JPH09168788A - Combined septic tank - Google Patents

Combined septic tank

Info

Publication number
JPH09168788A
JPH09168788A JP33173095A JP33173095A JPH09168788A JP H09168788 A JPH09168788 A JP H09168788A JP 33173095 A JP33173095 A JP 33173095A JP 33173095 A JP33173095 A JP 33173095A JP H09168788 A JPH09168788 A JP H09168788A
Authority
JP
Japan
Prior art keywords
water
amount
tank
membrane
aeration tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33173095A
Other languages
Japanese (ja)
Inventor
Mikio Kitagawa
幹夫 北川
Nobuaki Nagao
信明 長尾
Yoshinao Kishine
義尚 岸根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP33173095A priority Critical patent/JPH09168788A/en
Publication of JPH09168788A publication Critical patent/JPH09168788A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Biological Wastes In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To absorb the fluctuation of drain quantity by an aeration tank to perform stable treatment by measuring the quantity of inflow water of a combined septic tank and the water level in a reaction tank and controlling the taking-out quantity of permeated water by a taking-out means on the basis of the measured quantity of inflow water and the measured water level. SOLUTION: An analyser 9 operates the measured value of the flowmeter 7A provided to piping 11, that is, the quantity of waste water to the aeration tank 3 being the biological reaction tank of a combined septic tank and the measured value of a water level meter 8, that is, the drain quantity in the aeration tank 3 and a signal adjusting the number of rotations of a vacuum pump 5 is outputted on the basis of this operation result and the taking-out quantity of permeated water from an immersed membrane 4 is controlled. By this constitution, it is unnecessary to provide a raw water conditioning tank and, even when the quantity of inflow waste water is increased to a large extent, the fluctuations of the quantity of inflow waste water is absorbed by the aeration tank 3 to perform stable treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、分離膜が浸漬配置
された生物反応槽を備える合併浄化槽に係り、特に、原
水調整槽を設けることなく、流入排水量が大幅に増加し
た場合においても安定に処理することが可能な合併浄化
槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined septic tank equipped with a biological reaction tank in which a separation membrane is immersed, and in particular, it is stable even when the amount of inflowing wastewater is significantly increased without providing a raw water adjusting tank. It relates to a combined septic tank that can be treated.

【0002】[0002]

【従来の技術】従来、曝気槽内に平膜状や中空糸膜状の
MF(精密濾過)膜やUF(限外濾過)膜を浸漬配置し
た合併浄化槽が開発、実用化されている。曝気槽内にM
FやUF膜を浸漬設置して、固液分離を膜で行うことに
より、沈澱槽が不要となるため、非常にコンパクトな装
置になると共に、高水質な処理水が得られる、膜分離に
必要な動力が極めて少ない、維持管理も容易となるな
ど、多くの利点が得られる。このため、今後とも、浸漬
膜を用いた合併浄化槽が多く採用される方向にある。
2. Description of the Related Art Conventionally, a combined purification tank has been developed and put into practical use in which a flat membrane-shaped or hollow fiber membrane-shaped MF (microfiltration) membrane or UF (ultrafiltration) membrane is immersed and arranged in an aeration tank. M in the aeration tank
By substituting the F and UF membranes for solid-liquid separation with the membranes, a sedimentation tank is not required, so it becomes a very compact device and is necessary for membrane separations, which gives high quality treated water. There are many advantages such as extremely low power consumption and easy maintenance. For this reason, merged septic tanks using dipping membranes will continue to be used in the future.

【0003】しかし、固液分離に膜を用いる場合、膜の
寿命が短いという欠点がある。
However, when a membrane is used for solid-liquid separation, there is a drawback that the life of the membrane is short.

【0004】即ち、分離膜は、処理を継続することで、
目詰まり等により膜性能が低下し、薬品洗浄を行っても
性能が十分に回復しなくなる状態になり、膜の取り替え
が必要になる。この膜の使用開始から、取り替えに到る
期間が膜寿命であるが、膜を曝気槽に浸漬配置して固液
分離を行う場合、この膜寿命が短く、頻繁に膜を交換す
る必要があるという問題がある。
That is, the separation membrane is treated by continuing the treatment.
The performance of the membrane deteriorates due to clogging, etc., and the performance is not fully recovered even if chemical cleaning is performed, and the membrane needs to be replaced. The period from the start of use of this membrane to the replacement is the membrane life, but when the membrane is immersed in the aeration tank for solid-liquid separation, this membrane life is short and it is necessary to replace the membrane frequently. There is a problem.

【0005】この膜寿命については、膜の最大透過水量
の1/2〜1/3という低い透過水0で運転した場合の
方が、最大透過水量で運転する場合に比べて、膜寿命を
長くすることができることが知られている。
Regarding the membrane life, the membrane life is longer when the membrane is operated with a permeated water 0 which is as low as 1/2 to 1/3 of the maximum permeated water of the membrane, as compared with the case where the membrane is operated with the maximum permeated water. It is known that you can.

