JPH09167523A - Extra-thin, diameter multi-core cable - Google Patents

Extra-thin, diameter multi-core cable

Info

Publication number
JPH09167523A
JPH09167523A JP7347497A JP34749795A JPH09167523A JP H09167523 A JPH09167523 A JP H09167523A JP 7347497 A JP7347497 A JP 7347497A JP 34749795 A JP34749795 A JP 34749795A JP H09167523 A JPH09167523 A JP H09167523A
Authority
JP
Japan
Prior art keywords
resin composition
core cable
thin
diameter
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7347497A
Other languages
Japanese (ja)
Inventor
Yoshihisa Kato
善久 加藤
Hideyuki Suzuki
秀幸 鈴木
Hiroshi Komuro
浩 小室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP7347497A priority Critical patent/JPH09167523A/en
Publication of JPH09167523A publication Critical patent/JPH09167523A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an extra-thin diameter, multi-core cable with its superior self-fusion property in handling to be used electronic equipment, medical equipment products, etc. SOLUTION: This cable can be obtained by means of inter-wire fusion processing due to heating process after plural extra-thin insulation electric wires of which resin composition sharing methacrylate monomer having isocyanate group at the end in urethane-acrylate ultraviolet-ray hardened resin composition and methacrylate monomer having hydroxy group at its end is coated with an insulation thickness of 50μm or less are stranded on a metal wire of 100μm or less in conductor diameter. In addition, urethane acrylate ultraviolet-ray hardened resin composition in which the ratio of isocyanate group and hydroxy group of said resin composition ranges from 5/1 to 1/1 is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電子機器,医療
機器製品等に用いる超細径多芯ケーブルに関し、特に、
自己融着性を付与するとともに細径化,端末処理性,識
別性および取扱性の向上を図った新規な超細径多芯ケー
ブルに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-small diameter multi-core cable used for electronic equipment, medical equipment products, etc.
The present invention relates to a novel ultra-thin multi-core cable that is self-fusing and has improved diameter, terminal treatment, identification, and handleability.

【0002】[0002]

【従来の技術】近年、通信機器類や精密電子機器類の小
型化および高密度実装化が進み、より多くの情報信号を
伝達するため、導体であるケーブル芯線の細径化された
絶縁電線を複数本組み合わせた細径多芯ケーブルが使用
されている。特に、医療の分野においては、手術に先立
ってカテーテルを用いて生体内にセンサーを導入し、こ
のセンサーの検出信号から生体内部の情報を収集する試
みがなされており、脳等の生体深部から一度に多くの情
報を得るためにセンサーの小型化や、それに用いるリー
ド線の細径化や高密度化が要求されている。
2. Description of the Related Art In recent years, communication devices and precision electronic devices have been miniaturized and mounted at high density, and in order to transmit more information signals, it is necessary to use insulated wires whose conductors are cable cores having a reduced diameter. A small-diameter multi-core cable that combines multiple cables is used. In particular, in the field of medicine, it has been attempted to introduce a sensor into a living body using a catheter prior to an operation and collect information on the inside of the living body from a detection signal of the sensor. In order to obtain much information, it is required to miniaturize the sensor and to reduce the diameter and density of the lead wire used for the sensor.

【0003】絶縁電線の細径化は、導体の細径化と表面
被覆の薄肉化によって可能になる。表面被覆を薄く形成
する方法として、例えばエナメル線の製造に代表される
ように、液状材料を導体に塗布して硬化させる方法があ
る。
The diameter of the insulated wire can be reduced by reducing the diameter of the conductor and the thickness of the surface coating. As a method of forming a thin surface coating, there is a method of applying a liquid material to a conductor and curing it, as represented by the production of enameled wire.

【0004】液状材料には熱硬化型,紫外線硬化型,電
子線硬化型等の種類があり、中でも紫外線硬化型樹脂組
成物は無溶剤で液状をなし、薄肉被覆の形成が容易で硬
化速度が速く、1回または数回の塗布によって任意の膜
厚の被覆を得ることができる。この紫外線硬化型樹脂組
成物は溶剤を使用する熱硬化性ワニスに比べて安全性が
高く、結線時の端末処理性にも優れており、さらに、無
色透明な樹脂組成物では着色が容易に行えるので電線の
識別化が図り易いという利点も備えている。
There are various types of liquid materials such as thermosetting type, ultraviolet curing type, and electron beam curing type. Among them, the ultraviolet curing type resin composition is a solventless liquid state, and it is easy to form a thin coating and has a curing rate. A coating of any thickness can be obtained quickly and by one or several coatings. This UV-curable resin composition has higher safety than a thermosetting varnish that uses a solvent, and has excellent terminal processability at the time of connection. Furthermore, a colorless and transparent resin composition can easily be colored. Therefore, there is an advantage that it is easy to identify the electric wire.

