxiliary material is added to and mixed with the base material at a ratio of 20 to 80% by weight, and the mixed material and the auxiliary material are mixed and stirred with the mixer and the crusher several times sequentially. And pulverize and mix uniformly, then 200-50
In the mixing step of the rayon manufacturing process, the composite ceramics obtained by firing with a firing machine at a calcination temperature of 0 ° C. is added to a mixing machine containing viscose in an amount of 5 to 10% by weight, or a defoaming step. In 5 to 10% by weight is added to a spinning tank containing viscose, and the composite ceramics is added and mixed into the viscose, which has antibacterial properties, deodorizing properties and insect repellent properties, and far infrared radiation. A method for producing rayon having characteristics.
JP27728096A 1995-10-09 1996-09-27 Method for producing rayon having antibacterial properties, deodorizing properties and insect repellent properties and having far-infrared radiation characteristics Expired - Fee Related JP2876309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27728096A JP2876309B2 (en) 1995-10-09 1996-09-27 Method for producing rayon having antibacterial properties, deodorizing properties and insect repellent properties and having far-infrared radiation characteristics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP28640695 1995-10-09
JP7-286406 1995-10-09
JP27728096A JP2876309B2 (en) 1995-10-09 1996-09-27 Method for producing rayon having antibacterial properties, deodorizing properties and insect repellent properties and having far-infrared radiation characteristics

Publications (2)

Publication Number Publication Date
JPH09170110A true JPH09170110A (en) 1997-06-30
JP2876309B2 JP2876309B2 (en) 1999-03-31

Family

ID=26552325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27728096A Expired - Fee Related JP2876309B2 (en) 1995-10-09 1996-09-27 Method for producing rayon having antibacterial properties, deodorizing properties and insect repellent properties and having far-infrared radiation characteristics

Country Status (1)

Country Link
JP (1) JP2876309B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008003243A1 (en) * 2006-06-29 2008-01-10 Fu Jian Zhonghe Co., Ltd Calamine viscose fiber, its process for preparing and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008003243A1 (en) * 2006-06-29 2008-01-10 Fu Jian Zhonghe Co., Ltd Calamine viscose fiber, its process for preparing and application

Also Published As

Publication number Publication date
JP2876309B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
DE60117534T2 (en) COMPOSITION FOR REMOTE INFRARED RADIATION WITH EXCELLENT ANTISTATIC PROPERTIES AND FIBER AND TEXTILE PRODUCT BOTH THEREOF
WO2006118159A1 (en) Silver-based inorganic antibacterial agent and antibacterial product
KR100643047B1 (en) Method of Producting of The Biovital-water using material Radiating Far Infared and Mineral
CN106222883A (en) A kind of have the inner lining of automobile material that sterilization eliminates the unusual smell
KR20130064946A (en) Functional fabric and manufacture method thereof
JP2909028B2 (en) A method for producing a processed yarn in which a composite rayon having antibacterial properties, deodorizing properties and insect repellent properties, and far-infrared radiation properties, and mixed or twisted with a milk protein fiber are spun.
KR20010019799A (en) Magnetized versatile plastic ceramic having activation(active function) and a method of preparing powder thereof
JP2836020B2 (en) Process for producing a processed yarn in which a composite rayon and silk fiber having anti-bacterial, deodorizing, mold-proof and insect-proof properties and far-infrared radiation properties are mixed or twisted and spun.
JP2579600B2 (en) Method for producing rayon having antibacterial properties and deodorizing properties and having far-infrared radiation characteristics
JPH09170110A (en) Production of rayon having far-infrared-radiation characteristic as well as antimicrobial effect, deodorizing ability and insectproofness
JP2879024B2 (en) A method for producing rayon having far-infrared radiation properties, antibacterial properties, deodorizing properties, fungicidal properties and insect repellency, and having an antistatic effect
KR930008252B1 (en) Preparation of polypropylene filament non-woven fabric having superior antibacterial deodorant and infrared ray radial property
JP2002308665A (en) Composite material capable of generating negative ion, and fibrous product, sheetlike material and pottery using the same composite material
JPH10167803A (en) Composite ceramics having antibacterial, deodorizing, antimold and mothproof properties as well as far infrared ray radiating characteristic and its production
JPH0598564A (en) Production of fiber structure having deodorizing and antibacterial property
JPH03295848A (en) Composite ceramics having deodorizing and antibacterial ability and its manufacture
JPH1136189A (en) Japanese paper having far infrared radiation characteristic, antimicrobial, deodorizing, mildewproof and insect repellent property and further antistatic property and its production
JP2022049931A (en) Functional component-impregnated xonotlite hollow body
KR100478931B1 (en) Manufacturing method of multi-function button
JPH03215266A (en) Composite ceramics having deodorizing and antibacterial properties and its preparation
JP2822321B2 (en) Composite ceramics having anti-bacterial, deodorizing, mold-proofing and insect-proofing properties while having far-infrared radiation characteristics, and method for producing the same
JPH0598506A (en) Production of fiber having deodorizing and antimicrobial property
JP5961234B2 (en) Antibacterial deodorant, antibacterial deodorant dispersion and antibacterial deodorant chemical fiber material
JPH0977620A (en) Ultrafine particulate antimicrobial ceramic powder
KR100808127B1 (en) Firing object activating body and plant

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees