JPH09169844A - Production of polyarylene sulfide by continuous multistage polymerization - Google Patents
Production of polyarylene sulfide by continuous multistage polymerizationInfo
- Publication number
- JPH09169844A JPH09169844A JP7333235A JP33323595A JPH09169844A JP H09169844 A JPH09169844 A JP H09169844A JP 7333235 A JP7333235 A JP 7333235A JP 33323595 A JP33323595 A JP 33323595A JP H09169844 A JPH09169844 A JP H09169844A
- Authority
- JP
- Japan
- Prior art keywords
- polymerization
- phase
- polymer
- solvent
- polyarylene sulfide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ポリアリーレンス
ルフィド(PAS)の連続多段重合方法に関する。さら
に詳しくは電気、電子分野、自動車分野、耐熱性材料分
野で特に有用なポリアリーレンスルフィドを高品質で低
コストに製造する連続多段重合方法に関する。TECHNICAL FIELD The present invention relates to a continuous multi-stage polymerization method for polyarylene sulfide (PAS). More specifically, it relates to a continuous multi-stage polymerization method for producing a polyarylene sulfide which is particularly useful in the fields of electricity, electronics, automobiles, and heat resistant materials, with high quality and at low cost.
【0002】[0002]
【従来の技術】従来、ポリアリーレンスルフィド(PA
S)樹脂は、回分法により製造されていたため、重合槽
内のポリマー及び溶媒を高温下で移送する必要は無かっ
たが、近年製造効率の改善のため等から連続重合の要請
が高まっている。PASを連続重合する場合、重合反応
槽は多段で運転する必要があり、重合反応液を槽間で移
送する必要が生ずる。この種のPASの連続重合方法と
しては、たとえば、米国特許第4,056,515号、
第4,060,520号および第4,066,632号
等が開示されている。2. Description of the Related Art Conventionally, polyarylene sulfide (PA
Since the S) resin was produced by the batch method, it was not necessary to transfer the polymer and solvent in the polymerization tank at a high temperature, but in recent years, there has been an increasing demand for continuous polymerization in order to improve production efficiency. In the case of continuous polymerization of PAS, the polymerization reaction tank needs to be operated in multiple stages, and the polymerization reaction solution needs to be transferred between the tanks. As a continuous polymerization method of this kind of PAS, for example, US Pat. No. 4,056,515,
Nos. 4,060,520 and 4,066,632 are disclosed.
【0003】[0003]
【発明が解決しようとする課題】しかし、近年PASの
製造に際しては、得られるポリマーの分子量の向上を目
的として相分離剤(水、酢酸ソーダ、アルカリ金属塩
等)を用いた重合法が、数多く用いられるようになって
きた。このような相分離剤を用いた連続重合の場合、重
合反応液は重合槽中でポリマー相と溶媒相とに相分離し
た状態になり、攪拌等の剪断力の影響が及びにくい槽底
部や配管中では、ポリマー相が比重差により沈降し、重
合反応液を槽間で移送する間に、ポリマー相/溶媒相の
組成比(濃度)を一定に保てない場合が生じ、得られる
ポリマーの分子量を十分に大きくすることができないと
いう問題があった。However, in recent years, in the production of PAS, there are many polymerization methods using a phase separating agent (water, sodium acetate, alkali metal salt, etc.) for the purpose of improving the molecular weight of the obtained polymer. It has come to be used. In the case of continuous polymerization using such a phase separating agent, the polymerization reaction liquid is in a state where the polymer phase and the solvent phase are phase-separated in the polymerization tank, and the bottom of the tank or piping that is difficult to be affected by shearing force such as stirring. In some cases, the polymer phase settles due to the difference in specific gravity, and the composition ratio (concentration) of the polymer phase / solvent phase may not be kept constant during the transfer of the polymerization reaction liquid between the tanks. There was a problem that could not be made sufficiently large.
【0004】前述の3つの米国特許に記載された方法に
おいては、相分離剤を添加していないため、ポリマー相
と溶媒相は二相に分離しておらず、得られるPASの分
子量は低くならざるを得ないという問題があった。この
ように高分子量のPASを製造する場合には、相分離剤
の添加が必要不可欠であり、相分離剤を用いた連続重合
において、各重合槽間のポリマー相/溶媒相の組成比
(濃度)を一定に保ちつつ安定して移送する方法が要望
されている。In the methods described in the above-mentioned three US patents, the polymer phase and the solvent phase are not separated into two phases because a phase separating agent is not added, and the molecular weight of PAS obtained is low. There was a problem that I had no choice. Thus, when producing a high molecular weight PAS, the addition of a phase separation agent is indispensable, and in the continuous polymerization using the phase separation agent, the composition ratio (concentration of the polymer phase / solvent phase between the polymerization tanks ) Is required to be stably transferred while being kept constant.