【0006】例えば、ある膜では最大透過水量で運転し
た場合、6ケ月間で膜の取り替えが必要となったのに対
し、最大透過水量の1/2〜1/3で運転した場合は2
〜3年間膜の取り替えなしで運転ができる。従って、膜
の最大透過水量で運転するよりも、最大透過水量の1/
2〜1/3の透過水量で運転する方が時間当たりの処理
水量は少ないが、長期間処理を継続でき、結果的に累積
処理水量は多くなるため、工業的に有利である。
[0006] For example, when a certain membrane is operated at the maximum permeated water amount, it is necessary to replace the membrane within 6 months, whereas when it is operated at 1/2 to 1/3 of the maximum permeated water amount, 2 is required.
Can be operated for up to 3 years without replacing the membrane. Therefore, it is 1/100
It is industrially advantageous to operate with a permeated water amount of 2 to 1/3, although the treated water amount per hour is small, but the treatment can be continued for a long period of time, and as a result, the accumulated treated water amount increases.

【0007】このようなことから、従来においては、浸
漬膜による処理においては、膜の最大透過水量の1/2
〜1/3の一定透過水量で運転を行っている。例えば、
中空糸状のMF膜を用いた例では、膜の透過水量を、最
大透過水量の1/3以下の0.4m3/m2・day以下の
低い値として運転を行っている。
From the above, in the conventional case, in the treatment by the immersion membrane, 1/2 of the maximum permeated water amount of the membrane is used.
The operation is performed with a constant permeated water amount of 1/3. For example,
In the example using the hollow fiber MF membrane, the operation is performed with the permeated water amount of the membrane being a low value of 0.4 m 3 / m 2 · day or less, which is 1/3 or less of the maximum permeated water amount.

【0008】一方、合併浄化槽に流入する被処理排水量
は、時間当りで大幅に変動する。図4は、一般的な合併
浄化槽に流入する排水量の時間変動パターン(1日分の
全排水量に対する各時間毎に合併浄化槽に流入する排水
量の割合の変化)を示すグラフである。この図より明ら
かなように、排水量が集中する時間帯は、朝から昼前後
にかけてと夕方であり、夜間から早朝までは排水量は非
常に少ない。
On the other hand, the amount of wastewater to be treated which flows into the combined septic tank fluctuates greatly per hour. FIG. 4 is a graph showing a time variation pattern of the amount of wastewater flowing into a general combined septic tank (change in the ratio of the amount of wastewater flowing into the combined septic tank for each time with respect to the total amount of discharged water for one day). As is clear from this figure, the time when the drainage is concentrated is in the evening from morning to around noon, and the drainage is very small from night to early morning.

【0009】このように、時間当りの流入排水量の変動
が激しい合併浄化槽では、水量変動を吸収して均一化す
るために、図5に示す如く、最小限1日分の排水を貯留
することができる、容量の大きな原水調整槽1を設置
し、この原水調整槽1から移送ポンプ2で曝気槽3へ一
定流量で排水を移送し、曝気槽3の浸漬膜4からは、こ
の移送排水量に相当する透過水を減圧ポンプ5で引き抜
いて処理を行っている(図5において、6は曝気管、7
は流量計である。)。なお、この透過水量は、浸漬膜4
の最大透過水量の1/2〜1/3、或いはそれ以下に設
定する。
As described above, in the combined septic tank in which the fluctuation of the inflowing drainage amount per hour is drastic, in order to absorb the fluctuation of the water amount and equalize it, as shown in FIG. A raw water adjusting tank 1 with a large capacity that can be installed is installed, and the drainage is transferred from the raw water adjusting tank 1 to the aeration tank 3 at a constant flow rate by the transfer pump 2, and the immersion membrane 4 of the aeration tank 3 corresponds to this transfer drainage amount. The permeated water is extracted by the decompression pump 5 for treatment (in FIG. 5, 6 is an aeration pipe, and 7 is an aeration pipe.
Is a flow meter. ). In addition, this permeated water amount is the immersion membrane 4
It is set to 1/2 to 1/3 of the maximum amount of permeated water, or less.

【0010】例えば、図4に示す変動パターンで原水調
整槽1に流入する全排水量は10m3 /dayである。
このため、原水調整槽1の最大容量を10m3 、曝気槽
3の容量は30m3 に設定し、原水調整槽1から曝気槽
3へ移送する排水量を0.42m3 /hrで均一移送と
し、曝気槽3内の浸漬膜4からこの移送量と同量の透過
水量を引き抜く。
For example, in the fluctuation pattern shown in FIG. 4, the total amount of drainage flowing into the raw water regulating tank 1 is 10 m 3 / day.
Therefore, the maximum capacity of the raw water adjusting tank 1 is set to 10 m 3 , the capacity of the aeration tank 3 is set to 30 m 3 , and the amount of drainage transferred from the raw water adjusting tank 1 to the aeration tank 3 is 0.42 m 3 / hr for uniform transfer, The same amount of permeated water as this transfer amount is extracted from the immersion membrane 4 in the aeration tank 3.

【0011】[0011]

【発明が解決しようとする課題】このように、従来の合
併浄化槽では、容量の大きな原水調整槽を必要とするた
め、装置全体が大型化し、装置のコンパクト化が図れな
いという欠点がある。
As described above, the conventional combined septic tank requires a raw water adjusting tank having a large capacity, and therefore has a drawback that the entire apparatus becomes large and the apparatus cannot be made compact.

【0012】また、原水調整槽を設けた場合でも、流入
排水量の変動を吸収し得ず、排水がオーバーフローする
危険性もある。
Further, even when the raw water adjusting tank is provided, the fluctuation of the inflowing drainage amount cannot be absorbed and there is a risk that the drainage will overflow.

