JPH09169548A - Heat resistant porous glass fiber - Google Patents

Heat resistant porous glass fiber

Info

Publication number
JPH09169548A
JPH09169548A JP7348209A JP34820995A JPH09169548A JP H09169548 A JPH09169548 A JP H09169548A JP 7348209 A JP7348209 A JP 7348209A JP 34820995 A JP34820995 A JP 34820995A JP H09169548 A JPH09169548 A JP H09169548A
Authority
JP
Japan
Prior art keywords
glass fiber
acid
fiber
glass fibers
porous glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7348209A
Other languages
Japanese (ja)
Inventor
Shinichi Tamura
進一 田邨
Masahiro Mori
政博 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP7348209A priority Critical patent/JPH09169548A/en
Publication of JPH09169548A publication Critical patent/JPH09169548A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/66Chemical treatment, e.g. leaching, acid or alkali treatment
    • C03C25/68Chemical treatment, e.g. leaching, acid or alkali treatment by etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Filtering Materials (AREA)
  • Drying Of Gases (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the above porous glass fibers less liable to the reduction of the strength at a low production cost in a short acid treatment time without requiring reheating for phase separation by adding a TiO2 -base component to the compsn. of borosilicate glass fibers. SOLUTION: A component readily soluble in an acid in glass fibers is leached out to produce the objective porous glass fibers contg. at least 90.0-98.0wt.% SiO2 and 0.5-3.0wt.% TiO2 . The specific surface area of the porous glass fibers is preferably 150-500m<2> /g. When the strength of the porous glass fibers is not satisfactory or the fibers are applied to a use requiring heat resistance at >=650 deg.C, the fibers are further heated at 600-800 deg.C. The compsn. of the glass fibers as starting material consists, e.g. of, by weight, 50-60% SiO2 , 10-20% Al2 O3 , 20-30% B2 O3 , 0.5-5% CaO, 0-4% MgO, 0-0.5% Li2 O+Na2 O+K2 O, 0.5-5% TiO2 and 0-0.3% Li2 O.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はガラス繊維を酸処理
することにより得られる、多孔質ガラス繊維あるいは、
この多孔質ガラス繊維を更に加熱して得られた耐熱性ガ
ラス繊維に関する。
TECHNICAL FIELD The present invention relates to a porous glass fiber obtained by treating glass fiber with an acid, or
The present invention relates to a heat resistant glass fiber obtained by further heating this porous glass fiber.

【0002】[0002]

【従来の技術】ガラス繊維を酸処理することにより酸可
溶成分を溶出し、SiO2 成分の多い多孔質繊維として
乾燥したものは、除湿剤あるいは悪臭の脱臭素材として
フィルタ−に用いられたり、イオン交換体、イオン分離
体、吸着材、ガス−液体の分離体及び触媒等に使用する
ことが出来る。この多孔質繊維及びこの多孔質繊維を必
要に応じ更に高温で加熱して繊維の抗張力を増加させた
シリカ成分の多い繊維は、ミルドファイバ−、チョップ
ドファイバ−、紙、フェルト、ヤ−ン、ロ−ビングヤ−
ン、クロス等の形態にして使用することが可能である。
2. Description of the Related Art Acid-soluble components are dissolved out by treating glass fibers with an acid and dried as porous fibers having a large amount of SiO 2 components, which are used as a dehumidifying agent or a deodorizing material for bad odors in filters, It can be used as an ion exchanger, an ion separator, an adsorbent, a gas-liquid separator and a catalyst. The porous fiber and the fiber containing a large amount of silica component, which is obtained by further heating the porous fiber at a higher temperature to increase the tensile strength of the fiber, are milled fiber, chopped fiber, paper, felt, yarn, and roll. -Bingya-
It can be used in the form of a cloth, cloth or the like.