【0005】本発明は、上述の問題に鑑みなされたもの
であり、PASの連続重合プロセスにおいて、重合槽間
のポリマーと溶媒との組成比を一定に保ちつつ、安定し
て移送する方法を確立し、分子量の高いPASの製造を
可能とするポリアリーレンスルフィドの連続多段重合方
法を提供することを目的とする。The present invention has been made in view of the above problems, and in the continuous polymerization process of PAS, a method of stably transferring the polymer while keeping the composition ratio of the polymer and the solvent between the polymerization tanks established. However, it is an object of the present invention to provide a continuous multi-stage polymerization method of polyarylene sulfide that enables the production of PAS having a high molecular weight.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、本発明によれば、多段に連結した重合槽に重合反応
液を順次移送して、ポリアリーレンスルフィドを連続重
合するポリアリーレンスルフィドの連続多段重合方法に
おいて、下記(1)〜(4)の各工程を含むことを特徴
とするポリアリーレンスルフィドの連続多段重合方法が
提供される。 (1)第一段目の重合槽の底部から、相分離させた重合
反応液のうちポリマー相を抜き出すとともに、その重合
槽の上部から溶媒相を抜き出すこと、(2)重合槽内に
おける重合反応液のポリマー相と溶媒相との組成比と同
一組成比となるように、抜き出したポリマー相と溶媒相
の全部または一部とを混合すること、(3)この混合液
を、次段の重合槽に供給すること、(4)次段以降であ
って最終段より前の重合槽についても、前記(1)〜
(3)の工程を繰り返すこと、To achieve the above object, according to the present invention, a polymerization reaction solution is sequentially transferred to a polymerization vessel connected in multiple stages to continuously polymerize polyarylene sulfide. In the multi-stage polymerization method, there is provided a continuous multi-stage polymerization method for polyarylene sulfide, which comprises the following steps (1) to (4). (1) Extracting the polymer phase from the phase-separated polymerization reaction liquid from the bottom of the first-stage polymerization tank, and extracting the solvent phase from the upper part of the polymerization tank, (2) Polymerization reaction in the polymerization tank The extracted polymer phase and all or part of the solvent phase are mixed so that the composition ratio of the liquid phase is the same as that of the polymer phase, and (3) this mixed solution is polymerized in the next step. Supplying to the tank, (4) Regarding the polymerization tank after the next stage and before the final stage, the above (1) to
Repeating the step (3),
【0007】また、その好ましい態様として、前記
(1)〜(4)の各工程で用いられる重合槽が、その底
部にポリマー相滞留部、およびその上部に溶媒相滞留部
を有するものであることを特徴とするポリアリーレンス
ルフィドの連続多段重合方法が提供される。In a preferred embodiment, the polymerization tank used in each of the steps (1) to (4) has a polymer phase retention part at the bottom and a solvent phase retention part at the top. A continuous multi-stage polymerization method of polyarylene sulfide is provided.
【0008】[0008]
【発明の実施の形態】以下、本発明の実施の形態を説明
する。本発明は、重合原料、溶媒等の仕込み、および生
成系のとり出しを含め、重合操作の全体を、多段に連結
した重合槽に重合反応液を順次移送して連続的に行う連
続多段重合方法である。すなわち、便宜上3段の場合を
説明すると、第1段目の(第1)重合槽には重合原料が
連続的に供給され、かつ生成物(ポリマー)の一部およ
び溶媒の一部が連続的に抜き出され、次段の(第2)重
合槽に移送される。第2重合槽においても、第1重合槽
と同様に生成物(ポリマー)の一部および溶媒の一部が
連続的に抜き出され、最終段の(第3)重合槽に移送さ
れる。Embodiments of the present invention will be described below. INDUSTRIAL APPLICABILITY The present invention is a continuous multistage polymerization method in which the entire polymerization operation, including the charging of polymerization raw materials, a solvent, etc., and the removal of a production system, is carried out continuously by sequentially transferring the polymerization reaction solution to a polymerization tank connected in multiple stages Is. That is, to explain the case of three stages for convenience, the polymerization raw material is continuously supplied to the first stage (first) polymerization tank, and a part of the product (polymer) and a part of the solvent are continuously supplied. And is transferred to the next (second) polymerization tank. In the second polymerization tank as well, similar to the first polymerization tank, a part of the product (polymer) and a part of the solvent are continuously extracted and transferred to the final (third) polymerization tank.
