JPH09169972A - Working medium for absorption heat pump - Google Patents

Working medium for absorption heat pump

Info

Publication number
JPH09169972A
JPH09169972A JP7348644A JP34864495A JPH09169972A JP H09169972 A JPH09169972 A JP H09169972A JP 7348644 A JP7348644 A JP 7348644A JP 34864495 A JP34864495 A JP 34864495A JP H09169972 A JPH09169972 A JP H09169972A
Authority
JP
Japan
Prior art keywords
lithium
working medium
heat pump
absorption heat
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7348644A
Other languages
Japanese (ja)
Inventor
Shigeru Komukai
茂 小向
Takahito Watanabe
孝仁 渡辺
Yoshihiro Shintani
嘉弘 新谷
Kikutaro Fujikura
菊太郎 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP7348644A priority Critical patent/JPH09169972A/en
Publication of JPH09169972A publication Critical patent/JPH09169972A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a working medium for an absorption heat pump capable of eliminating occurrence and advance of corrosion of equipment for a long period of time, in an aqueous solution composition comprising lithium bromide and lithium iodide as main components, a combination of a molybdate and an alkali hydroxide as an inhibitor and a reducing agent. SOLUTION: This working medium comprises a highly concentrated aqueous solution containing lithium bromide and lithium iodide as main components, sodium hydrogensulfite as a reducing agent and a molybdate and an alkali hydroxide as inhibitors. The added amount of the alkali hydroxide is <=0.06N.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、臭化リチウムとヨ
ウ化リチウムを主成分とし、インヒビター(腐食抑制
剤)としてモリブデン酸塩及び水酸化アルカリを含有
し、且つ還元剤を含む高濃度水溶液からなる吸収式ヒー
トポンプ用作動媒体に関する。なお、本明細書中吸収式
ヒートポンプの語は、特に断わらない限り、広義の意味
すなわち得られる冷水を利用するための吸収式冷凍機
と、得られる温水を利用するための狭義の吸収式ヒート
ポンプの両方を意味するものとする。
TECHNICAL FIELD The present invention relates to a high-concentration aqueous solution containing lithium bromide and lithium iodide as main components, containing molybdate and alkali hydroxide as inhibitors (corrosion inhibitors), and containing a reducing agent. The present invention relates to a working medium for an absorption heat pump. Incidentally, the term absorption heat pump in the present specification, unless otherwise specified, in a broad sense, that is, an absorption refrigerator for utilizing cold water obtained, and an absorption heat pump in a narrow sense for utilizing obtained hot water. Both shall be meant.

【0002】[0002]

【従来の技術】吸収式ヒートポンプに使用される作動媒
体としてはこれまで種々のものが提案されてきている
が、我が国においては現実には専ら水と臭化リチウムか
らなる系(水ーLiBr系)が使用されている。
2. Description of the Related Art Various working media have been proposed so far for use in absorption heat pumps, but in Japan, a system consisting essentially of water and lithium bromide (water-LiBr system) is actually used. Is used.

【0003】水ーLiBr系の作動媒体は安定性、腐食
性、価格等に関して優れているため従来から採用されて
きたが、結晶限界に起因する性能上の限界があり、この
結晶限界が緩和されれば吸収液の濃度幅を広げること
ができ、それにより溶液の循環量が減少し、溶液ポンプ
の小型化、省電力等が図られ、また吸収器において吸
収溶液の温度を高くできることから、吸収器の小型化を
図ることができ、緩和効果が大きければ空冷の可能性も
でてくるだけでなく、温水機として使う場合により高温
の温水が得られ、さらには蒸発器の蒸発温度を低下で
きるため、冷水機としてより低温の冷水が得られ、温水
機としてはより低温の低温熱源を利用できる等の多くの
性能改善が期待できる。
The water-LiBr type working medium has been conventionally adopted because it is excellent in stability, corrosiveness, price, etc. However, there is a performance limit due to the crystal limit, and the crystal limit is relaxed. If this is possible, the concentration range of the absorbing solution can be widened, which reduces the circulating amount of the solution, downsizing the solution pump, saving power, etc. It can be downsized, and if it has a large mitigation effect, it will not only have the possibility of air cooling, but it can also obtain hot water of higher temperature when used as a water heater, and further reduce the evaporation temperature of the evaporator. Therefore, cold water having a lower temperature can be obtained as the water cooler, and many performance improvements such as the use of a low temperature heat source having a lower temperature as the water warmer can be expected.

【0004】そのため、この系について結晶限界を緩和
する試みや提案が従来からいろいろと行われてきてお
り、例えばこの系の水溶液に臭化亜鉛や塩化亜鉛を添加
することが研究され提案されているが、これらを加えた
系では溶液自体が酸性となり、きわめて強い腐食性を示
すだけではなく、10重量%程度以下の希薄溶液では水
酸化亜鉛の生成に伴う沈澱物が生じてしまう。
For this reason, various attempts and proposals for relaxing the crystal limit have been made for this system, and for example, the addition of zinc bromide or zinc chloride to the aqueous solution of this system has been studied and proposed. However, in the system to which these are added, the solution itself becomes acidic and exhibits not only extremely strong corrosiveness, but also a dilute solution of about 10% by weight or less causes a precipitate due to the formation of zinc hydroxide.