【0013】即ち、図5に示すような従来の合併浄化槽
において、流入排水量の変動が図4に示した標準パター
ンで、全排水量10m3 /dayの計画排水量であれ
ば、図6に示す如く、流入水量に対して、曝気槽への移
送水量を一定とした場合において、原水調整槽内の排水
量(水位)変動は図7に示す如く、7〜9.3m3 の範
囲内におさまり、オーバーフローすることはない。
That is, in the conventional combined septic tank as shown in FIG. 5, if the fluctuation of the inflowing wastewater amount is the standard pattern shown in FIG. 4 and the total discharge amount is 10 m 3 / day, the planned discharge amount is as shown in FIG. When the amount of water transferred to the aeration tank is constant with respect to the amount of inflow water, fluctuations in the amount of discharged water (water level) in the raw water adjustment tank fall within the range of 7 to 9.3 m 3 and overflow as shown in FIG. 7. There is no such thing.

【0014】しかし、一時的な大量降雨や長時間に渡る
降雨、雨水溝の閉塞、その他の予期しない特殊事情で、
排水に雨水等が混入するなど、本来、浄化槽に流入しな
い水が浄化槽に流入すると、流入排水量は図4の標準パ
ターンから外れることとなり、この場合には、原水調整
槽容量を10m3 に設定しても、原水調整槽からの排水
のオーバーフローを防止し得なくなる。原水調整槽から
排水がオーバーフローすると、未処理の生活排水が合併
浄化槽から流出することになり、生活環境を著しく悪化
させる。
However, due to a temporary large amount of rainfall, long-term rainfall, clogging of rainwater ditch, and other unexpected special circumstances,
When water that does not originally flow into the septic tank flows into the septic tank, such as when rainwater mixes into the wastewater, the inflowing wastewater volume deviates from the standard pattern in Fig. 4. In this case, set the raw water adjustment tank capacity to 10 m 3. However, it becomes impossible to prevent overflow of the waste water from the raw water adjusting tank. When wastewater overflows from the raw water conditioning tank, untreated domestic wastewater will flow out of the combined septic tank, which will significantly deteriorate the living environment.

【0015】本発明は上記従来の問題点を解決し、浸漬
膜が設けられた曝気槽を有する合併浄化槽において、原
水調整槽を設けることなく、流入排水量が大幅に増加し
た場合においても、この排水量の変動を曝気槽で吸収し
て安定な処理を行うことができる合併浄化槽を提供する
ことを目的とする。
The present invention solves the above-mentioned conventional problems, and in a combined septic tank having an aeration tank provided with a submerged membrane, even if the inflowing wastewater volume is significantly increased without providing the raw water adjusting tank, It is an object of the present invention to provide a combined septic tank capable of absorbing fluctuations in the aeration tank and performing stable treatment.

【0016】[0016]

【課題を解決するための手段】本発明の合併浄化槽は、
分離膜が浸漬配置された生物反応槽と、該分離膜の内部
から透過水を取り出す取出手段とを備えた合併浄化槽に
おいて、該合併浄化槽の流入水量を測定する手段と、該
反応槽内の水位を測定する手段と、測定された流入水量
及び水位に基いて前記取出手段による透過水取出量を制
御する手段とを設けたことを特徴とする。
The combined septic tank of the present invention comprises:
In a combined septic tank comprising a biological reaction tank in which a separation membrane is immersed and arranged, and a take-out means for taking out permeated water from the inside of the separation membrane, a means for measuring the inflow water amount of the combined septic tank, and a water level in the reaction tank And means for controlling the amount of permeated water taken out by the take-out means based on the measured inflow water amount and water level.

【0017】生物反応槽に分離膜を浸漬することによる
利点は、沈澱槽が不要であること、高度な処理水が得ら
れること、膜分離に必要とする動力が極めて少ないこと
等の他、膜からの透過水量を限定されたある範囲内で、
短時間であるならば任意に変動可能なことにある。ま
た、生物反応槽内の水位が変動しても、分離膜が完全に
浸漬している状態であれば運転が可能な点にある。
The advantage of immersing the separation membrane in the biological reaction tank is that the precipitation tank is not required, highly treated water is obtained, the power required for membrane separation is extremely small, and Within a limited range of permeated water from
If it is a short time, it can be changed arbitrarily. Further, even if the water level in the biological reaction tank fluctuates, operation is possible if the separation membrane is completely immersed.

【0018】前述の如く、生物反応槽に分離膜を浸漬し
た場合、従来においては、膜寿命の延長のために設定透
過水量を膜の最大透過水量の1/2〜1/3と低く設定
している。このような場合において、数日間(3〜4
日)に1回程度の頻度であれば、12時間程度膜の最大
透過水量で運転しても、膜の寿命や性能に影響を与える
ことはない。また、最大透過水量の2/3程度で運転す
る場合は、1〜1.5日程度であれば、膜の寿命に影響
を与えることはない。しかし、3〜4日間にわたって連
続して膜の最大透過水量で運転した場合には、膜寿命は
短くなる。
As described above, when the separation membrane is immersed in the biological reaction tank, conventionally, the set permeated water amount is set as low as 1/2 to 1/3 of the maximum permeated water amount of the membrane in order to prolong the life of the membrane. ing. In such cases, several days (3-4
If the frequency is about once a day, even if the membrane is operated with the maximum amount of permeated water for about 12 hours, it will not affect the life and performance of the membrane. When operating at about ⅔ of the maximum amount of permeated water, if it is about 1 to 1.5 days, it will not affect the life of the membrane. However, when the membrane is continuously operated at the maximum permeated water amount for 3 to 4 days, the membrane life becomes short.