【0003】ミルドファイバ−、チョップドファイバ−
は摩擦材、紙は耐熱、耐炎被覆材、フェルトは断熱材、
ヤ−ンは織物、ロ−ビングヤ−ンはグランドパッキン、
ガラスクロスは、耐熱性ガラスクロスとして、耐熱性を
要求される保温材、断熱材、吸音材としてあるいはそれ
らの表面材として使用することが出来る。これらの用途
に使用する多孔質ガラス繊維を製造する方法及びガラス
繊維組成が特公昭44−2072号公報、特開昭49−
94928号公報、特開昭49−126927号公報に
開示されている。しかし、これらの酸処理の可能なガラ
スは長繊維のガラス繊維を長時間安定に紡糸すること、
酸溶出にかかる時間を短縮すること、繊維の機械的強度
の低下を少なくさせることなどの点でさまざまな問題が
あった。それらの問題を解決するために、特開平2−1
96035号公報、に開示されているような分相ガラス
を使用した多孔質ガラス繊維の製造方法はたしかに優れ
た方法である。
Milled fiber, chopped fiber
Is friction material, paper is heat resistant, flame resistant coating, felt is heat insulating material,
The yarn is woven, the roving yarn is gland packing,
The glass cloth can be used as a heat resistant glass cloth, as a heat insulating material, a heat insulating material, a sound absorbing material required to have heat resistance, or as a surface material thereof. A method for producing a porous glass fiber used for these purposes and a glass fiber composition are disclosed in JP-B-44-2072 and JP-A-49-
It is disclosed in Japanese Patent Publication No. 94928 and Japanese Patent Laid-Open Publication No. 49-126927. However, these acid-treatable glasses are capable of stably spinning long glass fibers for a long time,
There have been various problems in terms of shortening the time required for acid elution and reducing the decrease in mechanical strength of the fiber. In order to solve these problems, Japanese Patent Laid-Open No. 2-1
The method for producing a porous glass fiber using a phase-separated glass as disclosed in Japanese Patent Publication No. 96035 is certainly an excellent method.

【0004】その内容は紡糸しやすい分相するホウ酸系
組成のガラス、例えばNa2 O−B2 3 −SiO2
ガラスを溶融し、公知の方法で繊維に成形した後、高温
度で加熱処理を施し酸に可溶なNa2 O−B2 3 相と
難溶なSiO2 の相に分相させ、加熱酸処理により酸に
可溶な部分を溶出する。この処理によりSiO2 相はほ
とんど溶けずに元の形状を保ったまま残留して3次元網
目構造を形成し、SiO2 を主成分とした多孔質ガラス
繊維が得られる。しかし繊維化したガラス繊維の成分を
分相させるため一般に550℃といわれるガラス転移点
以上の温度に再度加熱する必要がありエネルギ−、設
備、人件費、その他、工程が1工程増えるため製造コス
トが高くなることは避けられない。
The content of the glass is a glass having a boric acid composition which is easy to be spun into phases, for example, Na 2 O--B 2 O 3 --SiO 2 glass, which is melted and formed into fibers by a known method, followed by heating at a high temperature. A heat treatment is applied to separate the acid-soluble Na 2 O—B 2 O 3 phase into a hardly soluble SiO 2 phase, and the acid-soluble portion is eluted by the heat acid treatment. By this treatment, the SiO 2 phase is hardly melted and remains in its original shape to form a three-dimensional network structure, and porous glass fibers containing SiO 2 as a main component are obtained. However, in order to phase-separate the components of the fiberized glass fiber, it is necessary to reheat to a temperature above the glass transition point, which is generally called 550 ° C., and energy, equipment, labor costs, etc., and the manufacturing cost increases because of one additional process. It is inevitable that the price will rise.