【0005】この点特公昭61ー52738号公報にお
いては、上述水と臭化リチウムとからなる系について、
臭化リチウムにヨウ化リチウムを加え、その量的割合に
つき臭化リチウムを70〜99モル%、ヨウ化リチウム
を1〜30モル%とすることにより、臭化リチウム水溶
液に比べて蒸気圧降下が大きく、また結晶化温度が低く
なり、この吸収液の使用によって吸収冷暖房機の性能向
上及び吸収液の固化などの不具合の発生を抑制すること
が可能となったというものである。
In this respect, Japanese Patent Publication No. 61-52738 discloses a system comprising water and lithium bromide as described above.
By adding lithium iodide to lithium bromide, and adjusting the quantitative ratios of lithium bromide to 70 to 99 mol% and lithium iodide to 1 to 30 mol%, the vapor pressure drop is lower than that of the lithium bromide aqueous solution. This is because the crystallization temperature is large and the crystallization temperature is low, and the use of this absorption liquid makes it possible to improve the performance of the absorption cooling / heating machine and suppress the occurrence of problems such as solidification of the absorption liquid.

【0006】また特公平5ー28749号公報において
は、発生器、凝縮器、蒸発器及び吸収器よりなる吸収冷
凍機に使用される吸収液において、臭化リチウム、ヨウ
化リチウム及び塩化リチウムが、重量比で臭化リチウム
1:ヨウ化リチウム0.1〜1.0:塩化リチウム0.
05〜0.50の割合で混合された混合物を含む吸収剤
を、冷媒としての水に溶解させた水溶液からなる吸収冷
凍機用吸収液が提案され、これにより高濃度で且つ晶析
温度の低い吸収液が提供できたとしている。
In Japanese Patent Publication No. 5-28749, lithium bromide, lithium iodide and lithium chloride are contained in an absorption liquid used in an absorption refrigerator comprising a generator, a condenser, an evaporator and an absorber. In a weight ratio, lithium bromide 1: lithium iodide 0.1 to 1.0: lithium chloride 0.
An absorption liquid for an absorption refrigerator, which is composed of an aqueous solution in which an absorbent containing a mixture mixed in a ratio of 05 to 0.50 is dissolved in water as a refrigerant, has been proposed, which has a high concentration and a low crystallization temperature. He said that he was able to provide the absorption liquid.

【0007】しかし本発明者等は、以上のような水ーL
iBr系の吸収剤の組成について、さらに詳細に模索、
探査し、厳しい操作条件下においても実用化が可能な許
容範囲の有無を含めて蒸気圧、晶析線、溶液温度等を広
範囲且つ詳しく実測し、各種観点からさらに詳細に検討
を重ねたところ、全く予想外にも、臭化リチウム、ヨウ
化リチウム及び塩化リチウムを主成分とする系について
上記両公報で設定している組成範囲とは全く別異の箇所
に吸収剤としてきわめて有効な特異な範囲があることを
見い出し、先に開発し提案したが(特願平6ー9574
9号)、これによれば結晶限界を大幅に緩和し現実の実
用にも十分耐えるものである。
However, the present inventors have found that the above water-L
Further detailed exploration of the composition of the iBr-based absorbent,
After exploring and measuring the vapor pressure, crystallization line, solution temperature, etc. extensively and in detail including the existence of a permissible range that can be put to practical use even under severe operating conditions, and further detailed examination from various viewpoints, Unexpectedly, a unique range very effective as an absorbent in a completely different place from the composition range set in the above publications for a system containing lithium bromide, lithium iodide and lithium chloride as main components. It was discovered that there was a problem, and it was developed and proposed earlier (Japanese Patent Application No. 6-9574).
No. 9), according to this, the crystal limit is greatly relaxed and it can withstand actual practical use.

【0008】吸収式ヒートポンプは基本的には発生器、
凝縮器、蒸発器及び吸収器によって構成される。これら
各機器、装置は軟鋼その他の炭素鋼系材料、銅、キュプ
ロニッケル等の銅基合金等の種々の材料で構成され、最
近ではそれら炭素鋼系材料が使えない場合の代替材料と
してステンレス鋼系の材料を用いることも検討されてい
るが、これらの材料に対する腐食の問題は、前述吸収剤
成分の晶出、沈澱物の生成の問題とともに充分に配慮さ
れなければならない。
The absorption heat pump is basically a generator,
It is composed of a condenser, an evaporator and an absorber. Each of these devices and equipment is composed of various materials such as mild steel and other carbon steel-based materials, copper-based alloys such as copper and cupro-nickel, and recently stainless steel-based materials as alternative materials when these carbon steel-based materials cannot be used. However, the problem of corrosion to these materials must be taken into consideration together with the problems of crystallization of the absorbent component and formation of precipitates.