【0019】例えば、汚泥濃度が3000mg/Lであ
る曝気槽内から、圧力−0.1Kg/cmの減圧ポンプ
を用い、透過水量0.4m3/m2・dayで浸漬中空糸膜
を運転している装置において、その時の最大透過水量
が、圧力−0.3Kg/cmで1.2m3/m2・dayで
あれば、12時間程度の間、減圧ポンプの圧力を低めて
ポンプの引き抜き水量を多くすることで、1.2m3/m
2・dayで透過水を引き抜いても、これにより膜寿命が
短くなることはない。
For example, a submerged hollow fiber membrane is operated from the inside of an aeration tank with a sludge concentration of 3000 mg / L and a permeated water amount of 0.4 m 3 / m 2 · day using a decompression pump with a pressure of −0.1 Kg / cm. If the maximum amount of permeated water at that time is 1.2 m 3 / m 2 · day at a pressure of −0.3 Kg / cm, the pressure of the decompression pump is lowered for about 12 hours, and the amount of water drawn from the pump is reduced. 1.2m 3 / m by increasing
Even if the permeated water is drawn out at 2 · day, this does not shorten the membrane life.

【0020】本発明では、このような膜浸漬型生物反応
槽の特徴を利用して、合併浄化槽の生物反応槽への流入
排水量と、生物反応槽内の水位を測定し、この測定結果
に基いて、膜の透過水量を調整することにより、即ち、
流入排水量の増減や生物反応槽内の水位の増減に応じて
透過水の取出量を、膜寿命に影響のない範囲で増減させ
ることにより、原水調整槽を設けることなく、流入排水
量の変動を生物反応槽で吸収して合併浄化槽への流入排
水量の異常変動に対応する。
In the present invention, the characteristics of such a membrane-immersed type biological reaction tank are utilized to measure the amount of waste water flowing into the biological reaction tank of the combined purification tank and the water level in the biological reaction tank. By adjusting the amount of permeated water of the membrane, that is,
By changing the amount of permeated water taken out according to the increase / decrease in the amount of inflowing wastewater and the increase / decrease in the water level in the biological reaction tank within the range that does not affect the membrane life, fluctuations in the amount of inflowing wastewater can be controlled without installing a raw water adjustment tank. Absorbs in the reaction tank and responds to abnormal fluctuations in the amount of wastewater flowing into the combined septic tank.

【0021】[0021]

【発明の実施の形態】以下に図面を参照して本発明の合
併浄化槽を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The combined septic tank of the present invention will be described in detail below with reference to the drawings.

【0022】図1は本発明の合併浄化槽の一実施例を示
す系統図である。
FIG. 1 is a system diagram showing an embodiment of the combined septic tank of the present invention.

【0023】本実施例の合併浄化槽においては、排水
は、流量計7Aを備える配管11より直接曝気槽3内に
流入する。この曝気槽3の底部には曝気管6が設けら
れ、曝気管6の上方位置に浸漬膜4が浸漬配置されてい
る。排水は、曝気槽3内で好気的に生物処理された後、
減圧ポンプ5による吸引で、浸漬膜4を透過することで
固液分離され、透過水は配管12及び流量計7Bを備え
る配管13を経て処理水として排出される。
In the combined septic tank of this embodiment, the waste water flows directly into the aeration tank 3 through the pipe 11 equipped with the flow meter 7A. An aeration pipe 6 is provided at the bottom of the aeration tank 3, and the immersion film 4 is disposed above the aeration pipe 6 by immersion. The wastewater is aerobically bioprocessed in the aeration tank 3,
By the suction of the decompression pump 5, the permeated water is permeated to be solid-liquid separated, and the permeated water is discharged as treated water through the pipe 12 and the pipe 13 including the flow meter 7B.

【0024】曝気槽3には曝気槽3内の排水量を測定す
るための水位計8が設けられており、流量計7A,7B
の測定値及び水位計8の測定値は解析装置9に入力され
る。
The aeration tank 3 is provided with a water level meter 8 for measuring the amount of drainage in the aeration tank 3, and the flow meters 7A and 7B.
The measured value of 1 and the measured value of the water level gauge 8 are input to the analyzer 9.

【0025】解析装置9では、流量計7Aの測定値、即
ち、曝気槽3への流入排水量と、水位計8の測定値、即
ち、曝気槽3内の排水量とを演算処理し、この演算結果
に基いて減圧ポンプ5の回転数を調整する信号を出力
し、浸漬膜4からの透過水取出量を制御する。
In the analyzer 9, the measured value of the flow meter 7A, that is, the amount of drainage water flowing into the aeration tank 3 and the measured value of the water level gauge 8, that is, the amount of drainage water in the aeration tank 3, are arithmetically processed. Based on the above, a signal for adjusting the rotation speed of the decompression pump 5 is output to control the amount of permeated water taken out from the immersion membrane 4.