【0005】これらの問題を避けるため現在ガラス繊維
市場の主たる製品であるEガラス繊維(組成はSiO2
52−57wt%、Al2 3 +Fe2O3 12−
17wt%、B2 3 5−12wt% 、CaO 1
6−24wt%、MgO 0−4wt%、Na2 O+K
2 O 0−1.0wt%、である。)を酸処理すること
よって酸可溶成分を溶出し、SiO2 成分の多い繊維と
する試みが特開昭57−176233号公報、特開平7
−172876号公報に開示されている。前者はEガラ
ス繊維をストランドあるいはヤ−ンの状態のとき数時
間、酸処理し高珪酸ガラス繊維にしてから、織物、ロ−
プなどの加工品するものである。Eガラス繊維全体のB
2 3 、Al2 3 、CaO、MgOなどを溶出させS
iO2 の多い組成にする時、分相が非常に小さいのでS
iO2 骨格も壊れるため、強度の低下が大きく取扱いに
くく、より強度があり取扱い易いものが望まれていた。
後者は酸処理が表面層の一部のみの処理なので強度の低
下が小さいが、長時間の処理時間が必要で、耐熱性も十
分とは言えない。
In order to avoid these problems, E glass fiber (composition of SiO 2), which is the main product of the glass fiber market at present, is used.
52-57wt%, Al 2 O 3 + Fe2O3 12-
17 wt%, B 2 O 3 5-12 wt%, CaO 1
6-24 wt%, MgO 0-4 wt%, Na 2 O + K
2 O 0-1.0 wt%. Acid-soluble component to elute the acid-soluble component to produce a fiber having a large amount of SiO 2 component, as disclosed in JP-A-57-176233 and JP-A-5-176233.
No. 172876. In the former case, when the E glass fiber is in a strand or yarn state, it is treated with an acid for several hours to make it into a high silicate glass fiber, and then a woven fabric or a roll.
It is a processed product such as a pipe. E B of the whole glass fiber
2 O 3 , Al 2 O 3 , CaO, MgO, etc. are eluted and S
When the composition is high in iO 2, the phase separation is very small, so S
Since the iO 2 skeleton is also broken, the strength is largely reduced and it is difficult to handle, and a stronger and easier-to-handle material has been desired.
In the latter case, the acid treatment is a treatment of only a part of the surface layer, so the decrease in strength is small, but a long treatment time is required and heat resistance is not sufficient.

【0006】[0006]

【発明が解決しようとする課題】前記のように、従来の
技術には一長一短があった。本発明が解決しようとする
課題は分相のための再加熱が不要で、製造コストが低
く、酸処理にかかる時間が短かく、強度低下の少ないガ
ラス繊維を開発することである。
As described above, the conventional technique has advantages and disadvantages. The problem to be solved by the present invention is to develop a glass fiber that does not require reheating for phase separation, has a low manufacturing cost, takes a short time for acid treatment, and has a small decrease in strength.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明者はガラス繊維の長時間の安定な紡糸が可
能で、しかも短時間で酸処理が終了するガラス繊維組成
を検討した。その結果、ほう珪酸ガラス繊維の成分にT
iO2 を主体に新たな成分を加えた組成を検討して、こ
れらの課題を解決した。
In order to solve the above-mentioned problems, the present inventor has studied a glass fiber composition which enables stable spinning of glass fibers for a long period of time and is capable of completing acid treatment in a short period of time. . As a result, T was added to the component of borosilicate glass fiber.
These problems were solved by investigating the composition in which a new component was added mainly to iO 2 .

【0008】[0008]