【0009】吸収式ヒートポンプでは、順調な運転を維
持するため系全体を完全な気密状態に保つ必要があり、
このことは同時に系の防食のためにも非常に重要なこと
であるが、それでもなお水を冷媒とし、その吸収剤とし
て臭化リチウム、ヨウ化リチウム、塩化リチウム等を使
用する場合、この作動媒体は吸収式ヒートポンプを構成
する前述諸機器の主要構成材料である銅系や軟鋼等鉄系
材料に対して腐食性を有し、このため通常腐食防止用の
インヒビターの添加が必要不可欠である。
In the absorption heat pump, it is necessary to keep the entire system in a completely airtight state in order to maintain smooth operation.
This is also very important for the corrosion protection of the system at the same time, but nevertheless, when water is used as the refrigerant and lithium bromide, lithium iodide, lithium chloride, etc. are used as its absorbent, this working medium Has a corrosive property with respect to iron-based materials such as copper-based and mild steel which are the main constituent materials of the above-mentioned various devices constituting the absorption heat pump, and therefore it is usually necessary to add an inhibitor for corrosion prevention.

【0010】このインヒビターとしては例えばクロム酸
リチウム等のクロム酸塩、モリブデン酸リチウム等のモ
リブデン酸塩、タングステン酸塩、亜硝酸塩、硝酸塩、
アゾール塩、アミン類等が提案されており、また特開平
1ー174588号公報によれば、特に腐食性が強い吸
収液として「ヨウ化リチウム等を含むハロゲン化リチウ
ム塩水溶液」が指摘され、これを用いる場合の対策が検
討されている。
Examples of this inhibitor include chromates such as lithium chromate, molybdates such as lithium molybdate, tungstates, nitrites, nitrates,
Azole salts, amines and the like have been proposed, and according to JP-A-1-174588, "a lithium halide salt aqueous solution containing lithium iodide or the like" has been pointed out as an absorbent having particularly strong corrosiveness. Measures are considered when using.

【0011】この公報では、上記吸収液においては従来
のインヒビターだけでは腐食抑制効果が十分ではなかっ
たところ、この問題点をアンチモン化合物、特に三酸化
二アンチモンを添加することにより解決したというもの
である。そしてここではその添加アンチモン化合物の作
用として、遊離したハロゲンをイオンに還元させるこ
と及びハロゲンの遊離を抑制させること、添加アンチ
モン化合物が吸収機内の銅及び鋼材料の表面に吸着し、
緻密な保護皮膜を形成させ、鉄及び鋼の溶出を防ぐこと
の2点にあると指摘されている。
According to this publication, in the above absorbing solution, the conventional inhibitor alone was not sufficient for the corrosion inhibiting effect, but this problem was solved by adding an antimony compound, particularly diantimony trioxide. . And here, as the action of the added antimony compound, reducing the liberated halogen to ions and suppressing the liberation of halogen, the added antimony compound is adsorbed on the surface of the copper and steel material in the absorber,
It is pointed out that there are two points of forming a dense protective film and preventing elution of iron and steel.

【0012】このように上記公報においては「ヨウ化リ
チウム等を含むハロゲン化リチウム塩水溶液」を対象と
し、上記のような特定の化合物が腐食抑制上有効である
としている。しかし前述先に開発し提案した臭化リチウ
ムとヨウ化リチウムを主成分とする水溶液組成物、また
これに塩化リチウムを含む水溶液組成物については、こ
れまで知られているインヒビターのうちには現実に有効
なものは殆んどないことが分かった。
As described above, in the above publication, the "lithium halide salt aqueous solution containing lithium iodide or the like" is targeted, and the specific compound as described above is effective in suppressing corrosion. However, regarding the aqueous solution composition containing lithium bromide and lithium iodide as the main components, which has been developed and proposed above, and the aqueous solution composition containing lithium chloride therein, among the inhibitors known so far, actually It turns out that few are valid.

【0013】このため本発明者等は、吸収式ヒートポン
プを構成する鉄系又は銅系の金属材料の腐食を防ぐため
のインヒビターについて、例えば苛性アルカリ+クロ
ム酸塩、苛性アルカリ+硝酸塩、苛性アルカリ+三
酸化アンチモン、苛性アルカリ+有機化合物その他数
多くの組み合せについて根底から検討をしなおし、イン
ヒビターとしてモリブデン酸塩と水酸化アルカリとの組
合せという特定の場合だけが有効であることをつきと
め、先に出願している(特願平6ー234406号)。
Therefore, the inventors of the present invention have proposed, for example, caustic alkali + chromate, caustic alkali + nitrate, caustic alkali + inhibitors for inhibitors for preventing corrosion of iron-based or copper-based metallic materials constituting an absorption heat pump. We re-examined many combinations of antimony trioxide, caustic alkali + organic compounds and others, and found that the combination of molybdate and alkali hydroxide was effective only as a specific inhibitor. (Japanese Patent Application No. 6-234406).