【0026】即ち、曝気槽3への流入排水量(流量計7
Aの測定値)と曝気槽3内水位(水位計8の測定値)を
解析装置9に連続的に取り入れ、曝気槽3内水位が設定
した値より上昇するとの演算結果が得られた段階で、減
圧ポンプ5の回転数を増加して、引き抜き透過水量を浸
漬膜4の最大透過水量付近まで増量する。
That is, the amount of waste water flowing into the aeration tank 3 (flow meter 7
(Measured value of A) and the water level in the aeration tank 3 (measurement value of the water level gauge 8) are continuously taken into the analysis device 9, and at the stage when the calculation result that the water level in the aeration tank 3 rises above the set value is obtained. The rotation speed of the decompression pump 5 is increased to increase the amount of drawn permeated water to the vicinity of the maximum amount of permeated water of the immersion membrane 4.

【0027】例えば、流入排水量及び曝気槽内水位が標
準変動範囲にある場合には、引き抜き透過水量は浸漬膜
の最大透過水量の1/2〜1/3で運転し、流入排水量
の増加で曝気槽内水位の上昇が確認された場合には、下
記(i), (ii) の如く、最大透過水量Rmax に対して引き
抜き透過水を段階的に増量してゆく。
For example, when the inflow drainage amount and the water level in the aeration tank are within the standard fluctuation range, the withdrawal permeate amount is operated at 1/2 to 1/3 of the maximum permeate amount of the immersion membrane, and the aeration is performed by increasing the inflow drainage amount. When the rise of the water level in the tank is confirmed, the withdrawal permeated water is gradually increased with respect to the maximum permeated water amount R max as shown in (i) and (ii) below.

【0028】(i) (1/3)・Rmax →(1/2)・Rmax →(2/
3)・Rmax →Rmax (ii) (1/2)・Rmax →(2/3)・Rmax →Rmax この引き抜き透過水量の増量段階数は上記(i), (ii) に
限らず、より多段階で増量させるようにしても良い。流
入排水量や曝気槽内水位の減少傾向が確認された場合に
は、引き抜き透過水量は上記と逆の段階を経て減量させ
る。
(I) (1/3) ・ R max → (1/2) ・ R max → (2 /
3) ・ R max → R max (ii) (1/2) ・ R max → (2/3) ・ R max → R max The number of steps for increasing the amount of permeated water drawn is limited to (i) and (ii) above. Instead, the amount may be increased in more steps. If a decrease in the amount of inflowing wastewater or the water level in the aeration tank is confirmed, the amount of permeated water to be withdrawn will be reduced through the steps reverse to the above.

【0029】なお、流入排水量が一時的に増加しても、
曝気槽内水位が設定した水位以下であれば、必ずしも引
き抜き透過水量を増量する必要性はなく、引き抜き透過
水量の制御を、流入排水量と曝気槽内水位との両測定値
に基いて行うことで、透過水量の増量期間を必要最小限
に抑えて、膜寿命の短縮を防止することができる。
Even if the amount of inflowing wastewater temporarily increases,
If the water level in the aeration tank is below the set water level, it is not always necessary to increase the amount of drawn permeate, and the amount of permeated water drawn can be controlled based on both the measured inflow and outflow water levels and the water level in the aeration tank. It is possible to prevent the shortening of the membrane life by suppressing the increase period of the amount of permeated water to the necessary minimum.

【0030】即ち、浸漬膜の膜寿命を延命する基本は、
少ない透過水量で運転し、多い透過水量での運転時間は
短縮することにある。そのためには、多少の流入排水量
の変動は曝気槽内水位で吸収し、できるだけ長い期間、
低透過水量で運転する必要がある。本発明によれば、解
析装置で、流入排水量を予め設定した標準変動パターン
と比較すると共に、曝気槽内水位を予め設定した標準水
位と比較しながら、膜からの透過水量が少ない安定運転
期間を可能な限り長くした上で、流入排水量の異常増加
に迅速に対応することができる。
That is, the basis for extending the life of the immersion film is
It is intended to operate with a small amount of permeate and to shorten the operation time with a large amount of permeate. For that purpose, some fluctuation of the inflowing wastewater is absorbed by the water level in the aeration tank, and as long as possible,
It is necessary to operate with a low amount of permeate. According to the present invention, in the analyzer, while comparing the inflow drainage amount with the preset standard fluctuation pattern, while comparing the water level in the aeration tank with the preset standard water level, a stable operation period in which the amount of permeated water from the membrane is small It can be made as long as possible and can quickly respond to an abnormal increase in the inflow of waste water.

【0031】本発明において、引き抜き透過水量の制御
は、減圧ポンプの回転数の調整に限らず、 [1] 透過水取出配管に減圧ポンプを複数台設置し、稼
働台数を調節する。 [2] 透過水取出配管の浸漬膜と減圧ポンプとの間に弁
を設け、この弁の開閉度を調節する。 などの方法により行っても良い。
In the present invention, the control of the amount of drawn permeated water is not limited to the adjustment of the number of rotations of the decompression pump, and [1] a plurality of decompression pumps are installed in the permeated water extraction pipe to adjust the operating number. [2] A valve is provided between the immersion membrane of the permeated water extraction pipe and the pressure reducing pump, and the opening / closing degree of this valve is adjusted. You may perform by the method of.

【0032】なお、図1に示す合併浄化槽は本発明の一
実施例であって、本発明はその要旨を超えない限り、何
ら図示のものに限定されるものではない。
The combined septic tank shown in FIG. 1 is an embodiment of the present invention, and the present invention is not limited to the illustrated one as long as the gist thereof is not exceeded.