【0005】その他の方法として、ポリオレフィン系樹
脂やふっ素系樹脂等の熱可塑性樹脂をベースとした押出
による薄肉被覆の形成方法が知られている。
As another method, there is known a method of forming a thin coating by extrusion based on a thermoplastic resin such as a polyolefin resin or a fluorine resin.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の被覆形
成方法において、被覆を薄肉化して使用とするとき、エ
ナメル線のように液状材料を導体に塗布して焼き付けに
よって硬化させる方法では、端末の剥離性が悪く、さら
に、液状材料への着色が困難であることから、識別性に
劣るという問題がある。また、熱可塑性樹脂の押し出し
による形成方法では、押し出し時に導体への負荷が大き
くなるため、被覆材料の圧力および導体の引き抜き速度
を適切に制御することができないと導体の断線や外観の
荒れ、被覆厚の不均一といった不具合が生じることによ
り製造技術に困難性があり、細径化を阻んでいる要因と
なっている。
In the above-mentioned conventional coating forming method, when the coating is thinned and used, a method of applying a liquid material to a conductor like an enamel wire and curing the same by baking is used. Since the peelability is poor and the liquid material is difficult to be colored, there is a problem that the distinguishability is poor. In addition, in the forming method by extrusion of thermoplastic resin, the load on the conductor becomes large at the time of extrusion, so if the pressure of the coating material and the drawing speed of the conductor cannot be controlled appropriately, the conductor will be disconnected, the appearance will be rough, and the coating will not occur. Due to problems such as non-uniform thickness, the manufacturing technology is difficult, which is a factor that prevents the diameter reduction.

【0007】一方、極細径絶縁電線を複数本撚り合わせ
た超多心ケーブルを円筒状のチューブやスパイラルチュ
ーブに挿入する場合、撚り合わせただけでは挿入時にば
らけ、挿入できないことや、挿入後においてもチューブ
内でばらけた状態では液中での電気的特性が不安定とな
る問題がある。また、撚り合わせた後、ばらけを防ぐた
めに外層コートを施すことがあるが、外径数十ミクロン
の絶縁電線を複数本撚り合わせた端末を1本1本取り出
すことは非常に手間が掛るという問題があった。
On the other hand, when inserting an ultra-multicore cable in which a plurality of extra-fine diameter insulated electric wires are twisted into a cylindrical tube or spiral tube, the twisting alone causes the insertion at the time of insertion, and the insertion cannot be done. However, there is a problem that the electrical characteristics in the liquid become unstable when they are dispersed in the tube. In addition, after twisting, an outer layer coat may be applied to prevent loosening, but it takes a lot of time and effort to take out each of the twisted insulated wires with an outer diameter of several tens of microns. There was a problem.

【0008】エナメル線の分野において、自己融着性を
付与する方法として共重合ナイロンやそれらの変性物等
を溶剤に溶かし、表面に薄く被覆した自己融着エナメル
線があるが、溶剤を使用するため、溶剤の回収等の大掛
かりな設備を必要とする外、生体とかかわる用途へは好
ましくないという問題点もある。
In the field of enameled wire, as a method of imparting self-bonding property, there is a self-bonding enameled wire in which copolymer nylon or a modified product thereof is dissolved in a solvent and the surface is thinly coated, but a solvent is used. Therefore, there is a problem in that it requires large-scale equipment such as solvent recovery and is not preferable for applications involving living organisms.

【0009】これに対し、紫外線硬化塗料は無溶剤化が
容易で、安全面,生産面等で大きなメリットをもってい
る。しかし、一般に紫外線硬化塗料はエナメル線の熱硬
化型ワニスと同様に、硬化時に三次元の架橋体を形成
し、硬化後は熱で融着しないため、紫外線硬化塗料を被
覆したエナメル線を熱融着することができないという問
題点がある。
On the other hand, the ultraviolet curable coating material is easy to be solvent-free and has great advantages in terms of safety and production. However, UV curable coatings generally form a three-dimensional cross-linked product during curing, as with thermosetting varnish for enameled wires, and do not fuse with heat after curing. There is a problem that you cannot wear it.

【0010】この発明はこのような点に鑑みてなされた
もので、上述した従来技術の欠点を解消し、電子機器,
医療機器製品等に用いる取扱性に優れた自己融着性を有
する超細径多芯ケーブルを提供することを目的とする。
The present invention has been made in view of the above circumstances, and solves the above-mentioned drawbacks of the prior art,
An object of the present invention is to provide an ultra-thin diameter multicore cable having excellent self-bonding property, which is excellent in handleability and used in medical device products and the like.

【0011】[0011]

【課題を解決するための手段】この発明は、ウレタンア
クリレート系紫外線硬化樹脂組成物中にイソシアネート
基を有する(メタ)アクリレートモノマーとヒドロキシ
基を末端にもつ(メタ)アクリレートモノマーを併用し
た樹脂組成物を、導体径100μm以下の金属線上に、
絶縁厚50μm以下で被覆を施した極細絶縁電線を複数
本撚り合わせた後、加熱処理により線間融着処理して得
られることを特徴とする超細径多芯ケーブルである。ま
た、上記樹脂組成物のイソシアネート基とヒドロキシ基
の比率が5/1〜1/1の範囲であるウレタンアクリレ
ート系紫外線硬化樹脂組成物を用いることを特徴とする
超細径多芯ケーブルである。
The present invention is directed to a resin composition in which a urethane acrylate-based ultraviolet curable resin composition is used in combination with a (meth) acrylate monomer having an isocyanate group and a (meth) acrylate monomer having a hydroxy group at the end. On a metal wire with a conductor diameter of 100 μm or less,
It is an ultra-thin diameter multi-core cable obtained by twisting a plurality of ultrafine insulated electric wires coated with an insulation thickness of 50 μm or less and then performing a fusion treatment between wires by a heat treatment. Further, it is an ultra-thin multi-core cable characterized by using a urethane acrylate-based ultraviolet curable resin composition in which the ratio of isocyanate groups to hydroxy groups of the resin composition is in the range of 5/1 to 1/1.

【0012】紫外線硬化樹脂組成物について本件発明者
らが種々の研究を行った結果、ウレタンアクリレート系
紫外線硬化樹脂組成物中に末端にイソシアネート基を有
する(メタ)アクリレートモノマーとヒドロキシ基を末
端にもつ(メタ)アクリレートモノマーを併用するこ
と、さらに、イソシアネート基とヒドロキシ基の比率が
5/1〜1/1の範囲とした自己融着性樹脂組成物を、
導体径100μm以下の金属線上に、絶縁厚50μm以
下で被覆を施した極細絶縁電線を複数本撚り合わせた
後、加熱処理により線間融着処理することで、細径化,
取扱性,端末処理性,識別性に優れた超細径多芯ケーブ
ルを製造することが可能となる。
As a result of various studies conducted by the present inventors on the UV curable resin composition, the urethane acrylate UV curable resin composition has a (meth) acrylate monomer having an isocyanate group at the terminal and a hydroxy group at the terminal. Using a (meth) acrylate monomer in combination, a self-fusing resin composition in which the ratio of the isocyanate group and the hydroxy group is in the range of 5/1 to 1/1,
After twisting a plurality of ultra-fine insulated electric wires coated with an insulation thickness of 50 μm or less on a metal wire with a conductor diameter of 100 μm or less, heat treatment is performed to fuse the wires to reduce the diameter,
It is possible to manufacture ultra-thin multi-core cables that are easy to handle, easy to handle, and easy to identify.

【0013】[0013]

【発明の実施の形態】この発明で使用するウレタン(メ
タ)アクリレートモノマー系紫外線架橋樹脂組成物は、
ウレタン(メタ)アクリレートオリゴマーを主成分と
し、その他、光重合性モノマーや、光重合開始剤等から
なる樹脂組成物であって、ウレタン(メタ)アクリレー
トオリゴマーがジイソシアネートとポリオールとヒドロ
キシアルキル(メタ)アクリレートから製造されるもの
であればよく、特にこれを規定するものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The urethane (meth) acrylate monomer-based UV crosslinking resin composition used in the present invention is
A resin composition comprising a urethane (meth) acrylate oligomer as a main component and other components such as a photopolymerizable monomer and a photopolymerization initiator, wherein the urethane (meth) acrylate oligomer is a diisocyanate, a polyol and a hydroxyalkyl (meth) acrylate. It is not particularly limited as long as it is manufactured from.

【0014】光重合性モノマーとは、アクリロイル基,
メタクロイル基,アリル基,ビニル基等の不飽和二重結
合を有する官能基をもつ公知の反応性希釈剤等を用いる
ことができる。望ましくは官能基がメタクロイル基の単
官能モノマーを用いることが低温半田付性に有効であ
る。
The photopolymerizable monomer is an acryloyl group,
A known reactive diluent having a functional group having an unsaturated double bond such as a methacroyl group, an allyl group and a vinyl group can be used. Desirably, it is effective for low temperature solderability to use a monofunctional monomer whose functional group is a metacroyl group.

【0015】光重合開始剤は特に規定するものではな
く、公知の光開始剤を用いればよい。例えば、アセトフ
ェノン系,ベンゾイン系,ベンゾフェノン系,チオキサ
ンソン系等がある。アセトフェノン系としては、2−ヒ
ドロキシ−2−メチル−1−フェニルプロパン−1−オ
ン,1−ヒドロキシシクロヘキシルフェニルケトン,2
−メチル−1−〔4−(メチルチオ)フェニル〕−2−
モルホリノプロパン−1等があり、ベンゾフェノン系と
してはベンゾイン,ベンゾインメチルエーテル,ベンゾ
インイソプロピルエーテル,ベンゾインイソブチルエー
テル,ベンジルジメチルケタール等がある。また、ベン
ゾフェノン系としては、ベンゾフェノン,ベンゾイル安
息香酸メチル,3.3’−ジメチル−4−メトキシベン
ゾフェノン等があり、チオキサンソン系としては2.4
−ジエチルチオキサンソン,2.4−ジクロロチオキサ
ンソン等が挙げられる。
The photopolymerization initiator is not particularly limited, and known photoinitiators may be used. For example, there are acetophenone-based, benzoin-based, benzophenone-based, thioxanthone-based, and the like. As the acetophenone type, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenyl ketone, 2
-Methyl-1- [4- (methylthio) phenyl] -2-
Morpholinopropane-1 and the like, and examples of the benzophenone type include benzoin, benzoin methyl ether, benzoin isopropyl ether, benzoin isobutyl ether, and benzyl dimethyl ketal. Examples of the benzophenone type include benzophenone, methyl benzoylbenzoate, 3.3′-dimethyl-4-methoxybenzophenone, and the like, and thioxanthone type 2.4.
-Diethylthioxanthone, 2.4-dichlorothioxanthone and the like.

【0016】末端にイソシアネート基を有する(メタ)
アクリレートモノマーとしては、特に規定するものでは
なく、イソシアネート基を少なくとも1個以上有する
(メタ)アクリレートモノマーであればよい。例えば、
2−イソシアネート(メタ)アクリレートが代表的なモ
ノマーとして挙げられる。
Having an isocyanate group at the terminal (meth)
The acrylate monomer is not particularly limited, and may be a (meth) acrylate monomer having at least one isocyanate group. For example,
2-Isocyanate (meth) acrylate is mentioned as a typical monomer.

【0017】末端にヒドロキシ基を有する(メタ)アク
リレートモノマーとしては、ヒドロキシ基を少なくとも
1個以上有する(メタ)アクリレートモノマーであれば
よい。例えば、2−ヒドロキシエチル(メタ)アクリレ
ート,2−ヒドロキシプロピル(メタ)アクリレート,
グリシドールジ(メタ)アクリレート等がある。
The (meth) acrylate monomer having a hydroxy group at the terminal may be any (meth) acrylate monomer having at least one hydroxy group. For example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate,
Examples include glycidol di (meth) acrylate.

【0018】これらを併用したウレタンアクリレート系
紫外線硬化樹脂組成物を被覆してなる極細絶縁電線同士
を重ね、ある温度以上で加熱すると、極細絶縁電線表面
間でイソシアネート基とヒドロキシ基が反応して線間を
接着させることができる。
When ultrafine insulated wires coated with the urethane acrylate-based UV-curable resin composition that uses them in combination are stacked and heated at a certain temperature or higher, isocyanate groups and hydroxy groups react between the surfaces of the ultrafine insulated wires to cause a line. The spaces can be bonded.

【0019】この発明でイソシアネート基とヒドロキシ
基の比率を5/1〜1/1の範囲にするのは、イソシア
ネート基の比率が高い方がウレタン(メタ)アクリレー
トオリゴマー中のウレタン基とアロファネート結合がで
き、極細絶縁電線の線間の接着を高めることができるた
めである。
In the present invention, the ratio of the isocyanate group to the hydroxy group is set in the range of 5/1 to 1/1 because the urethane group and the allophanate bond in the urethane (meth) acrylate oligomer are higher when the ratio of the isocyanate group is higher. This is because it is possible to improve the adhesion between the wires of the ultrafine insulated wire.

【0020】ウレタンアクリレート系紫外線硬化樹脂組
成物中に占めるイソシアネート基を有するモノマーとヒ
ドロキシ基を有するモノマーの比率は特に規定するもの
でないが、1重量%〜30重量%の範囲がよい。1重量
%より少ないと自己融着性が得られにくく、30重量%
より多くなると硬化性が低下する問題がある。さらに、
好ましくは5重量%〜20重量%の範囲がよい。
The proportion of the monomer having an isocyanate group and the monomer having a hydroxy group in the urethane acrylate-based UV-curable resin composition is not particularly limited, but is preferably in the range of 1% by weight to 30% by weight. If it is less than 1% by weight, it is difficult to obtain self-bonding property, and 30% by weight
If it is more, there is a problem that the curability is lowered. further,
It is preferably in the range of 5% by weight to 20% by weight.

【0021】導体を構成する金属は、銅,アルミニウ
ム,鉄,銀,白金等のいずれでもよく、それらの合金、
それらに錫,亜鉛等との合金でもよい。また、それらに
錫,銀,ニッケル等でメッキされたものでもよい。金属
導体は単線であってもよく、撚り線や撚り線をさらにメ
ッキしたものでもよい。また、平角状の金属導体でもよ
い。
The metal constituting the conductor may be any of copper, aluminum, iron, silver, platinum, etc., and alloys thereof.
They may be alloys with tin, zinc, etc. Further, those plated with tin, silver, nickel or the like may be used. The metal conductor may be a single wire, or a stranded wire or a stranded wire further plated. Alternatively, a rectangular metal conductor may be used.

【0022】この他必要に応じて光開始助剤,接着防止
剤,チクソ付与剤,充填剤,可塑剤,非反応性ポリマ
ー,着色剤,難燃剤,難燃助剤,軟化防止剤,離型剤,
乾燥剤,分散剤,湿潤剤,沈殿防止剤,増粘剤,帯電防
止剤,静電防止剤,防かび剤,防鼠剤,防蟻剤,艶消し
剤,ブロッキング防止剤,皮張り防止剤等、その他種々
の無機化合物,有機化合物を組み合わせて用いることが
できる。
In addition, if necessary, a photoinitiator aid, an adhesion preventive agent, a thixotropic agent, a filler, a plasticizer, a non-reactive polymer, a colorant, a flame retardant, a flame retardant aid, an anti-softening agent, a mold release agent. Agent,
Drying agent, dispersing agent, wetting agent, anti-settling agent, thickening agent, antistatic agent, antistatic agent, antifungal agent, anti-mouse agent, anti-termite agent, matting agent, anti-blocking agent, anti-skin agent Other various inorganic compounds and organic compounds can be used in combination.