【0014】[0014]

【発明が解決しようとする課題】上記水溶液組成物用の
インヒビターがそのように特定の組合せだけに限定され
るのは、その主成分のうちのヨウ化リチウムが他の2成
分すなわち臭化リチウム及び塩化リチウムとくらべて酸
化され易いなど性質が異なっていることに由来するもの
とも考えられるが、本発明においては、上記臭化リチウ
ムとヨウ化リチウムを主成分とし、インヒビターとして
モリブデン酸塩と水酸化アルカリとの組合せて含有し、
さらに還元剤を含む水溶液組成物において、その水酸化
アルカリによるアルカリ濃度の如何が機器腐食発生の有
無に強く影響し、特に高温で長期間にわたる機器腐食の
発生、進行をなくするためにはアルカリ濃度を所定値以
下に保持する必要があることを見い出し、本発明に到達
するに至ったものである。
The limitation of the inhibitors for the above aqueous solution compositions to such specific combinations is that lithium iodide, of the main components thereof, is the other two components, namely lithium bromide and lithium bromide. It is also considered that it originates from the fact that it has different properties such as being more easily oxidized than lithium chloride, but in the present invention, the above-mentioned lithium bromide and lithium iodide are the main components, and molybdate and hydroxide are used as inhibitors. Contains in combination with alkali,
Furthermore, in an aqueous solution composition containing a reducing agent, whether the alkali concentration due to the alkali hydroxide has a strong influence on the occurrence or non-existence of equipment corrosion. The inventors have found that it is necessary to keep the value below a predetermined value and reached the present invention.

【0015】[0015]

【課題を解決するための手段】すなわち本発明は、臭化
リチウムとヨウ化リチウムを主成分とし、インヒビター
としてモリブデン酸塩及び水酸化アルカリを含有し、且
つ還元剤を含む高濃度水溶液であって、上記水酸化アル
カリが0.06N以下の濃度で含まれることを特徴とす
る吸収式ヒートポンプ用作動媒体を提供する。
That is, the present invention provides a high-concentration aqueous solution containing lithium bromide and lithium iodide as main components, containing molybdate and alkali hydroxide as inhibitors, and containing a reducing agent. And a working medium for an absorption heat pump, characterized in that the alkali hydroxide is contained at a concentration of 0.06 N or less.

【0016】[0016]

【発明の実施の形態】上記水酸化アルカリとしては好ま
しくは水酸化リチウムが用いられる。本発明では水酸化
リチウム等の水酸化アルカリが0.06N以下の濃度で
含まれるようにすることにより220℃前後、或いはこ
れを超える作動温度おいても腐食をなくし、腐食に起因
する不凝縮ガスの発生を皆無ないしは殆んど皆無とする
ことができる。その一例として例えば水酸化リチウムが
0.02N以下の場合、250℃という高温においても
長期間にわたり腐食に起因する容器内圧力の上昇を来た
すことがない。
BEST MODE FOR CARRYING OUT THE INVENTION Lithium hydroxide is preferably used as the alkali hydroxide. In the present invention, alkali hydroxide such as lithium hydroxide is contained at a concentration of 0.06 N or less so that corrosion is eliminated even at an operating temperature of about 220 ° C. or higher, and a non-condensable gas caused by the corrosion. Can occur at all or almost none. As an example, when the lithium hydroxide content is 0.02 N or less, the internal pressure of the container does not increase due to corrosion even at a high temperature of 250 ° C. for a long period of time.

【0017】上記モリブデン酸塩については特にモリブ
デン酸リチウムが有利であり、その添加量は50PPM
を下回ると実質上効果はなく、他方その溶解度は500
PPMであることから50〜500PPMの範囲で使用
することができる。還元剤は水溶液中のヨウ素の存在を
実質上皆無とし炭素鋼、ステンレス鋼等の鉄系材料やキ
ュプロニッケル等の銅系材料の腐食を抑制する作用をす
るが、この還元剤としては亜硫酸水素ナトリウム、チオ
硫酸ナトリウム、硫黄など特に限定はないが、より好ま
しくは亜硫酸水素ナトリウムを使用することができる。
Of the above molybdates, lithium molybdate is particularly advantageous, and the addition amount thereof is 50 PPM.
Below that, there is virtually no effect, while its solubility is 500.
Since it is PPM, it can be used in the range of 50 to 500 PPM. The reducing agent acts to suppress the corrosion of iron-based materials such as carbon steel and stainless steel and copper-based materials such as cupronickel by virtually eliminating the presence of iodine in the aqueous solution, but as this reducing agent, sodium bisulfite is used. , Sodium thiosulfate, sulfur, etc. are not particularly limited, but sodium bisulfite can be used more preferably.

【0018】[0018]

【実施例】以下、本発明の実施例を説明するが、本発明
がこの実施例に限定されるものでないことは勿論であ
る。本実施例ではまずアルカリ濃度如何による容器試験
を記載し、次いですきま腐食試験を記載している。なお
容器試験においては容器内圧力の経時的変化を測定して
いるが、これは試験容器内面が腐食されると不凝縮ガス
が発生し容器内圧力が上昇するため、これを腐食の有
無、また有の場合におけるその程度の目安としたもので
ある。
EXAMPLES Examples of the present invention will be described below, but it goes without saying that the present invention is not limited to these examples. In this embodiment, the container test depending on the alkali concentration is described first, and then the crevice corrosion test is described. In the container test, changes over time in the container pressure are measured.This is because if the inner surface of the test container is corroded, non-condensable gas is generated and the pressure inside the container rises. This is a guideline for the extent of the existence.