【0033】図1において、配管13には、解析装置9
で制御される透過水量が流通するため、流量計7Bは必
ずしも必要とされず、これを設けなくても良い。流量計
7Bを設けた場合には、透過水量の実測値で、透過水量
制御が確実に行われていることを確認することができ
る。また、この実測値を曝気槽内水位の予測に利用する
こともできる。
In FIG. 1, the analysis device 9 is connected to the pipe 13.
Since the amount of permeated water controlled by circulates, the flowmeter 7B is not always necessary and may not be provided. When the flow meter 7B is provided, it is possible to confirm that the permeated water amount is reliably controlled by the measured value of the permeated water amount. In addition, this measured value can be used to predict the water level in the aeration tank.

【0034】[0034]

【実施例】以下に実施例を挙げて、本発明をより具体的
に説明する。
The present invention will be described more specifically with reference to the following examples.

【0035】実施例1 排水量10m3 /dayを処理する合併浄化槽として、
図1に示すような曝気槽容量35m3 の中空糸膜浸漬型
活性汚泥処理装置を設計し、実験を行った。
Example 1 As a combined septic tank for treating a drainage of 10 m 3 / day,
A hollow fiber membrane-immersed activated sludge treatment device having an aeration tank capacity of 35 m 3 as shown in FIG. 1 was designed and tested.

【0036】浸漬膜4には、三菱レイヨン(株)製ステ
ラポアーL(分画特性0.1μm)を用い、膜面積は3
0m2 とした。曝気槽3に流入する排水量と膜からの透
過水(処理水)量は流量計7A,7Bで連続的に測定し
た。曝気槽3内の水位は水位計8で連続的に測定した。
曝気槽3内水位、流入排水量、透過水量は解析装置9に
取り入れ、曝気槽水位(容量)が30m3 の設定水位
(容量)に達すると解析結果から判断された場合、減圧
ポンプ5の回転数を増加させることとした。
As the dipping film 4, Stellapore L (fractionation characteristic: 0.1 μm) manufactured by Mitsubishi Rayon Co., Ltd. was used, and the film area was 3
It was set to 0 m 2 . The amount of waste water flowing into the aeration tank 3 and the amount of permeated water (treated water) from the membrane were continuously measured by the flowmeters 7A and 7B. The water level in the aeration tank 3 was continuously measured by a water level gauge 8.
When the water level in the aeration tank 3, the amount of inflowing drainage water, and the amount of permeated water are taken into the analyzer 9, and the analysis result indicates that the water level (volume) of the aeration tank reaches the set water level (volume) of 30 m 3 , the rotation speed of the decompression pump 5 Decided to increase.

【0037】排水が図4に示すような標準パターンで曝
気槽3に流入している時は、浸漬中空糸膜4からの引き
抜き量を0.42m3 /hrの一定水量としたが、曝気
槽3内水位(容量)は28〜30m3 以内で安定してい
た。
When the drainage is flowing into the aeration tank 3 in a standard pattern as shown in FIG. 4, the amount of water withdrawn from the immersed hollow fiber membrane 4 is set to a constant water amount of 0.42 m 3 / hr. The internal water level (volume) was stable within 28 to 30 m 3 .

【0038】このような運転が行われている状況下に、
大雨などの異常のため、流入排水量が大幅に変化した場
合を想定し、前日まで標準な排水流入パターンで10m
3 /dayの排水量が曝気槽3に流入していたが、0:
00から10:00までの時間帯に1m3 /hrの雨水
が流入し、曝気槽3への流入水量が、設定水量の2倍に
当たる20m3 /dayまで異常に増加した場合の運転
状況の変更を、下記の手段で行った。
Under the situation where such operation is performed,
Assuming a large change in the inflowing wastewater due to abnormalities such as heavy rain, the standard inflowing wastewater inflow pattern is 10m until the day before.
A drainage volume of 3 / day was flowing into the aeration tank 3, but 0:
Change of operating condition when rainwater of 1 m 3 / hr flows in from 00 to 10:00 and the amount of water flowing into the aeration tank 3 abnormally increases to 20 m 3 / day, which is twice the set amount of water. Was carried out by the following means.

【0039】 流量計7Aで流入排水量を測定し、そ
の排水量が標準パターンと比較して、多いか少ないかを
判断する。 水位計8により曝気槽3内水位を測定し、その水位
(容量)が設定した値(30m3 )より高いか低いかを
測定する。 流入排水量が標準パターンより多い場合には、減圧
ポンプ5の回転数を調整して引き抜き透過水量を増加さ
せる。 ただし、流入排水量が標準パターンより多くても、
曝気槽3内水位が設定した値より低い場合は、減圧ポン
プ5の回転数は増加せずに、その時の透過水量で運転す
る。
The flowmeter 7A measures the inflowing wastewater amount, and compares the wastewater amount with the standard pattern to determine whether it is large or small. The water level in the aeration tank 3 is measured by the water level meter 8 and whether the water level (volume) is higher or lower than the set value (30 m 3 ) is measured. When the amount of inflowing wastewater is larger than the standard pattern, the rotation speed of the decompression pump 5 is adjusted to increase the amount of drawn permeate. However, even if the inflow of wastewater is larger than the standard pattern,
When the water level in the aeration tank 3 is lower than the set value, the rotation speed of the decompression pump 5 does not increase, and operation is performed at the permeated water amount at that time.