【発明の実施の形態】本発明のガラス繊維の組成はSi
2 50−60wt%、Al2 3 10−20wt
%、B2 3 20−30wt%、 CaO 0.5−
5wt%、MgO 0−4wt%、Li2 O+Na2
+K2 O 0−0.5%、TiO2 0.5−5wt%で
ある。Li2 Oは 0−0.3wt%の量が添加され
る。TiO2 は溶融温度の低下、多孔質ガラス繊維の強
度向上のため、またLi2 Oは分相状態の均質化、多孔
質ガラス繊維の細孔径を小さくし、ばらつきを少なくす
るために添加される。Na2 O+K2 Oは原料に含まれ
る不可避的な成分である。 上記成分の他にもガラスの
特性を損なわない程度にZrO2 、F2 、SO3などの
成分を3wt%まで含有することが可能である。この様
に組成を限定したので 1)紡糸温度が低く紡糸性が良く、繊維径が小さくでき
るので短時間で酸処理が終了する。 2)酸処理の時間が短いので、ガラス中のSiO2 骨格
の破壊が少ない。 3)分相状態が安定しておりシャ−プな細孔径分布が得
られる。 本発明においてガラス組成を限定した理由は、SiO2
が 50wt%未満では多孔質繊維の強度の低下が大き
く、60wt%以上では溶融ガラスの粘度が高くなりす
ぎ紡糸し難くなる。Al2 3 が 10wt%未満では
分相が起こりやすく酸処理により、細孔が大きくなりや
すく、比表面積が小さくなる。また、20wt%以上で
は液相温度が上昇し紡糸性が悪くなる。B2 3 は融剤
として使用し粘度を低下させ、溶融を容易にする成分で
あるが20wt%以下では粘度が上がり、30wt%以
上では酸処理による溶出が多くなり多孔質ガラス繊維の
強度低下が大きくなる。CaOが 5wt%、MgOが
4wt%以上になると酸処理による強度低下が大き
い。Li2 O+Na2 O+K2 Oは 0.5wt%、L
i2Oは 0.3wt%以上では細孔径が大きくなりす
ぎる。
BEST MODE FOR CARRYING OUT THE INVENTION The composition of the glass fiber of the present invention is Si
O 2 50-60wt%, Al 2 O 3 10-20wt
%, B 2 O 3 20-30wt% , CaO 0.5-
5 wt%, MgO 0-4 wt%, Li 2 O + Na 2 O
+ K 2 O 0-0.5% and TiO 2 0.5-5 wt%. Li 2 O is added in an amount of 0-0.3 wt%. TiO 2 is added to lower the melting temperature and improve the strength of the porous glass fiber, and Li 2 O is added to homogenize the phase-separated state, reduce the pore diameter of the porous glass fiber, and reduce variations. . Na 2 O + K 2 O is an unavoidable component contained in the raw material. In addition to the above components, components such as ZrO 2 , F 2 and SO 3 can be contained up to 3 wt% to the extent that the characteristics of the glass are not impaired. Since the composition is limited in this way, 1) the spinning temperature is low, the spinnability is good, and the fiber diameter can be made small, so that the acid treatment is completed in a short time. 2) Since the acid treatment time is short, the SiO 2 skeleton in the glass is less destroyed. 3) The phase-separated state is stable and a sharp pore size distribution can be obtained. The reason for limiting the glass composition in the present invention is that SiO 2
If it is less than 50% by weight, the strength of the porous fiber is greatly reduced, and if it is more than 60% by weight, the viscosity of the molten glass becomes too high and spinning becomes difficult. If Al 2 O 3 is less than 10 wt%, phase separation is likely to occur and acid treatment tends to increase pores and reduce the specific surface area. On the other hand, if it is 20 wt% or more, the liquidus temperature rises and the spinnability deteriorates. B 2 O 3 is a component used as a fluxing agent to lower the viscosity and facilitate melting, but if it is 20 wt% or less, the viscosity increases, and if it is 30 wt% or more, elution due to acid treatment increases and the strength of the porous glass fiber decreases. Grows larger. When CaO is 5 wt% or more and MgO is 4 wt% or more, the strength is largely reduced by the acid treatment. Li 2 O + Na 2 O + K 2 O is 0.5 wt%, L
If i2O is 0.3 wt% or more, the pore size becomes too large.

【0009】この組成のガラス繊維を造る原料ガラスは
溶融性及び紡糸性に優れており、また耐酸性が低いこと
からガラス繊維を酸の水溶液により処理すると、主とし
てSiO2 とTiO2 が残った多孔質ガラス繊維が得ら
れる。処理ガラス繊維の、望ましい成分及び比表面積
は、使用目的に合わせてガラス組成、酸処理時間、処理
温度、酸の濃度などを調整することによって得られる。
多孔質ガラス繊維の成分をSiO2 93−98wt%
、TiO2 0.5−3wt%に調整することによっ
て、耐熱性を要求される用途に適した多孔質ガラス繊維
を得ることが出来る。またガラス繊維の多孔質なことを
利用する分野にはSiO2 90−97wt% 、Ti
2 0.5−3wt%の組成の多孔質ガラス繊維を用
いることが好ましい。また本発明のガラス繊維を使用し
た製品には繊維束、ヤ−ン、あるいは加工したクロス、
ペ−パ−など様々な形態のものがあるがいずれの形態で
も酸処理することが可能である。
The raw material glass for producing the glass fiber of this composition is excellent in meltability and spinnability, and has low acid resistance. Therefore, when the glass fiber is treated with an aqueous solution of an acid, mainly SiO 2 and TiO 2 remain porous. A high quality glass fiber is obtained. The desired component and specific surface area of the treated glass fiber can be obtained by adjusting the glass composition, the acid treatment time, the treatment temperature, the acid concentration and the like according to the purpose of use.
The content of porous glass fiber is SiO 2 93-98 wt%
, TiO 2 0.5-3 wt%, it is possible to obtain a porous glass fiber suitable for applications requiring heat resistance. Further, in the field of utilizing the porous nature of glass fiber, SiO 2 90-97 wt%, Ti
It is preferable to use porous glass fibers having a composition of O 2 0.5-3 wt%. Further, a product using the glass fiber of the present invention includes a fiber bundle, a yarn, or a processed cloth,
There are various forms such as paper, but any form can be used for acid treatment.