【0009】1.ポリアリーレンスルフィド(PAS)
の重合 本発明において、各重合槽で行われるPASの重合方法
については特に制限はないが、たとえば特開平7−20
7027号公報に記載された方法を好適例として挙げる
ことができる。すなわち、非プロトン性有機溶媒中に水
酸化リチウムおよび非水酸化リチウムの固体状物が含有
された混合物中に、イオウ化合物およびジハロゲン化芳
香族化合物を投入するポリアリーレンスルフィドの製造
方法であって、 a)非プロトン性有機溶媒中に水酸化リチウムおよび非
水酸化リチウムの固体状物が含有された混合物中に、液
状または気体状のイオウ化合物を投入し、水酸化リチウ
ムとイオウ化合物とを直接反応させる工程、 b)非水酸化リチウムの固体状物を分離する工程、 c)反応液の硫黄含有量を調整する工程、 d)反応液中に、ジハロゲン化芳香族化合物を投入し重
縮合させる工程、および e)副生した塩化リチウムを含む反応液をアルカリ金属
水酸化物またはアルカリ土類金属水酸化物と混合して水
酸化リチウムを生成させる工程、を含むことを特徴とす
るポリアリーレンスルフィドの製造方法を挙げることが
できる。ここで、非プロトン性有機溶媒としてN−メチ
ル−2−ピロリドン、イオウ化合物として硫化水素、お
よびジハロゲン化芳香族化合物として、パラジクロロベ
ンゼン(PDCB)を50モル%以上含むものが好まし
い。なお、重合槽中の重合反応液は、相分離剤の存在に
よりポリマー相と溶媒相とが相分離状態にあることが必
要である。すなわち、ポリマー相と溶媒相とも液相であ
り、かつ分離している状態であることが必要である。1. Polyarylene sulfide (PAS)
In the present invention, the method of polymerizing PAS carried out in each polymerization tank is not particularly limited. For example, JP-A-7-20
The method described in Japanese Patent No. 7027 can be cited as a suitable example. That is, a method for producing a polyarylene sulfide, which comprises adding a sulfur compound and a dihalogenated aromatic compound to a mixture containing a solid substance of lithium hydroxide and non-lithium hydroxide in an aprotic organic solvent, a) Injecting a liquid or gaseous sulfur compound into a mixture containing solid lithium hydroxide and non-lithium hydroxide in an aprotic organic solvent to directly react lithium hydroxide with the sulfur compound. B) separating non-lithium hydroxide solids, c) adjusting the sulfur content of the reaction solution, and d) adding a dihalogenated aromatic compound to the reaction solution to cause polycondensation. , And e) mixing a reaction solution containing by-produced lithium chloride with an alkali metal hydroxide or an alkaline earth metal hydroxide to produce lithium hydroxide. Step of, can be exemplified method for producing a polyarylene sulfide which comprises a. Here, it is preferable to use N-methyl-2-pyrrolidone as the aprotic organic solvent, hydrogen sulfide as the sulfur compound, and paradichlorobenzene (PDCB) at 50 mol% or more as the dihalogenated aromatic compound. In the polymerization reaction liquid in the polymerization tank, it is necessary that the polymer phase and the solvent phase are in a phase separated state due to the presence of the phase separation agent. That is, it is necessary that both the polymer phase and the solvent phase are liquid phases and are in a separated state.
【0010】2.本発明における各工程 本発明においては、重合槽の使用段数に特に制限はない
が、以下便宜上3段のものについて説明する。 (1)ポリマー相および溶媒相の抜き出し工程 第1重合槽から、相分離剤(水、酢酸ソーダ、アルカリ
金属塩等)の添加により相分離した重合反応液のうち、
生成物(ポリマー)を多く含んだポリマー相の一部、お
よび溶媒を多く含んだ溶媒相の一部を連続的に抜き出
す。この場合の量的な目安(指標)は、第1重合槽にお
ける反応率(モノマーの転化率)であり、換言すれば第
1重合槽での反応率(モノマーの転化率)が一定になる
ように、ポリマー相の一部および溶媒相の一部の抜き出
し量を決定する。また、第2重合槽でのポリマー相の一
部および溶媒相の一部の抜き出し量も同様で、第2重合
槽における反応率(モノマーの転化率)が一定になるよ
うにする。そして、例えば第1重合槽での反応率(モノ
マーの転化率)を95%、第2重合相での反応率(モノ
マーの転化率)を98%となるようにすることにより、
単段で重合するよりも重合槽の容量を小さくすることが
でき、かつ重合時間も短縮することができる。[0010] 2. Each step in the present invention In the present invention, the number of stages used in the polymerization tank is not particularly limited, but for convenience, three stages will be described below. (1) Extraction Step of Polymer Phase and Solvent Phase Of the polymerization reaction liquid phase-separated from the first polymerization tank by adding a phase separation agent (water, sodium acetate, alkali metal salt, etc.),
A part of the polymer phase rich in product (polymer) and a part of the solvent phase rich in solvent are continuously withdrawn. The quantitative standard (index) in this case is the reaction rate (monomer conversion rate) in the first polymerization tank, in other words, the reaction rate (monomer conversion rate) in the first polymerization tank is constant. First, the extraction amount of a part of the polymer phase and a part of the solvent phase is determined. Further, the amount of a part of the polymer phase and the amount of a part of the solvent phase extracted in the second polymerization tank are the same, and the reaction rate (conversion rate of the monomer) in the second polymerization tank is made constant. Then, for example, by setting the reaction rate (monomer conversion rate) in the first polymerization tank to 95% and the reaction rate (monomer conversion rate) in the second polymerization phase to 98%,
The capacity of the polymerization tank can be made smaller and the polymerization time can be shortened as compared with a single-stage polymerization.