【0019】《容器試験》容器材料としてはNSSーS
CR(日新製鋼社製:オーステナイト系ステンレス鋼)
を用い、この材料により作製した内径83mm、高さ1
80mmの円筒型の容器を準備した。一方試験液として
下記(A)〜(C)の成分及び組成を有する液をつくっ
た。これらは基本的に「69%LiBrーLiI系+5
00ppmNaHSO3 +300ppmLi2MoO4
+ xN(x規定)LiOH」からなり、これに溶解補
助剤として微量のオクチルアルコールを加え、そしてそ
れぞれLiOHの濃度xNを変えたものである。
<< Container Test >> As a container material, NSS-S
CR (manufactured by Nisshin Steel: austenitic stainless steel)
With an inner diameter of 83 mm and a height of 1
An 80 mm cylindrical container was prepared. On the other hand, a liquid having the following components (A) to (C) was prepared as a test liquid. These are basically "69% LiBr-LiI system +5
00ppm NaHSO 3 + 300ppm Li 2 MoO 4
+ XN (x normalization) LiOH ”, to which a trace amount of octyl alcohol was added as a solubilizing agent, and the concentration xN of LiOH was changed.

【0020】(A) LiBr+LiI〔LiBr/L
iI重量比=1/0.7〕:69wt% + NaHSO
3 :500ppm + Li2MoO4:300ppm +
LiOH:0.1Nの水溶液(以下試験液Aという)。 (B) LiBr+LiI〔LiBr/LiI重量比=
1/0.7〕:69wt% + NaHSO3 :500p
pm + Li2MoO4:300ppm + LiOH:
0.05Nの水溶液(以下試験液Bという)。 (C) LiBr+LiI〔LiBr/LiI重量比=
1/0.7〕:69wt% + NaHSO3 :500p
pm + Li2MoO4:300ppm + LiOH:
0.02Nの水溶液(以下試験液Cという)。
(A) LiBr + LiI [LiBr / L
iI weight ratio = 1 / 0.7]: 69 wt% + NaHSO
3 : 500 ppm + Li 2 MoO 4 : 300 ppm +
LiOH: 0.1 N aqueous solution (hereinafter referred to as test solution A). (B) LiBr + LiI [LiBr / LiI weight ratio =
1 / 0.7]: 69 wt% + NaHSO 3 : 500 p
pm + Li 2 MoO 4: 300ppm + LiOH:
A 0.05 N aqueous solution (hereinafter referred to as test solution B). (C) LiBr + LiI [LiBr / LiI weight ratio =
1 / 0.7]: 69 wt% + NaHSO 3 : 500 p
pm + Li 2 MoO 4: 300ppm + LiOH:
0.02N aqueous solution (hereinafter referred to as test solution C).

【0021】試験方法は次のとおりに行なった。上記円
筒型容器を真空にし、この各容器中にそれぞれ上記試験
液A、B、Cを500ml収容した。これら収容容器を
所定温度に保持し、一定時間毎に温度を室温に下げて内
部圧力を測定した。この内部圧力上昇の有無、またこれ
が有の場合におけるその圧力上昇の程度は不凝縮ガスの
発生量に対応するもので、圧力上昇があればその分不凝
縮ガスが発生したことが示される。図1及び図2は、試
験液A及び試験液Cについて温度をそれぞれ200℃、
230℃及び250℃に保持した場合の結果を示してい
る。
The test method was as follows. The cylindrical container was evacuated, and 500 ml of each of the test solutions A, B, and C was contained in each container. These accommodating containers were maintained at a predetermined temperature, the temperature was lowered to room temperature at regular intervals, and the internal pressure was measured. The presence / absence of this internal pressure rise, and the degree of the pressure rise in the presence thereof, correspond to the amount of non-condensable gas generated. If the pressure rises, it is indicated that the amount of non-condensable gas is generated. 1 and 2 show the test liquid A and the test liquid C at temperatures of 200 ° C. and
The result when it hold | maintained at 230 degreeC and 250 degreeC is shown.

【0022】図1から明らかなとおり、LiOHが0.
1Nである場合、保持温度200℃では800時間(h
r)経過後でも容器内圧力は僅かに上昇するのみで殆ん
ど変化はない。しかし保持温度230℃では、その容器
内圧力は緩慢ではあるが徐々に上昇し(800時間経過
後215torr)、また保持温度250℃において
は、その容器内圧力は試験開始後急速に上昇し700時
間経過後には510torrにも達している。このよう
に吸収液中LiOH濃度が0.1Nと高い場合、作動温
度200℃程度では不凝縮ガスの発生は殆んどないが、
温度230℃では不凝縮ガスが徐々に発生して行き、温
度250℃においては当初から圧力上昇を来たし、腐食
が連続して進んだことを示している。
As is clear from FIG. 1, LiOH is less than 0.
In case of 1N, 800 hours (h
Even after the passage of r), the pressure in the container slightly increases and there is almost no change. However, at a holding temperature of 230 ° C, the pressure inside the container gradually increased (215 torr after a lapse of 800 hours), and at a holding temperature of 250 ° C, the pressure inside the container rapidly increased after the start of the test for 700 hours. After that, it has reached 510 torr. Thus, when the LiOH concentration in the absorbing liquid is as high as 0.1 N, almost no non-condensable gas is generated at an operating temperature of about 200 ° C.,
At a temperature of 230 ° C., non-condensable gas is gradually generated, and at a temperature of 250 ° C., the pressure rises from the beginning, indicating that the corrosion has continued.