【0010】酸処理に必要な酸の種類としては、抗張力
低下が小さい硝酸が適しており次いで硫酸、塩酸などが
適する。好適な処理時間はガラス繊維の組成、酸の種
類、濃度、処理温度、などで変わるがたとえば濃度10
wt%の硝酸を使用し温度70℃でこのガラス繊維を処
理する場合は、約10−20分で本発明の90wt%以
上のSiO2 を含む多孔質ガラス繊維が得られる。しか
し多孔質ガラス繊維の使用目的がガスの吸着であれば細
孔の直径を小さく、比表面積を大きくするため酸の濃度
は薄いほうが望ましく、耐熱性を要求される用途には、
酸可溶成分を出来るだけ除去した物のほうが望ましく酸
の濃度は濃いものも用いられる例があり、上記濃度に限
定されるものではなく用途に応じて試験を繰り返し決定
される。また使用する酸の種類も1種類の酸に限られず
2種類以上の酸を混合したものでもよく、本発明のガラ
スから可溶性成分を効率良く溶出させるものから適宜選
択することができる。
As the type of acid required for the acid treatment, nitric acid, which has a small decrease in tensile strength, is suitable, and then sulfuric acid, hydrochloric acid, etc. are suitable. Suitable treatment time varies depending on the composition of glass fiber, kind of acid, concentration, treatment temperature, etc.
If this glass fiber is treated at a temperature of 70 ° C. using wt% nitric acid, the porous glass fiber containing 90 wt% or more of SiO 2 of the present invention is obtained in about 10-20 minutes. However, if the purpose of using the porous glass fiber is adsorption of gas, it is desirable that the concentration of acid is low in order to reduce the diameter of the pores and increase the specific surface area, and for applications requiring heat resistance,
In some cases, it is desirable that the acid-soluble component is removed as much as possible, and that the acid concentration is high, and the concentration is not limited to the above concentration, and the test is repeatedly determined depending on the application. The type of acid used is not limited to one type of acid, and may be a mixture of two or more types of acids, which can be appropriately selected from those capable of efficiently eluting soluble components from the glass of the present invention.

【0011】酸処理された繊維は十分洗浄したのち、多
孔質ガラス繊維として使用する場合は約100−250
℃ぐらいの温度で乾燥される。この多孔質繊維は比表面
積が150m2 /gr−500m2 /grであることが
望ましい。なぜならば、比表面積が150m2 /gr以
下では、吸着性が小さくコストパフォ−マンスが悪く、
500m2 /gr以上にすると強度が低下して用途が限
定される。しかしこれ以上の範囲のものでも繊維として
の強度が要求されない分野に使用できることはいうまで
もない。また繊維の強度が不足する場合や650℃以上
の耐熱性を要求される用途に使用するときは更に600
−800℃で加熱して強度を向上させると共に、予め予
想される加熱収縮を取除いておく必要がある。温度が6
00℃以下では加熱の効果が少なく、800℃以上に加
熱すると多孔性は犠牲になるが強度は増加する。この場
合の上限温度は、加熱する多孔質繊維の化学組成により
変わるが、繊維の加熱中に変形が起きる温度より低い。
乾燥された繊維は、SiO2 、TiO2 を含みそれらが
互いに結合してネットワ−クを構成していること、溶出
に要する時間が短かくSiO2 、TiO2 のネットワ−
クの破壊がすくないこと、溶出による重量減少が少ない
こと、により抗張力があり、多孔質繊維として従来Eガ
ラス繊維を酸処理して得られた多孔質繊維が強度不足の
ため使用できなかった、イオン交換体、イオン分離体、
吸着材、ガス−液体の分離体及び触媒等に使用すること
が出来る。
After the acid-treated fiber is thoroughly washed, when it is used as a porous glass fiber, it is about 100-250.
It is dried at a temperature of about ℃. This porous fiber preferably has a specific surface area of 150 m 2 / gr-500 m 2 / gr. This is because when the specific surface area is 150 m 2 / gr or less, the adsorptivity is small and the cost performance is poor,
When it is 500 m 2 / gr or more, the strength is lowered and the use is limited. However, it goes without saying that even the range of more than this range can be used in the field where the strength as a fiber is not required. When the strength of the fiber is insufficient or when it is used for applications requiring heat resistance of 650 ° C or higher, 600
It is necessary to heat at −800 ° C. to improve the strength and to remove the expected heat shrinkage in advance. Temperature 6
If the temperature is 00 ° C or lower, the heating effect is small, and if the temperature is 800 ° C or higher, the porosity is sacrificed but the strength is increased. The upper limit temperature in this case depends on the chemical composition of the porous fiber to be heated, but is lower than the temperature at which deformation occurs during heating of the fiber.
The dried fiber contains SiO 2 and TiO 2 and is bonded to each other to form a network, and the time required for elution is short and the network of SiO 2 and TiO 2 is short.
It has a tensile strength due to the fact that it is not easily broken and the weight loss due to elution is small, and the porous fiber obtained by acid-treating the conventional E glass fiber as the porous fiber cannot be used due to insufficient strength. Exchanger, ion separator,
It can be used as an adsorbent, a gas-liquid separator, a catalyst and the like.