【0011】ポリマー相の一部および溶媒相の一部の抜
き出し方としては、ポリマー相を重合槽の底部から、ま
た溶媒相を重合槽の上部から抜き出す。重合槽の底部の
みから抜き出すと、ポリマーを多く含んだ、いわゆるポ
リマーリッチなものが抜き出されてしまい、抜き出した
もの、即ち、次段への供給物は前段の内容とは異なった
ものになり、連続重合のバランスが崩れ、所望の即ち分
子量の高いポリマーを得ることができない。逆に、重合
槽の上部のみから抜き出した場合も溶媒を多く含んだい
わゆる溶媒リッチなものが抜き出されてしまい、同様に
バランスを保つことができず、所望のポリマーを得るこ
とができない。As a method of extracting a part of the polymer phase and a part of the solvent phase, the polymer phase is extracted from the bottom of the polymerization tank and the solvent phase is extracted from the top of the polymerization tank. If it is extracted only from the bottom of the polymerization tank, what is called a polymer-rich product that contains a large amount of polymer will be extracted, and the extracted product, that is, the feed to the next stage will be different from the contents of the previous stage. However, the balance of continuous polymerization is lost, and a desired polymer having a high molecular weight cannot be obtained. On the other hand, when the solvent is extracted only from the upper part of the polymerization tank, a so-called solvent-rich substance containing a large amount of the solvent is also extracted, and similarly, the balance cannot be maintained and the desired polymer cannot be obtained.
【0012】(2)ポリマー相および溶媒相の混合工程 前記工程(1)で、重合槽の底部からポリマーリッチな
ものを抜き出し、重合槽の上部から溶媒リッチなものを
それぞれ別々に抜き出した後に、第1重合槽における重
合反応液の組成と同一組成になるように両者を混合す
る。この場合、重合槽の底部から抜き出したポリマーリ
ッチなものは全量用い、重合槽の上部から抜き出した溶
媒リッチなものは全部または一部を用いるが、新たな溶
媒を加えてもよい。(2) Mixing Step of Polymer Phase and Solvent Phase In the step (1), the polymer-rich material is extracted from the bottom of the polymerization tank, and the solvent-rich material is extracted from the upper portion of the polymerization tank separately, Both are mixed so that the composition is the same as the composition of the polymerization reaction liquid in the first polymerization tank. In this case, all the polymer-rich ones extracted from the bottom of the polymerization tank are used, and all the solvent-rich ones extracted from the top of the polymerization tank are used, but a new solvent may be added.
【0013】(3)混合液の供給工程 前記工程(2)で得られたポリマーリッチ液と溶媒リッ
チ液とを供給する方法については特に制限はないが、た
とえば、第2重合槽に供給する手前で配管中で混合して
もよいし、ポリマーリッチ相と溶媒リッチ相とを別々に
第2重合槽に供給し、第2重合槽内で混合してもよい。(3) Mixing Liquid Supplying Step The method of supplying the polymer-rich liquid and the solvent-rich liquid obtained in the step (2) is not particularly limited, but, for example, before supplying to the second polymerization tank. Alternatively, the polymer-rich phase and the solvent-rich phase may be separately supplied to the second polymerization tank and mixed in the second polymerization tank.
【0014】なお、第2重合槽から第3重合槽への供給
についても、第1重合槽から第2重合槽への前記(1)
〜(3)の工程と同様にすることができる。Regarding the supply from the second polymerization tank to the third polymerization tank, the above (1) from the first polymerization tank to the second polymerization tank is also performed.
It can be performed in the same manner as the steps (3) to (3).
【0015】3.重合槽の構成例 本発明に用いられる重合槽としては、特に制限はない
が、上記工程(1)における抜き出しを効率よく行うた
めには、図1に示すように、攪拌翼2を備え、底部にポ
リマー相滞留部3、上部に溶媒相滞留部4を有する構造
をもった重合槽1を用いるのが好ましい。この溶媒相滞
留部4の具体例としては、溶媒だけをあふれさせる構造
のセキを挙げることができる。このような構造とするこ
とによって、ポリマー相滞留部3からはポリマーリッチ
なポリマー相5を、また、溶媒相滞留部からは溶媒リッ
チな溶媒相6をぞれぞれ抜き出すことができる。なお、
重合槽(1)中のPAS(ポリマー)は、溶媒相6の中
で液相のポリマー滴7として分散している。3. Configuration Example of Polymerization Tank The polymerization tank used in the present invention is not particularly limited, but in order to efficiently perform the withdrawal in the above step (1), as shown in FIG. 1, a stirring blade 2 is provided and a bottom portion is provided. It is preferable to use the polymerization tank 1 having a structure having a polymer phase retention part 3 and a solvent phase retention part 4 at the top. As a specific example of the solvent phase retention section 4, there can be mentioned a cough having a structure in which only the solvent overflows. With such a structure, the polymer-rich polymer phase 5 can be extracted from the polymer phase retention part 3 and the solvent-rich solvent phase 6 can be extracted from the solvent phase retention part, respectively. In addition,
PAS (polymer) in the polymerization tank (1) is dispersed in the solvent phase 6 as polymer droplets 7 in the liquid phase.