【0023】図2は、試験液Cすなわち液中LiOH濃
度を0.02Nとした場合の結果であるが、保持温度2
00℃及び230℃においては、共に800時間経過後
でも容器内圧力に変化はなく、このように容器内面の腐
食は完全に抑制されていることが明らかである。また温
度250℃では、600時間経過後700時間に至る間
に僅かに圧力上昇が認められただけで、600時間まで
は圧力上昇はなく、不凝縮ガスの発生は十分抑制されて
いることを示している。
FIG. 2 shows the results when the test solution C, that is, the LiOH concentration in the solution was 0.02 N.
At 00 ° C. and 230 ° C., there is no change in the internal pressure of the container even after the elapse of 800 hours, and it is clear that the corrosion of the internal surface of the container is completely suppressed in this way. At a temperature of 250 ° C., a slight pressure increase was observed after 600 hours until 700 hours, and there was no pressure increase up to 600 hours, indicating that the generation of non-condensable gas was sufficiently suppressed. ing.

【0024】さらに、図3は前記試験液A(LiOH=
0.1N)、試験液B(LiOH=0.05N)及び試
験液C(LiOH=0.02N)を使用し、上記温度条
件のうち最も過酷な温度である250℃における容器内
圧力の変化を経時的に測定したものである。図3のとお
りLiOH=0.1N(図3中 xN LiOHにおける
x=0.1)の場合には試験開始当初から容器内圧力が
上昇し、500時間経過後には450torrにも達
し、このような高温条件下での吸収液としては不適当で
あることを示している。
Further, FIG. 3 shows the test liquid A (LiOH =
0.1N), the test liquid B (LiOH = 0.05N) and the test liquid C (LiOH = 0.02N) were used to measure the change in the pressure inside the container at 250 ° C., which is the most severe temperature among the above temperature conditions. It is measured with time. As shown in FIG. 3, in the case of LiOH = 0.1N (x = 0.1 in xN LiOH in FIG. 3), the pressure inside the container increased from the beginning of the test, and reached 450 torr after 500 hours. It shows that it is not suitable as an absorbent under high temperature conditions.

【0025】これに対してLiOH=0.05N(図3
中 xN LiOHにおけるx=0.05)及びLiOH
=0.02N(図3中 xN LiOHにおけるx=0.
1)の場合には、LiOH=0.05Nの場合で400
時間経過時前後に僅かな圧力上昇の兆候は見えるが、5
00時間経過後でも共に容器内圧力に実質上変化はな
く、容器内面の腐食はほぼ完全に抑制されていることを
示している。
On the other hand, LiOH = 0.05N (see FIG.
X = 0.05) in medium xN LiOH) and LiOH
= 0.02 N (x = 0.0 in xN LiOH in FIG. 3).
In the case of 1), 400 when LiOH = 0.05N
Although there are some signs of slight pressure increase before and after the passage of time, 5
Even after the lapse of 00 hours, there was virtually no change in the pressure inside the container, indicating that the corrosion of the inner surface of the container was almost completely suppressed.

【0026】《すきま腐食試験》試験片用材料としてN
SSーSCR(日新製鋼社製、オーステナイト系ステン
レス鋼)を用意し、これをすきま試験片に加工した。図
5(a)〜(b)はそのすきま試験片の概略を示すもの
である。厚さ5mmの50mm×20mmの板(図5中
符号1)と20mm×20mm(図5中符号2)の板を
スポットの径を約5mmφでスポット溶接することによ
り(図5中符号3)、金属ー金属すきま(隙間)を有す
るスポット溶接試片を作製した。なお、本試験で試験片
をそのように「すきま」試験片としたのは、ステンレス
鋼の場合でさえ、金属間等の間隙でその間隙への通気差
等が生じて酸素濃淡電池が形成され、接合部や付着物下
部の酸素供給が不十分な箇所がアノードとなり、腐食
(すきま腐食)が進行するためである。
<Gross corrosion test> N as a material for the test piece
SS-SCR (manufactured by Nisshin Steel Co., Ltd., austenitic stainless steel) was prepared and processed into a crevice test piece. 5 (a) and 5 (b) show the outline of the clearance test piece. By spot welding a 50 mm × 20 mm plate (reference numeral 1 in FIG. 5) and a plate 20 mm × 20 mm (reference numeral 2 in FIG. 5) having a thickness of 5 mm with a spot diameter of about 5 mmφ (reference numeral 3 in FIG. 5), A spot welding specimen having a metal-metal clearance (gap) was produced. In addition, the reason why the test piece is such a "clearance" test piece in this test is that even in the case of stainless steel, an oxygen concentration battery is formed due to a difference in ventilation between the metal and the like. This is because the part where the oxygen supply is insufficient at the joint part or the lower part of the adhered substance becomes the anode and corrosion (crevice corrosion) progresses.

【0027】すきま腐食発生電位(Vcrev)を次の
ようにして測定した。テフロンライニングを施した内容
積1リットルのチタン製オートクレーブ容器を窒素脱気
した後、前記試験液C(LiOH=0.02N)を注入
し、これに上記すきま試験片を浸漬させ(液中浸漬表面
積=約10cm2 )、その容器の上部に蓋をして高純度
窒素ガスを用いて脱気した後、その内部を窒素雰囲気と
し密封状態とした。
The crevice corrosion generation potential (Vcrev) was measured as follows. After degassing a titanium autoclave container having an internal volume of 1 liter and subjected to Teflon lining with nitrogen, the test liquid C (LiOH = 0.02N) was injected, and the above-mentioned crevice test piece was dipped into the liquid (immersion surface area in liquid). = About 10 cm 2 ), the upper part of the container was capped and deaerated using high-purity nitrogen gas, and then the inside was made into a nitrogen atmosphere to be hermetically sealed.