【0012】[0012]

【実施例】【Example】

<実施例1>SiO2 51.8wt%、Al2 3
13.8wt%、B2 3 26wt%、 CaO
3.6wt%、MgO 2.4wt%、Li2 O 0.
15wt%、Na2 O 0.15wt%、K2 O 0.
1wt%、 TiO2 2.0wt%の組成を有する平
均繊維径7μmの本発明のガラス繊維200本からなる
ガラス繊維ヤ−ンを使用し、経糸60本/25mm、緯
糸58本/25mmのクロスを製織し、10cm角に切
断したものを、温度70℃の10wt%の塩酸50gr
中に15分間浸漬たのち、水洗し、250℃で30分間
加熱することによって多孔質ガラス繊維内部の水分を除
去した。
<Example 1> SiO 2 51.8 wt%, Al 2 O 3
13.8 wt%, B 2 O 3 26 wt%, CaO
3.6 wt%, MgO 2.4 wt%, Li 2 O 0.
15 wt%, Na 2 O 0.15 wt%, K 2 O 0.
A glass fiber yarn made of 200 glass fibers of the present invention having a composition of 1 wt% and TiO 2 2.0 wt% and an average fiber diameter of 7 μm was used, and a cloth of warp 60/25 mm and weft 58/25 mm was used. Weaved and cut into 10 cm squares, 50 gr of 10 wt% hydrochloric acid at a temperature of 70 ° C.
After being immersed in the glass for 15 minutes, it was washed with water and heated at 250 ° C. for 30 minutes to remove water inside the porous glass fiber.

【0013】<比較例1>表1に得られた多孔質がガラ
ス繊維の組成と物理的性質を、代表的な多孔質ガラスの
コ−ニング#7930の物性と比較した。比表面積はB
ET法により測定した。耐熱性は酸処理により得られた
多孔質ガラス繊維をアルミナルツボに入れ電気炉中で1
350℃で30分間加熱し繊維の状態を比較した。また
組成は蛍光X線分析による測定結果である。
Comparative Example 1 The composition and physical properties of the porous glass fiber obtained in Table 1 were compared with the physical properties of a typical porous glass, Corning # 7930. Specific surface area is B
It was measured by the ET method. Heat resistance is obtained by putting porous glass fiber obtained by acid treatment into an alumina crucible and
The state of fibers was compared by heating at 350 ° C. for 30 minutes. The composition is the result of measurement by fluorescent X-ray analysis.

【0014】<実施例2>及び<実施例3> <実施例2>は塩酸の代わりに10wt%の濃度の硫酸
を、<実施例3>は10wt%の濃度の硝酸を、それぞ
れを用いた他は実施例1と同じ条件で酸処理した。処理
時間は原料ガラス繊維の重量変化がほぼなくなるまでの
時間とし、得られた繊維の耐熱性及びガラス組成を表1
に示す。
<Example 2> and <Example 3><Example2> used sulfuric acid having a concentration of 10 wt% instead of hydrochloric acid, and <Example 3> used nitric acid having a concentration of 10 wt%. Acid treatment was performed under the same conditions as in Example 1 except for the above. The treatment time is the time until there is almost no change in the weight of the raw glass fiber, and the heat resistance and glass composition of the obtained fiber are shown in Table 1.
Shown in