【0016】[0016]
【実施例】以下、本発明を実施例によって具体的に説明
する。 <PASの合成> 1.硫化リチウムの合成 攪拌翼のついた10リットルオートクレーブにN−メチ
ル−2−ピロリドン3326.4g(33.6mol)
及び水酸化リチウム287.4g(12mol)を仕込
み、攪拌回転数300rpmで130℃に昇温する。昇
温後、液中に硫化水素を3リットル/min.の供給速
度で2時間吹き込み、水硫化リチウムを合成した。引き
続いて、この反応液を窒素気流下(200ml/mi
n.)昇温し、反応した硫化水素の一部を脱硫化水素し
た。昇温するにつれ、水硫化リチウム合成に伴い副生す
る水が蒸発を開始した。この副生水はコンデンサーによ
り凝縮し系外に抜き出した。水を系外に留去するととも
に反応液の温度は上昇したが、180℃に達した時点で
昇温を停止し、一定温度に保持した。保持時間2時間で
硫化リチウム合成を終了し、冷却した。反応後には硫化
リチウムが固体として溶媒中に析出した状態にあった。
このスラリー液を攪拌しながらサンプリングし、硫黄濃
度とリチウム濃度を以下の方法で測定した。硫黄濃度は
ヨードメトリー(サンプル液に希塩酸を加えた後、過剰
のヨード溶液を加え反応させ、過剰分のヨード溶液をチ
オ硫酸ナトリウム標準溶液で逆滴定する)法により分析
し、またリチウム濃度はイオンクロマトグラフにより分
析した。分析結果はS/Li=0.498mol ra
tioであった。The present invention will be specifically described below with reference to examples. <Synthesis of PAS> 1. Synthesis of lithium sulfide N-methyl-2-pyrrolidone 3326.4 g (33.6 mol) was placed in a 10 liter autoclave equipped with a stirring blade.
And 287.4 g (12 mol) of lithium hydroxide are charged, and the temperature is raised to 130 ° C. at a stirring rotation speed of 300 rpm. After the temperature was raised, hydrogen sulfide was added to the liquid at 3 liter / min. Was blown for 2 hours to synthesize lithium hydrosulfide. Subsequently, the reaction solution was placed under a nitrogen stream (200 ml / mi).
n. ) The temperature was raised and a part of the reacted hydrogen sulfide was desulfurized. As the temperature increased, the water by-produced with the synthesis of lithium hydrosulfide started to evaporate. This by-product water was condensed by the condenser and extracted outside the system. Although the temperature of the reaction liquid increased as water was distilled out of the system, the temperature rise was stopped at 180 ° C. and the temperature was kept constant. Lithium sulfide synthesis was completed with a holding time of 2 hours, and the mixture was cooled. After the reaction, lithium sulfide was in the state of being precipitated as a solid in the solvent.
The slurry liquid was sampled while stirring, and the sulfur concentration and the lithium concentration were measured by the following methods. Sulfur concentration was analyzed by iodometry (after adding dilute hydrochloric acid to the sample solution, reacting by adding excess iodine solution and back titrating the excess iodine solution with sodium thiosulfate standard solution). It was analyzed by chromatography. The analysis result is S / Li = 0.498 mol ra
It was tio.
【0017】2.予備重合 引き続き、このオートクレーブにパラジクロロベンゼン
(PDCB)882.0g(6mol)を仕込み、22
0℃まで昇温し、2時間予備重合を行った。予備重合終
了後に反応液を冷却し、得られたポリマーの一部をサン
プリングし、水及びアセトンで順次洗浄し、乾燥を行う
ことによりポリアリーレンスルフィドを得た。このポリ
アリーレンスルフィドをα−クロルナフタレンに0.4
g/dlの濃度になるように溶解し、206℃の温度で
ウベローデ粘度計を使用して粘度測定を行った。その結
果、このポリアリーレンスルフィドの固有粘度
(ηinh )は0.09であった。2. Prepolymerization Subsequently, 882.0 g (6 mol) of paradichlorobenzene (PDCB) was charged into this autoclave, and 22
The temperature was raised to 0 ° C. and prepolymerization was performed for 2 hours. After the completion of the prepolymerization, the reaction solution was cooled, a part of the obtained polymer was sampled, washed with water and acetone successively, and dried to obtain a polyarylene sulfide. 0.4% of this polyarylene sulfide to α-chlornaphthalene
It melt | dissolved so that it might become the density | concentration of g / dl, and the viscosity was measured using the Ubbelohde viscometer at the temperature of 206 degreeC. As a result, the intrinsic viscosity (η inh ) of this polyarylene sulfide was 0.09.