【0023】極細絶縁電線の被覆材料として紫外線硬化
樹脂組成物を用いるのは、細径線への薄肉被覆や着色に
よる識別が容易にできること、さらに、熱硬化ワニスを
焼き付けるエナメル線に比べ、端末加工性(剥離性)に
優れる利点をもつためである。また、該樹脂組成物には
紫外線および熱硬化併用樹脂組成物を用いてもよい。紫
外線および熱硬化併用樹脂組成物としては、上記組成に
加え、熱による重合反応を開始させる働きをもつ熱重合
開始剤を組み合わせたものなどであればよく、この発明
ではこれは特に限定するものではない。
The use of the ultraviolet curable resin composition as the coating material for the extra-fine insulated wire is that thin wires can be easily distinguished from each other by thin coating or coloring, and in addition, compared with the enameled wire that is baked with a thermosetting varnish, it can be processed by a terminal treatment. This is because it has an advantage of excellent property (peelability). Moreover, you may use ultraviolet-ray and thermosetting resin composition for this resin composition. The UV and thermosetting combined resin composition may be a combination of a thermal polymerization initiator having a function of initiating a polymerization reaction by heat in addition to the above composition, and in the present invention, this is not particularly limited. Absent.

【0024】[0024]

【実施例】以下、この発明の具体的な実施例を比較例と
共に図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below with reference to the drawings together with comparative examples.

【実施例1】ウレタンメタクリレートオリゴマーU−1
22M〔新中村化学(株)製〕100重量部,フェノキ
シジエチレングリコールメタクリレート〔新中村化学
(株)製〕50重量部,2−イソシアネートエチルメタ
クリレート(ダウ ケミカル製)7重量部,2−ヒドロ
キシエチルメタクリレート〔共栄社油脂(株)製〕5重
量部および光重合開始剤の2,2−ジメトキシ−2−フ
ェニルアセトフェノン(チバガイギー製)5重量部より
なる紫外線硬化樹脂組成物を、図1に示す導体径25±
1μm(銀メッキ銅合金線)の素線1上に被覆し、紫外
線照射炉を通して硬化させ、絶縁厚10±1μmの自己
融着性紫外線硬化樹脂層2を有する極細絶縁電線3を得
た後、図2に示すようにこれを2個撚りして加熱炉を通
して融着させ、超細径多芯ケーブル4を得て試料とし
た。
[Example 1] Urethane methacrylate oligomer U-1
22M [Shin-Nakamura Chemical Co., Ltd.] 100 parts by weight, phenoxydiethylene glycol methacrylate [Shin-Nakamura Chemical Co., Ltd.] 50 parts by weight, 2-isocyanate ethyl methacrylate (Dow Chemical) 7 parts by weight, 2-hydroxyethyl methacrylate [ Kyoeisha Yushi Co., Ltd.] 5 parts by weight and a photopolymerization initiator 2,2-dimethoxy-2-phenylacetophenone (manufactured by Ciba-Geigy) 5 parts by weight, an ultraviolet curable resin composition, conductor diameter 25 ± shown in FIG.
After coating the wire 1 of 1 μm (silver-plated copper alloy wire) and curing it through an ultraviolet irradiation furnace, an ultrafine insulated electric wire 3 having a self-bonding ultraviolet curable resin layer 2 with an insulation thickness of 10 ± 1 μm is obtained, As shown in FIG. 2, two pieces of this were twisted and fused through a heating furnace to obtain an ultra-small diameter multi-core cable 4 and used as a sample.

【0025】[0025]

【実施例2】ウレタンメタクリレートオリゴマーU−1
22M〔新中村化学(株)製〕100重量部,フェノキ
シジエチレングリコールメタクリレート〔新中村化学
(株)製〕50重量部,2−イソシアネートエチルメタ
クリレート(ダウ ケミカル製)18重量部,2−ヒド
ロキシプロピルメタクリレート〔大阪有機(株)製〕5
重量部および光重合開始剤の2,2−ジメトキシ−2−
フェニルアセトフェノン(チバガイギー製)5重量部よ
りなる紫外線硬化樹脂組成物を、図1に示すものと同様
に導体径25±1μm(銀メッキ銅合金線)の素線1上
に被覆し、紫外線照射炉を通して硬化させ、絶縁厚10
±1μmの自己融着性紫外線硬化樹脂層2を有する極細
絶縁電線4を得た後、これを図3に示すように7個撚り
して加熱炉を通して融着させ超細径多芯ケーブル5を得
て試料とした。
[Example 2] Urethane methacrylate oligomer U-1
22M [Shin-Nakamura Chemical Co., Ltd.] 100 parts by weight, phenoxydiethylene glycol methacrylate [Shin-Nakamura Chemical Co., Ltd.] 50 parts by weight, 2-isocyanate ethyl methacrylate (Dow Chemical) 18 parts by weight, 2-hydroxypropyl methacrylate [ Osaka Organic Co., Ltd.] 5
2,2-dimethoxy-2-part by weight and photopolymerization initiator
An ultraviolet ray curing resin composition consisting of 5 parts by weight of phenylacetophenone (manufactured by Ciba Geigy) was coated on a wire 1 having a conductor diameter of 25 ± 1 μm (silver plated copper alloy wire) as in the case shown in FIG. Cured through, insulation thickness 10
After obtaining an ultrafine insulated electric wire 4 having a self-bonding UV-curable resin layer 2 of ± 1 μm, 7 pieces of this are twisted and fused through a heating furnace as shown in FIG. A sample was obtained.