【0028】次いで、その容器を加熱してその内部を温
度220℃とし、この状態を24時間続けた後、所定電
位に定電位保持し、電流の経時変化を測定した。評価方
法としては、以上の実験終了後のすきま試験片の状態及
び電流の経時変化により評価した。この結果試験液C中
におけるすきま腐食発生電位(Vcrev)は−150
mV(vs Ag/AgCl)とみなすことができる
(図4参照)。
Then, the vessel was heated to 220 ° C. inside, and this state was continued for 24 hours, and then the potential was kept constant at a predetermined potential, and the change in current with time was measured. As the evaluation method, the state of the clearance test piece after the above experiment and the change with time of the current were evaluated. As a result, the crevice corrosion generation potential (Vcrev) in the test liquid C was -150.
It can be regarded as mV (vs Ag / AgCl) (see FIG. 4).

【0029】自然電位(Esp)は次のようにして測定
した。上記と同じテフロンライニングを施した内容積1
リットルのチタン製オートクレーブ容器を窒素脱気した
後、前記試験液C(LiOH=0.02N)を注入し、
これに上記すきま試験片を浸漬させ(液中浸漬表面積=
約10cm2 )、その容器の上部に蓋をして高純度窒素
ガスを用いて脱気した後、その内部を窒素雰囲気とし密
封状態とした。次いでその容器を加熱してその内部を温
度220℃とし、この状態を2週間(336時間)続け
て自然電位の経時変化を測定した。図4は以上の試験結
果である。
The spontaneous potential (Esp) was measured as follows. Internal volume 1 with the same Teflon lining as above
After degassing a liter titanium autoclave container with nitrogen, the test liquid C (LiOH = 0.02N) was injected,
The above clearance test piece is dipped in this (immersion surface area in liquid =
The container was capped at about 10 cm 2 ) and degassed with high-purity nitrogen gas, and then the inside was sealed with a nitrogen atmosphere. Then, the container was heated to a temperature of 220 ° C. inside, and this state was continued for 2 weeks (336 hours) to measure the change with time in the spontaneous potential. FIG. 4 shows the above test results.

【0030】図4のとおり、自然電位は試験開始直後の
−420mV (vs Ag/AgCl)弱から経時的徐
々に貴化し、40時間経過後には−340mV (vs
Ag/AgCl)を下回り、途中幾分緩慢な上下はする
が、200時間経過後には−320mV (vs Ag/
AgCl)前後の値を維持している。すきま腐食発生電
位(Vcrev):−150mV (vs Ag/AgC
l)に対しては200時間経過後でも170mVも卑で
あり、試験液C(LiOH=0.02N)が腐食(しか
もすきま腐食)に対して優れた性能を有していることが
分かる。
As shown in FIG. 4, the self-potential gradually weakened with time from -420 mV (vs Ag / AgCl) slightly immediately after the start of the test to 340 mV (vs after 40 hours).
Ag / AgCl), and rises and falls somewhat slowly on the way, but after 200 hours, −320 mV (vs Ag /
The value before and after AgCl) is maintained. Crevice corrosion generation potential (Vcrev): -150 mV (vs Ag / AgC
It was found that 170 mV was less than 1) even after 200 hours, and the test liquid C (LiOH = 0.02N) has excellent performance against corrosion (and crevice corrosion).

【0031】[0031]

【発明の効果】以上のとおり、臭化リチウムとヨウ化リ
チウムを主成分とする高濃度水溶液であって、モリブデ
ン酸塩と水酸化アルカリとの組合せからなるインヒビタ
ーを含有し、且つ還元剤を含む吸収式ヒートポンプ用作
動媒体は、低アルカリ度すなわち水酸化アルカリ濃度が
低い領域において鉄系等の装置構成材料に対して、高温
においても長期にわたり腐食を発生することがなく、作
動吸収液としてきわめて有効に適用することができる。
As described above, a high-concentration aqueous solution containing lithium bromide and lithium iodide as main components, containing an inhibitor consisting of a combination of molybdate and alkali hydroxide, and containing a reducing agent. The working fluid for absorption heat pumps is extremely effective as a working absorbing liquid in the region of low alkalinity, that is, where the concentration of alkali hydroxide is low, does not cause corrosion for a long time even at high temperatures with respect to equipment components such as iron. Can be applied to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】SCR容器における吸収液アルカリ度0.1N
の場合における容器内圧力の経時変化を示す図。
FIG. 1 Alkalinity of absorbing solution 0.1N in SCR container
The figure which shows the time-dependent change of the pressure in a container in the case of.

【図2】SCR容器における吸収液アルカリ度0.02
Nの場合における容器内圧力の経時変化を示す図。
FIG. 2 Alkalinity of absorbing solution in SCR container 0.02
The figure which shows the time-dependent change of the pressure in a container in case of N.