【0018】<実施例>上記10リットルオートクレー
ブの底部液抜き出しラインにモーノポンプ(兵神装備社
製 4NE04H2)を接続し、吐出を、1リットルオ
ートクレーブに接続した。1リットルオートクレーブへ
の予備重合液の供給方法はモーノポンプの吐出圧力と1
リットルオートクレーブ圧力のΔPを観察しながら、モ
ーノポンプの回転数を調整することにより制御した。1
リットルオートクレーブ内での平均滞留時間が3時間を
目標に2.8ml/min.の供給量で供給した。1リ
ットルオートクレーブは攪拌回転数400rpm、内温
260℃で制御した。1リットルオートクレーブの槽底
部には液抜出しラインが設置されており、また上部抜き
出し用に上部から内径4mmφの上部液抜き出しライン
をオートクレーブ内に挿入してあり、それぞれのライン
は、リボンヒータで260℃に保温してある。1リット
ルオートクレーブからの抜き出しは反応圧力を利用し
て、底部液抜き出しラインに設置されているニードルバ
ルブの開度を調整することにより行なった。1リットル
オートクレーブへの供給量は2.8ml/min.で制
御し、1リットルオートクレーブの底部液抜き出しライ
ンから0.7ml/min.上部液抜き出しラインから
2.1ml/min.を目標に抜き出しを行った。この
結果、得られたポリアリーレンスルフィドの固有粘度は
0.22であった。これは、上部及び下部からそれぞれ
溶媒及びポリマーを連続的に抜き出すことにより、重合
槽内のポリマー濃度を常に安定して保つことが可能とな
ったため、ポリマーの分子量向上が達成されたと考えら
れる。<Example> A MONO pump (4NE04H2 manufactured by Hyojin Equipment Co., Ltd.) was connected to the bottom liquid extraction line of the 10 liter autoclave, and the discharge was connected to a 1 liter autoclave. The method of supplying the prepolymerization liquid to the 1 liter autoclave is as follows:
It was controlled by adjusting the rotation speed of the mono pump while observing the ΔP of the pressure of the liter autoclave. 1
Aiming for an average residence time of 3 hours in a liter autoclave of 2.8 ml / min. It was supplied at a supply amount of. The 1-liter autoclave was controlled at a stirring speed of 400 rpm and an internal temperature of 260 ° C. A liquid extraction line is installed at the bottom of the tank of a 1 liter autoclave, and an upper liquid extraction line with an inner diameter of 4 mmφ is inserted into the autoclave from the top for extracting the upper part, and each line is a ribbon heater at 260 ° C. It is kept warm. The withdrawal from the 1-liter autoclave was performed by utilizing the reaction pressure and adjusting the opening degree of the needle valve installed in the bottom liquid withdrawal line. The supply amount to the 1 liter autoclave was 2.8 ml / min. Controlled at 0.7 ml / min. From the bottom liquid extraction line of the 1 liter autoclave. 2.1 ml / min. From the upper liquid extraction line. It was extracted with the goal. As a result, the intrinsic viscosity of the obtained polyarylene sulfide was 0.22. This is considered to be because the polymer concentration in the polymerization tank could always be kept stable by continuously extracting the solvent and the polymer from the upper part and the lower part, respectively, so that the molecular weight of the polymer was improved.
【0019】<比較例1><実施例>と同じ連続重合装
置を用い、1リットルオートクレーブからの抜き出し
を、前記底部液抜き出しラインの一箇所のみから実施し
た。抜き出し量が2.8ml/min.の微量流量の場
合、抜き出し液中のポリマー組成が供給液組成(200
gPAS/1NMP)と等しくならず、ポリマー濃度が
高い値400〜500gPAS/1NMPとなってしま
った。このとき得られたポリアリーレンスルフィドの固
有粘度は0.11であった。これは抜き出し配管中でポ
リマーの沈殿が生じ、重合反応液組成の安定した抜き出
しができず、結果としてポリマーのみ抜き出されてしま
い、ポリマーの滞留時間の不足が生じたためと考えられ
る。<Comparative Example 1> Using the same continuous polymerization apparatus as in <Example>, extraction from a 1 liter autoclave was carried out from only one location of the bottom liquid extraction line. Withdrawal rate is 2.8 ml / min. When the flow rate is very small, the polymer composition in the withdrawal solution is
gPAS / 1NMP) and the polymer concentration becomes a high value of 400 to 500 gPAS / 1NMP. The intrinsic viscosity of the polyarylene sulfide obtained at this time was 0.11. It is considered that this is because the precipitation of the polymer occurred in the extraction pipe, the composition of the polymerization reaction liquid could not be stably extracted, and as a result, only the polymer was extracted and the residence time of the polymer was insufficient.