【0026】[0026]

【比較例1】ウレタンメタクリレートオリゴマーU−1
22M〔新中村化学(株)製〕100重量部,フェノキ
シジエチレングリコールメタクリレート〔新中村化学
(株)製〕60重量部および光重合開始剤の2,2−ジ
メトキシ−2−フェニルアセトフェノン(チバガイギー
製)5重量部よりなる紫外線硬化樹脂組成物を、図1に
示すものと同様に導体径25±1μm(銀メッキ銅合金
線)の素線1上に被覆し、紫外線照射炉を通して硬化さ
せ、絶縁厚10±1μmの自己融着性紫外線硬化樹脂層
2を有する極細絶縁電線3を得た後、これを図2に示す
ように2個撚りして加熱炉を通して融着させ超細径多芯
ケーブル4を得て試料とした。
[Comparative Example 1] Urethane methacrylate oligomer U-1
22M [Shin-Nakamura Chemical Co., Ltd.] 100 parts by weight, phenoxydiethylene glycol methacrylate [Shin-Nakamura Chemical Co., Ltd.] 60 parts by weight, and photopolymerization initiator 2,2-dimethoxy-2-phenylacetophenone (Ciba Geigy) 5 An ultraviolet curable resin composition consisting of parts by weight is coated on the element wire 1 having a conductor diameter of 25 ± 1 μm (silver plated copper alloy wire) as in the case shown in FIG. After obtaining an ultrafine insulated electric wire 3 having a self-fusing UV-curable resin layer 2 of ± 1 μm, two ultrafine insulated electric wires 3 are twisted as shown in FIG. A sample was obtained.

【0027】[0027]

【比較例2】ウレタンメタクリレートオリゴマーU−1
22M〔新中村化学(株)製〕100重量部,フェノキ
シジエチレングリコールメタクリレート〔新中村化学
(株)製〕60重量部,2−イソシアネートエチルメタ
クリレート(ダウ ケミカル製)5重量部および光重合
開始剤の2,2−ジメトキシ−2−フェニルアセトフェ
ノン(チバガイギー製)5重量部よりなる紫外線硬化樹
脂組成物を、図1に示すものと同様に導体径25±1μ
m(銀メッキ銅合金線)の素線1上に被覆し、紫外線照
射炉を通して硬化させ、絶縁厚10±1μmの自己融着
性紫外線硬化樹脂層2を有する極細絶縁電線3を得た
後、これを図3に示すものと同様に7個撚りして加熱炉
を通して融着させ超細径多芯ケーブル5を得て試料とし
た。
[Comparative Example 2] Urethane methacrylate oligomer U-1
22M [Shin-Nakamura Chemical Co., Ltd.] 100 parts by weight, phenoxydiethylene glycol methacrylate [Shin-Nakamura Chemical Co., Ltd.] 60 parts by weight, 2-isocyanate ethyl methacrylate (manufactured by Dow Chemical) 5 parts by weight, and 2 of a photopolymerization initiator , 2-dimethoxy-2-phenylacetophenone (manufactured by Ciba-Geigy) was used to prepare an ultraviolet curable resin composition in the same manner as that shown in FIG.
m (silver-plated copper alloy wire) is coated on the element wire 1 and cured through an ultraviolet irradiation furnace to obtain an ultrafine insulated electric wire 3 having a self-bonding ultraviolet curable resin layer 2 with an insulation thickness of 10 ± 1 μm. Similar to the one shown in FIG. 3, seven pieces were twisted and fused through a heating furnace to obtain an ultra-small diameter multi-core cable 5, which was used as a sample.

【0028】表1に実施例1,実施例2および比較例
1,比較例2の超細径多芯ケーブルについて評価した結
果を示す。
Table 1 shows the evaluation results of the ultra-thin multicore cables of Examples 1 and 2 and Comparative Examples 1 and 2.

【0029】[0029]

【表1】 [Table 1]

【0030】この表において、自己融着性の評価方法
は、作製した撚り合わせ前の極細絶縁電線をツバ径40
mm,マンドレル径20mm,長さ50mmのアルミニ
ウム製ボビンに線同士が接触するように巻き付け、この
絶縁電線を通電加熱により約150℃の温度で10分処
理した後、極細絶縁電線の線間同士の接着を観察して評
価した。また、紫外線硬化樹脂組成物の200μm厚の
シートを作製し、これを幅20mm,長さ100mmに
したものを2枚重ね、アルミニウム金属板に挟み、荷重
500gを載せ、150℃の温度で30分加熱処理した
後、接着力をテンシロンで測定した。
In this table, the self-bonding evaluation method is as follows.
mm, mandrel diameter 20 mm, length 50 mm, wrapped around aluminum bobbin so that the wires come into contact with each other, and this insulated wire is treated by electric heating for 10 minutes at a temperature of about 150 ° C. Adhesion was observed and evaluated. Also, a 200 μm-thick sheet of an ultraviolet curable resin composition was prepared, and two sheets having a width of 20 mm and a length of 100 mm were stacked, sandwiched between aluminum metal plates, and a load of 500 g was placed, and the temperature was 150 ° C. for 30 minutes. After the heat treatment, the adhesive force was measured by Tensilon.