【0015】<比較例2>平均繊維径7μmのEガラス
繊維200本からなるガラス繊維ヤ−ンを使用し、経糸
60本/25mm、緯糸58本/25mmのクロスを製
織し、10cm角に切断したものを、繊維中のSiO2
の含有量が実施例とほぼ同じの95−96wt%になる
よう、温度70℃の10wt%の塩酸50gr中に48
0分間浸漬たのち、水洗し、250℃で30分間加熱す
ることによって多孔質ガラス繊維内部の水分を除去し
た。実施例1と同じ試験をし結果を表1に示した。
Comparative Example 2 Using a glass fiber yarn made of 200 E glass fibers having an average fiber diameter of 7 μm, weaving a cloth of 60 warps / 25 mm and 58 wefts / 25 mm, and cutting it into 10 cm squares. Made into SiO 2 in the fiber
Of 50% of hydrochloric acid of 10 wt% at a temperature of 70 ° C. so that the content of 95 wt.
After soaking for 0 minute, it was washed with water and heated at 250 ° C. for 30 minutes to remove the water content inside the porous glass fiber. The same test as in Example 1 was conducted and the results are shown in Table 1.

【0016】[0016]

【発明の効果】本発明による多孔質ガラス繊維は以下の
ような効果を持つ。溶融紡糸が容易であるので、酸処理
の時間が短くてすむ細い直径の繊維を安定につくる事が
できる。酸溶出を容易にする分相ガラス化の再加熱処理
をすることなく、ガラス繊維中の酸可溶成分を短時間で
溶出することが出来る。その結果ガラス繊維中のSiO
2 を主体とした骨格のダメ−ジが少ないので、SiO2
−TiO2 の骨格が強いこととの相乗効果のためか、処
理前の繊維に比べて強度の低下が少ない。
The porous glass fiber according to the present invention has the following effects. Since melt-spinning is easy, it is possible to stably produce a fiber having a small diameter that requires a short time for acid treatment. It is possible to elute the acid-soluble component in the glass fiber in a short time without performing a reheat treatment for phase separation vitrification that facilitates acid elution. As a result, SiO in the glass fiber
Of 2 were mainly skeletal useless - because the character is small, SiO 2
Probably due to the synergistic effect with the strong TiO 2 skeleton, the decrease in strength is less than that of the fiber before treatment.

【0017】あるいは本発明の実施例で示したように耐
熱性に優れた多孔質ガラス繊維は1350℃に加熱して
も繊維は、まだ柔軟性があり耐熱性を要求される用途で
の使用が可能である。また実施例からも判るように多孔
質繊維からなるクロスの強度はフィルタ−などの用途に
は十分なものであり気体中の特定ガスの吸着、高温度の
溶融アルミニュウム中の異物除去などにも使用出来る。
Alternatively, as shown in the examples of the present invention, the porous glass fiber having excellent heat resistance is heated to 1350 ° C., but the fiber is still flexible and is not suitable for use in applications requiring heat resistance. It is possible. Further, as can be seen from the examples, the strength of the cloth made of porous fiber is sufficient for applications such as a filter, and it is also used for adsorption of a specific gas in a gas, removal of foreign matters in high-temperature molten aluminum, etc. I can.

【0018】[0018]

【表1】 [Table 1]

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C03C 3/06 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display area C03C 3/06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ガラス繊維中の酸に易溶な成分を溶出して
製造する多孔質ガラス繊維において少なくともSiO2
90.0−98.0wt%、TiO2 0.5−3.
0wt%の成分を有することを特徴とする多孔質ガラス
繊維。
1. A porous glass fiber produced by eluting a component easily soluble in an acid in the glass fiber, wherein at least SiO 2 is used.
90.0-98.0wt%, TiO 2 0.5-3.
A porous glass fiber having a content of 0 wt%.
【請求項2】請求項1の多孔質ガラス繊維を600−8
00℃に加熱することにより得られたガラス繊維。
2. A porous glass fiber according to claim 1, which is 600-8.
Glass fiber obtained by heating to 00 ° C.
【請求項3】比表面積が150m2 /gr−500m2
/grである、請求項1記載の多孔質ガラス繊維。
3. A specific surface area of 150 m 2 / gr-500 m 2
The porous glass fiber according to claim 1, which is / gr.
JP7348209A 1995-12-19 1995-12-19 Heat resistant porous glass fiber Pending JPH09169548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7348209A JPH09169548A (en) 1995-12-19 1995-12-19 Heat resistant porous glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7348209A JPH09169548A (en) 1995-12-19 1995-12-19 Heat resistant porous glass fiber