【0040】 また、流入排水量が標準パターンに復
帰しても、曝気槽3内水位が設定した値より高い場合
は、透過水量を減少しないでその時の透過水量で運転す
る。 流入排水量が標準パターンであっても、曝気槽3内
水位が設定した値より高い場合は透過水量を増加させ
る。 減圧ポンプによる引き抜き透過水量は標準時で0.
42m3 /hrとし、引き抜き透過水量の増加が必要と
なった時には、標準時の約2倍である0.8m3 /h
r、更に増加が必要となった時には標準時の約3倍であ
る最大透過水量の1.2m3 /hrとした。
Further, even if the inflowing wastewater amount returns to the standard pattern, if the water level in the aeration tank 3 is higher than the set value, the permeated water amount is not reduced and the operation is performed at the permeated water amount at that time. Even if the inflow drainage amount is a standard pattern, the permeated water amount is increased when the water level in the aeration tank 3 is higher than the set value. The amount of permeated water drawn by the vacuum pump was 0 at standard time.
42m 3 / hr, and when it is necessary to increase the amount of drawn permeate, it is about twice the standard time, 0.8m 3 / h
r, and when further increase was required, it was set to 1.2 m 3 / hr of the maximum permeated water amount which is about 3 times the standard time.

【0041】このような方法により透過水量の制御を行
った結果を、図2(流入排水量と引き抜き透過水量の変
化を示すグラフ),図3(曝気槽内排水量(水位)の変
化を示すグラフ)に示す。
The results of controlling the amount of permeated water by such a method are shown in FIG. 2 (graph showing changes in inflow drainage amount and withdrawal permeated water amount), and FIG. 3 (graph showing changes in aeration tank drainage amount (water level)). Shown in.

【0042】即ち、図2,3に示す如く、前日までは正
常な運転であったが、0:00からの異常な排水流入に
より曝気槽水位が上昇し、30m3 の設定容量以上に達
したため、引き抜き透過水量を0.8m3 /hrに増加
させたが、異常な流入量が継続し、曝気槽水位が更に上
昇傾向であった。そこで6:00には更に引き抜き透過
水量を最大透過水量の1.2m3 /hrに増加させた。
11:00より異常な流入排水量は標準水量に復帰した
が、曝気槽水位が依然、設定値の30m3 より高水位で
あったため、最大透過水量で運転した。14:00以降
は曝気槽水位が設定値に復帰する傾向であったため、引
き抜き透過水量を0.8m3 /hrに低下させ、更に曝
気槽水位の減少に合わせて標準状態の0.42m3 /h
rとした。
That is, as shown in FIGS. 2 and 3, the operation was normal until the previous day, but the aeration tank water level rose due to an abnormal inflow of waste water from 0:00 and reached the set capacity of 30 m 3 or more. The amount of permeated water drawn was increased to 0.8 m 3 / hr, but the abnormal inflow continued and the aeration tank water level tended to rise further. Therefore, at 6:00, the extraction permeated water amount was further increased to the maximum permeated water amount of 1.2 m 3 / hr.
The abnormal inflow of wastewater returned to the standard amount of water from 11:00, but the aeration tank water level was still higher than the set value of 30 m 3 , so operation was performed at the maximum permeated water amount. After 14:00, the water level in the aeration tank tended to return to the set value, so the amount of drawn permeated water was reduced to 0.8 m 3 / hr, and 0.42 m 3 / h
r.

【0043】このように10時間の内に、計画水量と同
等の雨水が混入する例は非常に希であるが、以上の方式
により、原水調整槽を設置することなく、曝気槽から排
水がオーバーフローすることを回避して安定した運転が
可能となることが明らかである。
As described above, it is extremely rare that rainwater of the same amount as the planned amount of water is mixed within 10 hours, but by the above method, drainage overflows from the aeration tank without installing the raw water adjusting tank. It is obvious that stable operation is possible by avoiding this.

【0044】[0044]

【発明の効果】以上詳述した通り、本発明の合併浄化槽
によれば、 生物反応槽に分離膜を浸漬して透過水を取り出すよ
うにすることにより沈澱槽を不要とした合併浄化槽にお
いて、更に原水調整槽も不要とすることができるため、
装置のコンパクト化を図り、装置設置面積の小さい合併
浄化槽とすることができる。 流入排水量の変動に対して、完全に自動化運転が可
能である。 常時は、分離膜からの透過水を低く設定して運転す
るため、膜寿命が長く、膜の洗浄頻度、交換頻度が少な
い。 膜透過水を処理水とするため、生物反応槽の汚泥性
状等に係りなく、高度な処理水を得ることができる。と
いった優れた効果が奏される。
As described in detail above, according to the combined septic tank of the present invention, the combined septic tank which does not require a precipitation tank by immersing the separation membrane in the biological reaction tank to take out permeated water is further provided. Since the raw water adjusting tank can be eliminated,
The device can be made compact and the combined septic tank with a small device installation area can be obtained. Fully automated operation is possible even if the amount of inflowing wastewater changes. Since the permeated water from the separation membrane is set to be low at all times, the membrane has a long life and the frequency of cleaning and replacement of the membrane is low. Since the membrane-permeated water is used as the treated water, a high degree of treated water can be obtained regardless of the sludge properties of the biological reaction tank. Such an excellent effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の合併浄化槽の一実施例を示す系統図で
ある。
FIG. 1 is a system diagram showing an embodiment of a combined septic tank of the present invention.