【0031】表1から明らかなように、末端にイソシア
ネート基とヒドロキシ基を有したモノマーを併用した実
施例1と実施例2の絶縁電線は、いずれも自己融着が可
能であった。また、シートの貼合わせでイソシアネート
基の比率が高い方が高い接着力が得られることが分か
る。一方、比較例1と比較例2の極細絶縁電線はいずれ
も自己融着性はなく、シートの貼り付けでも接着力の無
いものであった。
As is clear from Table 1, the insulated wires of Example 1 and Example 2 in which a monomer having an isocyanate group and a hydroxy group at the ends were used together were capable of self-bonding. Further, it can be seen that, when the sheets are laminated, the higher the isocyanate group ratio, the higher the adhesive strength. On the other hand, each of the ultrafine insulated electric wires of Comparative Example 1 and Comparative Example 2 had no self-bonding property and had no adhesive force even when the sheets were attached.

【0032】上記表において、チューブ内挿入性の評価
方法は、作製した超細径多芯ケーブルを長さ2.0mの
内径0.12mm(実施例1,比較例1の試料)および
内径0.18mm(実施例2,比較例2の試料)のポリ
エチレンチューブを用い挿入性を評価した。
In the above table, the method of evaluating the insertability in the tube is as follows. The produced ultra-thin multi-core cable has an inner diameter of 0.12 mm (samples of Examples 1 and Comparative Example 1) and an inner diameter of 0.2 mm. The insertability was evaluated using a polyethylene tube of 18 mm (samples of Example 2 and Comparative Example 2).

【0033】この発明の超細径多芯ケーブルは、図2お
よび図3に示されるように構成して使用される外、図4
に示すように可塑性プラスチックまたは金属チューブ6
に挿入して使用される。この例の場合には超細径多芯ケ
ーブルの挿入性が極めて重要になる。
The ultra-small diameter multi-core cable of the present invention is constructed and used as shown in FIGS. 2 and 3, and FIG.
Plastic or metal tube 6 as shown in
Used by inserting into. In the case of this example, the insertability of the ultra-small diameter multi-core cable becomes extremely important.

【0034】[0034]

【発明の効果】以上説明したとおり、この発明の超細径
多芯ケーブルは、末端イソシアネート基とヒドロキシ基
を有するモノマーを併用したウレタンアクリレート系紫
外線硬化樹脂組成物を、導体径50μm以下の素線上に
絶縁厚50μm以下の被覆を施した極細絶縁電線を複数
本撚り合わせた後、外層に加熱炉を通して融着すること
で、挿入性,電気的特性,取扱性,端末処理性および識
別性に優れた超細径多芯ケーブルを得ることができ、今
日的要請に応え得る意義は極めて大きなものがある。
As described above, the ultra-thin multi-core cable of the present invention comprises the urethane acrylate-based UV-curable resin composition in which a monomer having a terminal isocyanate group and a hydroxy group is used in combination on a wire having a conductor diameter of 50 μm or less. It is excellent in insertability, electrical characteristics, handleability, terminal processability, and distinctiveness by twisting multiple ultra-fine insulated wires with a coating with an insulation thickness of 50 μm or less and fusing them through a heating furnace on the outer layer. It is possible to obtain an ultra-fine diameter multi-core cable, and it is extremely significant to meet today's demands.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の極細絶縁電線の一実施例の構成を示
す横断面図、
FIG. 1 is a cross-sectional view showing the configuration of an embodiment of an ultrafine insulated wire of the present invention,

【図2】この発明の超細径多芯ケーブルの一実施例の構
成を示す横断面図、
FIG. 2 is a cross-sectional view showing the configuration of an embodiment of an ultra-thin diameter multi-core cable of the present invention,

【図3】この発明の超細径多芯ケーブルの他の実施例の
構成を示す横断面図、
FIG. 3 is a cross-sectional view showing the configuration of another embodiment of the ultra-thin diameter multi-core cable of the present invention,

【図4】この発明の超細径多芯ケーブルをチューブ内に
挿入した一実施例の構成を示す横断面図である。
FIG. 4 is a cross-sectional view showing the configuration of an embodiment in which the ultra-small diameter multi-core cable of the present invention is inserted into a tube.