Publications (1)

Publication Number Publication Date
JPH09169548A true JPH09169548A (en) 1997-06-30

Family

ID=18395491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7348209A Pending JPH09169548A (en) 1995-12-19 1995-12-19 Heat resistant porous glass fiber

Country Status (1)

Country Link
JP (1) JPH09169548A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316009A (en) * 2001-04-19 2002-10-29 Japan Vilene Co Ltd Flame resistant filter medium
JP2006326537A (en) * 2005-05-27 2006-12-07 Nippon Muki Co Ltd Filter material for air filter, and air filter
WO2007129430A1 (en) * 2006-05-01 2007-11-15 Ibiden Co., Ltd. Honeycomb structure, process for producing honeycomb structure, honeycomb filter and process for producing honeycomb filter
JP2009079597A (en) * 2002-09-30 2009-04-16 Unifrax I Llc Exhaust gas treatment device and method of manufacturing the same
JP2018150224A (en) * 2017-02-16 2018-09-27 イソライト ゲーエムベーハー Surface-modified glass fiber with bi-component core-sheath structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316009A (en) * 2001-04-19 2002-10-29 Japan Vilene Co Ltd Flame resistant filter medium
JP2009079597A (en) * 2002-09-30 2009-04-16 Unifrax I Llc Exhaust gas treatment device and method of manufacturing the same
JP4663778B2 (en) * 2002-09-30 2011-04-06 ユニフラックス ワン リミテッド ライアビリティ カンパニー Exhaust gas treatment apparatus and method for manufacturing the same
JP2006326537A (en) * 2005-05-27 2006-12-07 Nippon Muki Co Ltd Filter material for air filter, and air filter
WO2007129430A1 (en) * 2006-05-01 2007-11-15 Ibiden Co., Ltd. Honeycomb structure, process for producing honeycomb structure, honeycomb filter and process for producing honeycomb filter
US7576035B2 (en) 2006-05-01 2009-08-18 Ibiden Co., Ltd. Honeycomb structure and method for manufacturing honeycomb structure
JP2018150224A (en) * 2017-02-16 2018-09-27 イソライト ゲーエムベーハー Surface-modified glass fiber with bi-component core-sheath structure

Similar Documents

Publication Publication Date Title
US2461841A (en) Method of making fibrous glass articles
EP0973697B1 (en) Al2o3-containing, high-temperature resistant glass sliver with highly textile character, and products thereof
US7704902B2 (en) Glass fibre compositions
US4461840A (en) Heat resistant glass fiber composition
US4778499A (en) Method of producing porous hollow silica-rich fibers
DE2848731C3 (en) Process for the production of mineral fibers resistant in alkaline media
US3650721A (en) Method of forming micro-porous glass fibers
EP0186128A2 (en) Silica-rich, porous and nonporous fibers and method of producing same
JPH09169548A (en) Heat resistant porous glass fiber
EP2956420B1 (en) Temperature-resistant aluminosilicate glass fibers and method for the production thereof and use thereof
WO1992006931A1 (en) Highly alkali-resistant textile glass
CA1290572C (en) Porous hollow silica-rich fibers and method of producing same
AU579017B2 (en) Low shrinkage kaolin refractory fiber
DE2631653C3 (en) ZrO2 -containing, alkali-resistant glass that can be spun into fibers and its use
JP3908731B2 (en) Silica yarn for fabric having high temperature durability
US2823117A (en) Glass paper-calcium silicate
US4084977A (en) Glass and refractory fibre materials and method for making same
RU2165393C1 (en) Glass for manufacturing fiber glass and high- temperature silicic fiber glass based thereon
DE2361841A1 (en) METHOD OF MANUFACTURING FIBER-LIKE GLASS MATERIAL
JPH05301741A (en) Glass composition for fiber suitable for acid elution
JPH03122025A (en) Production of heat-resistant porous glass fiber
DE1669466C (en) Refractory fiber material and processes for making the same
DE19724874A1 (en) Glass composition and method for manufacturing high temperature resistant glass fibers
DE1596842C3 (en) Refractory inorganic glass fibers based on SiO deep 2 -Al deep 2 O deep 3
DD301760A9 (en) ALKALIRESISTENTE GLASS COMPOSITION AND METHOD FOR THE PRODUCTION THEREOF