【図2】実施例1における流入排水量と引き抜き透過水
量の変化を示すグラフである。
FIG. 2 is a graph showing changes in the inflow drainage amount and the withdrawal permeate amount in Example 1.

【図3】実施例1における曝気槽内排水量の変化を示す
グラフである。
FIG. 3 is a graph showing changes in the amount of drainage water in the aeration tank in Example 1.

【図4】合併浄化槽に流入する排水量の時間変動を示す
グラフである。
FIG. 4 is a graph showing the time variation of the amount of wastewater flowing into the combined septic tank.

【図5】従来の合併浄化槽を示す系統図である。FIG. 5 is a system diagram showing a conventional combined septic tank.

【図6】従来における流入水量と移送水量の変化を示す
グラフである。
FIG. 6 is a graph showing changes in the amount of inflow water and the amount of transfer water in the related art.

【図7】従来の原水調整槽内の排水量の時間変動を示す
グラフである。
FIG. 7 is a graph showing the time variation of the amount of drainage in a conventional raw water adjustment tank.

【符号の説明】[Explanation of symbols]

3 曝気槽 4 浸漬膜 5 減圧ポンプ 6 曝気管 7,7A,7B 流量計 8 水位計 9 解析装置 3 Aeration tank 4 Immersion membrane 5 Decompression pump 6 Aeration pipe 7, 7A, 7B Flow meter 8 Water level meter 9 Analyzer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 分離膜が浸漬配置された生物反応槽と、
該分離膜の内部から透過水を取り出す取出手段とを備え
た合併浄化槽において、 該合併浄化槽の流入水量を測定する手段と、 該反応槽内の水位を測定する手段と、 測定された流入水量及び水位に基いて前記取出手段によ
る透過水取出量を制御する手段とを設けたことを特徴と
する合併浄化槽。
1. A biological reaction tank in which a separation membrane is immersed and arranged,
In a combined septic tank equipped with a take-out means for taking out permeated water from the inside of the separation membrane, a means for measuring the inflow water amount of the combined septic tank, a means for measuring the water level in the reaction tank, and a measured inflow water amount and A combined septic tank comprising means for controlling the amount of permeated water taken out by the take-out means based on the water level.
JP33173095A 1995-12-20 1995-12-20 Combined septic tank Pending JPH09168788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33173095A JPH09168788A (en) 1995-12-20 1995-12-20 Combined septic tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33173095A JPH09168788A (en) 1995-12-20 1995-12-20 Combined septic tank

Publications (1)

Publication Number Publication Date
JPH09168788A true JPH09168788A (en) 1997-06-30

Family

ID=18246965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33173095A Pending JPH09168788A (en) 1995-12-20 1995-12-20 Combined septic tank

Country Status (1)

Country Link
JP (1) JPH09168788A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6863817B2 (en) 2002-12-05 2005-03-08 Zenon Environmental Inc. Membrane bioreactor, process and aerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6863817B2 (en) 2002-12-05 2005-03-08 Zenon Environmental Inc. Membrane bioreactor, process and aerator
US7022236B2 (en) 2002-12-05 2006-04-04 Zenon Environmental Inc. Membrane bioreactor, process and aerator

Similar Documents

Publication Publication Date Title
KR102172981B1 (en) Smart sewage treatment Operation System
Stensel et al. Biological aerated filter evaluation
US20160102003A1 (en) Advanced control system for wastewater treatment plants with membrane bioreactors
JP5259454B2 (en) Flow control device and water treatment device incorporating flow control device
US20200001240A1 (en) Membrane separation device and membrane separation method
KR20080101588A (en) Automatic contro method and device for membrane filtering system
JP5010848B2 (en) Sewage treatment plant and its control device
JPH09168788A (en) Combined septic tank
US20230106586A1 (en) Sequencing Batch Reactor Systems and Methods
CN115531934A (en) Sludge discharge control method for sedimentation tank
JP3314575B2 (en) Sedimentation equipment
JP2017121595A (en) Monitor and control system using activated-sludge process
JPH08243539A (en) Control method of waste water treatment facility
CN110124520A (en) A kind of power plant's reverse osmosis membrane concentration rate control system
CN220751707U (en) Water quality on-line analyzer with pretreatment device
KR102365665B1 (en) Apparatus and method for automatic control of coagulant dosage in sewage and industrial wastewater treatment facilities, and sewage and industrial wastewater treatment system for automatic control of coagulant dosage
CN219831056U (en) Sewage on-line monitoring device
CN218025620U (en) Laboratory is with high desalination RO reverse osmosis unit
CN116395898B (en) Automatic start-stop control system of sea water desalination plant
US20230331607A1 (en) Storm flow operation and simultaneous nitrification denitrification operation in a sequencing batch reactor
La Motta et al. Role of bioflocculation on chemical oxygen demand removal in solids contact chamber of trickling filter/solids contact process
JP2008055263A (en) Operation support system of water treatment plant
CN112429836A (en) Subway station sewage treatment system
Greene et al. Towards Net-Zero Energy in Wastewater Treatment: Demonstration of Enhanced Primary Treatment Technology
JP3106063B2 (en) Membrane separation equipment