【符号の説明】[Explanation of symbols]

1 自己融着性紫外線硬化樹脂層 2 導体 3 極細絶縁電線 4 超細径多芯ケーブル 5 超細径多芯ケーブル 6 可塑性プラスチックまたは金属チューブ 1 Self-fusing UV curable resin layer 2 Conductor 3 Extra-fine insulated wire 4 Ultra-thin multi-core cable 5 Ultra-thin multi-core cable 6 Plastic plastic or metal tube

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01B 11/00 4232−5L H01B 11/00 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01B 11/00 4232-5L H01B 11/00 B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ウレタンアクリレート系紫外線硬化樹脂
組成物中に末端にイソシアネート基を有する(メタ)ア
クリレートモノマーとヒドロキシ基を末端にもつ(メ
タ)アクリレートモノマーを併用した樹脂組成物を、導
体径100μm以下の金属線上に、絶縁厚50μm以下
で被覆を施した極細絶縁電線を複数本撚り合わせた後、
加熱処理により線間融着処理して得られることを特徴と
する超細径多芯ケーブル。
1. A resin composition comprising a urethane acrylate-based ultraviolet curable resin composition in which a (meth) acrylate monomer having an isocyanate group at the terminal and a (meth) acrylate monomer having a hydroxyl group at the terminal are used in combination with a conductor diameter of 100 μm or less. After twisting a plurality of ultra-fine insulated wires coated with an insulation thickness of 50 μm or less on the metal wire of
An ultra-thin diameter multi-core cable, which is obtained by a fusion treatment between wires by a heat treatment.
【請求項2】 上記樹脂組成物のイソシアネート基とヒ
ドロキシ基の比率が5/1〜1/1の範囲であるウレタ
ンアクリレート系紫外線硬化樹脂組成物を用いることを
特徴とする請求項1記載の超細径多芯ケーブル。
2. A urethane acrylate-based UV curable resin composition having a ratio of isocyanate groups to hydroxy groups in the range of 5/1 to 1/1 in the resin composition is used. Small diameter multi-core cable.
JP7347497A 1995-12-18 1995-12-18 Extra-thin, diameter multi-core cable Pending JPH09167523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7347497A JPH09167523A (en) 1995-12-18 1995-12-18 Extra-thin, diameter multi-core cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7347497A JPH09167523A (en) 1995-12-18 1995-12-18 Extra-thin, diameter multi-core cable

Publications (1)

Publication Number Publication Date
JPH09167523A true JPH09167523A (en) 1997-06-24

Family

ID=18390630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7347497A Pending JPH09167523A (en) 1995-12-18 1995-12-18 Extra-thin, diameter multi-core cable

Country Status (1)

Country Link
JP (1) JPH09167523A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1138710A1 (en) * 2000-03-31 2001-10-04 Bayer Aktiengesellschaft Coating system containing UV curable urethane (meth)acrylates having isocyanate groups and urethane (meth)acrylates having hydroxy groups
JP2002544314A (en) * 1999-05-06 2002-12-24 ビーエーエスエフ コーティングス アクチェンゲゼルシャフト Coating material curable by heat and actinic radiation and its use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002544314A (en) * 1999-05-06 2002-12-24 ビーエーエスエフ コーティングス アクチェンゲゼルシャフト Coating material curable by heat and actinic radiation and its use
EP1138710A1 (en) * 2000-03-31 2001-10-04 Bayer Aktiengesellschaft Coating system containing UV curable urethane (meth)acrylates having isocyanate groups and urethane (meth)acrylates having hydroxy groups
JP2001288410A (en) * 2000-03-31 2001-10-16 Bayer Ag Coating composition containing uv curable isocyanate group-containing urethane (meth)acrylate and hydroxyl group-containing urethane (meth)acrylate
US6500876B2 (en) 2000-03-31 2002-12-31 Bayer Aktiengesellschaft Coating composition containing UV-curable urethane (meth)acrylates containing isocyanate groups and urethane (meth)acrylates containing hydroxyl groups

Similar Documents

Publication Publication Date Title
EP0843187B1 (en) Split type ribbon optical fiber core cable
JPH0469175B2 (en)
DE2526626C3 (en) Process for the production of a stranded electrical conductor
JPH08148043A (en) Coaxial cable
DE69930532T2 (en) INSULATION OF ELECTRICAL WIRES
JP3029172B2 (en) Insulated wire
JP6111997B2 (en) Anticorrosive, coated electric wire with terminal and wire harness
JPH09167523A (en) Extra-thin, diameter multi-core cable
JPH09167524A (en) Ultra-thin, multi-core cable
JPH0757551A (en) Insulated electric wire
JP3267136B2 (en) Small diameter multi-core cable for medical equipment
JP5410865B2 (en) Insulated wire and terminal treatment method thereof
JPH06124610A (en) Insulated electric wire
JPH06223636A (en) Insulated wire
JPH08222041A (en) Self-lubricating multicore cable
JPH08190815A (en) Multicore cable
JPH06223635A (en) Insulated wire
JPH05298935A (en) Insulated wire
JP3267327B2 (en) Solderable insulated wire
JPH07114832A (en) Self-welding ultraviolet cure enameled wire
JPH07238273A (en) Coating peeling agent for electric wire coated with ultraviolet ray irradiation cross-linked resin and method for peeling terminal coating of electric wire using the same
JPH07114831A (en) Self-welding ultraviolet cure enameled wire
JP2008140737A (en) Manufacturing method of coaxial cable and coaxial cable
JPH07211161A (en) Superconducting insulated electric wire
JPH04192213A (en) Insulated wire

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20031212

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Effective date: 20040426

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040622

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040624

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100702

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250