【0020】<比較例2>上記連続重合装置と同じ実験
装置で行ったが、1リットルオートクレーブからの抜き
出しをオートクレーブ上部より挿入した内径4mmφの
スレンレスラインに設置したニードルバルブによって実
施した。抜き出し量が2.8ml/min.の微量流量
では、今度は逆に溶媒のみしか抜き出させなかった。5
時間の連続運転後にオートクレーブ内に残ったポリアリ
ーレンスルフィドの固有粘度は0.12であった。これ
は、上部からの抜き出しではポリマー相の抜き出しがで
きず、反応槽内のポリマー濃度が次第に高くなり、分子
量が上らなくなったものと考えられる。Comparative Example 2 The same experimental apparatus as the above continuous polymerization apparatus was used, but the extraction from the 1 liter autoclave was carried out by a needle valve installed in a threadless line having an inner diameter of 4 mmφ inserted from the top of the autoclave. Withdrawal rate is 2.8 ml / min. At the minute flow rate of, only the solvent was extracted this time. 5
The intrinsic viscosity of the polyarylene sulfide remaining in the autoclave after continuous operation for 1 hour was 0.12. It is considered that this is because the polymer phase could not be extracted by extracting from the upper part, the polymer concentration in the reaction vessel gradually increased, and the molecular weight did not rise.
【0021】[0021]
【発明の効果】以上説明したように、本発明によって、
各重合槽内でのポリマー/溶媒比を正確に制御すること
が可能となり、分子量が高くかつ安価なPASを提供す
ることができる。As described above, according to the present invention,
It is possible to accurately control the polymer / solvent ratio in each polymerization tank, and it is possible to provide an inexpensive PAS having a high molecular weight.
【図1】本発明に用いられる重合槽の一構成例を模式的
に示す説明図である。FIG. 1 is an explanatory view schematically showing one configuration example of a polymerization tank used in the present invention.
1 重合槽 2 攪拌翼 3 ポリマー相滞留部 4 溶媒相滞留部 5 ポリマー相 6 溶媒相 7 ポリマー滴(液相) 1 Polymerization Tank 2 Stirring Blade 3 Polymer Phase Retaining Part 4 Solvent Phase Retaining Part 5 Polymer Phase 6 Solvent Phase 7 Polymer Drop (Liquid Phase)
Claims (2)
次移送して、ポリアリーレンスルフィドを連続重合する
ポリアリーレンスルフィドの連続多段重合方法におい
て、下記(1)〜(4)の各工程を含むことを特徴とす
るポリアリーレンスルフィドの連続多段重合方法。 (1)第一段目の重合槽の底部から、相分離させた重合
反応液のうちポリマー相を抜き出すとともに、その重合
槽の上部から溶媒相を抜き出すこと。 (2)重合槽内における重合反応液のポリマー相と溶媒
相との組成比と同一組成比となるように、抜き出したポ
リマー相と溶媒相の全部または一部とを混合すること。 (3)この混合液を、次段の重合槽に供給すること。 (4)次段以降であって最終段より前の重合槽について
も、前記(1)〜(3)の工程を繰り返すこと。1. A continuous multi-stage polymerization method of polyarylene sulfide in which a polymerization reaction solution is sequentially transferred to a polymerization tank connected in multiple stages to continuously polymerize polyarylene sulfide, and each of the following steps (1) to (4) is performed. A method of continuous multi-stage polymerization of polyarylene sulfide, which comprises: (1) Withdrawing the polymer phase of the phase-separated polymerization reaction liquid from the bottom of the first-stage polymerization tank and the solvent phase from the top of the polymerization tank. (2) Mixing the extracted polymer phase and all or part of the solvent phase so that the composition ratio is the same as the composition ratio of the polymer phase and the solvent phase of the polymerization reaction liquid in the polymerization tank. (3) Supply this mixed solution to the next polymerization tank. (4) Repeat the above steps (1) to (3) for the polymerization tanks after the next stage but before the final stage.
る重合槽が、その底部にポリマー相滞留部、およびその
上部に溶媒相滞留部を有するものであることを特徴とす
る請求項1記載のポリアリーレンスルフィドの連続多段
重合方法。2. The polymerization tank used in each of the steps (1) to (4) is characterized by having a polymer phase retention part at the bottom and a solvent phase retention part at the top. Item 2. A continuous multistage polymerization method for polyarylene sulfide according to Item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7333235A JPH09169844A (en) | 1995-12-21 | 1995-12-21 | Production of polyarylene sulfide by continuous multistage polymerization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7333235A JPH09169844A (en) | 1995-12-21 | 1995-12-21 | Production of polyarylene sulfide by continuous multistage polymerization |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09169844A true JPH09169844A (en) | 1997-06-30 |
Family
ID=18263841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7333235A Pending JPH09169844A (en) | 1995-12-21 | 1995-12-21 | Production of polyarylene sulfide by continuous multistage polymerization |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09169844A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002265603A (en) * | 2001-03-12 | 2002-09-18 | Idemitsu Petrochem Co Ltd | Method for producing polyaryrene sulfide |
JP2002293939A (en) * | 2001-03-30 | 2002-10-09 | Petroleum Energy Center | Method for polyarylene sulfide production |
JP2002293938A (en) * | 2001-03-30 | 2002-10-09 | Petroleum Energy Center | Method for continuous production of polyarylene sulfide |
JP2002308987A (en) * | 2001-04-10 | 2002-10-23 | Idemitsu Petrochem Co Ltd | Method and apparatus for producing polyarylene sulfide |