【図3】SCR容器における吸収液アルカリ度0.02
N、0.05N及び0.1Nにおける容器内圧力の経時
変化を示す図。
[Fig. 3] Absorber alkalinity 0.02 in SCR container
The figure which shows the time-dependent change of the pressure in a container in N, 0.05N, and 0.1N.

【図4】LiOH=0.02Nの吸収液中におけるNS
SーSCR(SUS304鋼)の自然電位の経時変化
(温度220℃)を示す図。
FIG. 4 shows NS in an absorbing solution with LiOH = 0.02N.
The figure which shows the time-dependent change (temperature 220 degreeC) of the spontaneous potential of S-SCR (SUS304 steel).

【図5】実施例《すきま腐食試験》で使用したスポット
すきま試験片(SCRスポット溶接試片)の概略を示す
図。
FIG. 5 is a diagram showing an outline of a spot crevice test piece (SCR spot welding test piece) used in an example << crevice corrosion test >>.

【符号の説明】[Explanation of symbols]

1 SCR鋼板(大) 2 SCR鋼板(小) 3 スポット溶接部 1 SCR steel plate (large) 2 SCR steel plate (small) 3 Spot weld

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】臭化リチウムとヨウ化リチウムを主成分と
し、インヒビターとしてモリブデン酸塩及び水酸化アル
カリを含有し、且つ還元剤を含む高濃度水溶液であっ
て、上記水酸化アルカリが0.06N以下の濃度で含ま
れることを特徴とする吸収式ヒートポンプ用作動媒体。
1. A high-concentration aqueous solution containing lithium bromide and lithium iodide as main components, a molybdate and an alkali hydroxide as inhibitors, and a reducing agent, wherein the alkali hydroxide is 0.06N. A working medium for an absorption heat pump, characterized in that it is contained in the following concentration.
【請求項2】水酸化アルカリが水酸化リチウムである請
求項1記載の吸収式ヒートポンプ用作動媒体。
2. The working medium for an absorption heat pump according to claim 1, wherein the alkali hydroxide is lithium hydroxide.
【請求項3】モリブデン酸塩がモリブデン酸リチウムで
あり、その添加量が50〜500PPMである請求項1
又は2記載の吸収式ヒートポンプ用作動媒体。
3. The molybdate is lithium molybdate, and the addition amount thereof is 50 to 500 PPM.
Or the working medium for an absorption heat pump according to item 2.
【請求項4】還元剤が亜硫酸水素ナトリウムである請求
項1、2又は3記載の吸収式ヒートポンプ用作動媒体。
4. The working medium for an absorption heat pump according to claim 1, 2 or 3, wherein the reducing agent is sodium hydrogen sulfite.
JP7348644A 1995-12-19 1995-12-19 Working medium for absorption heat pump Pending JPH09169972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7348644A JPH09169972A (en) 1995-12-19 1995-12-19 Working medium for absorption heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7348644A JPH09169972A (en) 1995-12-19 1995-12-19 Working medium for absorption heat pump

Publications (1)

Publication Number Publication Date
JPH09169972A true JPH09169972A (en) 1997-06-30

Family

ID=18398392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7348644A Pending JPH09169972A (en) 1995-12-19 1995-12-19 Working medium for absorption heat pump

Country Status (1)

Country Link
JP (1) JPH09169972A (en)

Similar Documents

Publication Publication Date Title
US4912934A (en) Hermetically closed circulation type, vapor absorption refrigerator
JPS63187073A (en) Lean solution for absorption type refrigerator
JPS5956066A (en) Sealing circulation type absorption system refrigerator
JP3411939B2 (en) Aqueous composition for absorption heat pump
JPH09169972A (en) Working medium for absorption heat pump
US5783104A (en) Absorption refrigeration compositions having germanium based compounds
JP3218156B2 (en) Operating method of absorption refrigerator and absorption liquid
US6033595A (en) Corrosion inhibiting solutions and processes for refrigeration systems comprising halides of a Group Va metallic element
JP3279779B2 (en) Aqueous composition for absorption heat pump
JPH11142012A (en) Absorption refrigerating machine and absorbing liquid therefor
JPS6226357B2 (en)
JPS6029872B2 (en) absorption refrigerator
JPH07239159A (en) Absorption refrigerating machine and absorption liquid for it
JP2642647B2 (en) Absorption refrigerator
US7410596B2 (en) Corrosion inhibiting solutions for absorption systems
JP3167563B2 (en) Absorption liquid for absorption refrigerator
JPH07180925A (en) Water solution composition for absorption heat pump
JPH07286287A (en) Corrosion inhibitor for liquid absorbent of absorption heat pump and aqueous solution composition
JPS59208082A (en) Corrosion preventive method of metal of cooling water system
JP3336087B2 (en) Absorption liquid composition for absorption refrigerator
JPH07234031A (en) Corrosion inhibitor for absorption liquid of absorption type heat pump and aqueous solution composition
JPH0881675A (en) Aqueous solution composition for absorption type heat pump
JPH0762578B2 (en) Closed circulation absorption refrigerator and method for forming anticorrosion film for absorption refrigerator
JP2756521B2 (en) Absorption liquid for absorption refrigerator
JPH07278856A (en) Corrosion inhibitor for absorption liquid of absorption heat pump and aqueous solution composition