WO2004031262A1 (en) * | 2002-10-04 | 2004-04-15 | Idemitsu Kosan Co., Ltd. | Process for the production of polyarylene sulfide |
US7060785B2 (en) | 2002-05-08 | 2006-06-13 | Idemitsu Kosan Co., Ltd. | Process for continuous production of branched polyarylene sulfides |
WO2017179327A1 (en) * | 2016-04-13 | 2017-10-19 | 株式会社クレハ | Device for continuously producing poly(arylene sulfide) and process for continuously producing poly(arylene sulfide) |
US10807062B2 (en) | 2017-10-12 | 2020-10-20 | Kureha Corporation | Continuous production apparatus and continuous production method for polymer |
-
1995
- 1995-12-21 JP JP7333235A patent/JPH09169844A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002072650A1 (en) * | 2001-03-12 | 2002-09-19 | Idemitsu Petrochemical Co., Ltd. | Process for producing polyarylene sulfide |
JP2002265603A (en) * | 2001-03-12 | 2002-09-18 | Idemitsu Petrochem Co Ltd | Method for producing polyaryrene sulfide |
US6982312B2 (en) | 2001-03-12 | 2006-01-03 | Idemitsu Kosan Co., Ltd. | Process for producing polyarylene sulfide |
JP2002293939A (en) * | 2001-03-30 | 2002-10-09 | Petroleum Energy Center | Method for polyarylene sulfide production |
JP2002293938A (en) * | 2001-03-30 | 2002-10-09 | Petroleum Energy Center | Method for continuous production of polyarylene sulfide |
WO2002081548A1 (en) * | 2001-03-30 | 2002-10-17 | Petroleum Energy Center, A Juridical Incorporated Foundation | Process for producing polyarylene sulfide |
JP2002308987A (en) * | 2001-04-10 | 2002-10-23 | Idemitsu Petrochem Co Ltd | Method and apparatus for producing polyarylene sulfide |
US7060785B2 (en) | 2002-05-08 | 2006-06-13 | Idemitsu Kosan Co., Ltd. | Process for continuous production of branched polyarylene sulfides |
WO2004031262A1 (en) * | 2002-10-04 | 2004-04-15 | Idemitsu Kosan Co., Ltd. | Process for the production of polyarylene sulfide |
WO2017179327A1 (en) * | 2016-04-13 | 2017-10-19 | 株式会社クレハ | Device for continuously producing poly(arylene sulfide) and process for continuously producing poly(arylene sulfide) |
JPWO2017179327A1 (en) * | 2016-04-13 | 2018-10-18 | 株式会社クレハ | Continuous production apparatus for polyarylene sulfide and continuous production method for polyarylene sulfide |
US10538629B2 (en) | 2016-04-13 | 2020-01-21 | Kureha Corporation | Device for continuously producing poly(arylene sulfide) and method for continuously producing poly(arylene sulfide) |
US10807062B2 (en) | 2017-10-12 | 2020-10-20 | Kureha Corporation | Continuous production apparatus and continuous production method for polymer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6452890B2 (en) | Continuous production apparatus for polyarylene sulfide and continuous production method for polyarylene sulfide | |
JP5731196B2 (en) | Process for producing polyarylene sulfide having a reduced content of terminal halogen groups | |
US5635587A (en) | Process for manufacturing polyarylene sulfide | |
US6982312B2 (en) | Process for producing polyarylene sulfide | |
JP6473277B2 (en) | Method for producing polyarylene sulfide and continuous production apparatus for polyarylene sulfide | |
JP6479283B2 (en) | Process for producing polyarylene sulfide | |
JPH09169844A (en) | Production of polyarylene sulfide by continuous multistage polymerization | |
JPWO2004060973A1 (en) | Method for producing polyarylene sulfide, method for washing, and method for purifying organic solvent used for washing | |
JP3490195B2 (en) | Method for producing polyarylene sulfide | |
WO2004031262A1 (en) | Process for the production of polyarylene sulfide | |
US20050171332A1 (en) | Method and apparatus for purifying polyarylene sulfide | |
WO2018159221A1 (en) | Production method for polyarylene sulfide | |
JP3699777B2 (en) | Process for producing polyarylene sulfide | |
JP3831052B2 (en) | Continuous production method of polyarylene sulfide | |
JP3872846B2 (en) | Method for producing lithium sulfide and method for producing polyarylene sulfide | |
US9670323B2 (en) | Method for separating volatile substances from material mixtures and device for producing polyarylene sulfides | |
JP2002293515A (en) | Production method of lithium hydrosulfide | |
JPH09169843A (en) | Production of polyarylene sulfide | |
JP3528865B2 (en) | Method for producing polyarylene sulfide | |
JP3490137B2 (en) | Method for producing polyarylene sulfide | |
WO2003095527A1 (en) | Process for continuous production of branched polyarylene sulfides | |
JP3299378B2 (en) | Method for producing polyarylene sulfide | |
JPH09278886A (en) | Production of polyarylene sulfide | |
JP2002308987A (en) | Method and apparatus for producing polyarylene sulfide | |
JP2002265602A (en) | Method for producing polyaryrene sulfide having stable quality |