JPH09166544A - Atomic absorption spectrophotometer - Google Patents
Atomic absorption spectrophotometerInfo
- Publication number
- JPH09166544A JPH09166544A JP32714595A JP32714595A JPH09166544A JP H09166544 A JPH09166544 A JP H09166544A JP 32714595 A JP32714595 A JP 32714595A JP 32714595 A JP32714595 A JP 32714595A JP H09166544 A JPH09166544 A JP H09166544A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- atomization chamber
- drain
- discharged
- atomic absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Spectrometry And Color Measurement (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は原子吸光分光光度
計、特にフレーム原子吸光分光光度計における原子化部
の霧化室の構成に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atomic absorption spectrophotometer, and more particularly to a structure of an atomization chamber of an atomization section of a flame atomic absorption spectrophotometer.
【0002】[0002]
【従来の技術】図3に原子吸光分光光度計の基本的構成
を示す。図において、光源部1からは目的元素の共鳴線
を含む輝線スペクトルが放射され、これらが光学系2に
より原子化部3(フレーム)を通過し、分光器4に導入
される。これらの輝線中には、目的元素による原子吸光
を全く受けない光や吸光の割合が低い光などが含まれて
おり、これらは分光器4により除外され、吸収感度の最
も高い輝線(多くの場合は共鳴線である)のみが選択さ
れ、検出器5で電気信号に変換される。2. Description of the Related Art FIG. 3 shows the basic structure of an atomic absorption spectrophotometer. In the figure, the light source unit 1 radiates a bright line spectrum including the resonance line of the target element, and these are passed through the atomization unit 3 (frame) by the optical system 2 and introduced into the spectroscope 4. These emission lines include light that does not undergo atomic absorption by the target element or light with a low absorption ratio, and these are excluded by the spectroscope 4 and the absorption line with the highest absorption sensitivity (in many cases, Is a resonance line) and is converted into an electric signal by the detector 5.
【0003】原子化部3においては、霧状の試料中に含
まれる目的元素が熱エネルギーにより解離され原子化さ
れて、同部を通過する光束のうち特定波長の輝線を選択
的に強く吸収する。信号処理部6においては、検出器5
で発生した信号のうち特定波長の輝線強度に比例した信
号のみを取り出し、これを対数変換し、吸光度に比例し
た値あるいは濃度に変換した値を求め、CRT上(図示
せず)に表示し或いはプリンタ/プロッタ(図示せず)
により記録する。In the atomization part 3, the target element contained in the atomized sample is dissociated by thermal energy and atomized, and a bright line of a specific wavelength in the light flux passing through the part is selectively and strongly absorbed. . In the signal processing unit 6, the detector 5
Of the signals generated in step 1, only the signal proportional to the intensity of the bright line of the specific wavelength is extracted, logarithmically converted, and the value proportional to the absorbance or the value converted to the concentration is obtained and displayed on the CRT (not shown) or Printer / Plotter (not shown)
Record by.
【0004】以上のように構成される原子吸光分光光度
計における原子化部3の従来の構成を図2に示す。フレ
ーム原子吸光分光光度計において液体試料を分析するに
は試料をバーナのフレームF中において原子化すること
が必要であるが、その原子化効率を上げるために液体試
料を霧状微細粒子化する霧化器M(ネブライザ)が備え
られている。FIG. 2 shows a conventional structure of the atomizing section 3 in the atomic absorption spectrophotometer constructed as described above. In order to analyze a liquid sample in a flame atomic absorption spectrophotometer, it is necessary to atomize the sample in the flame F of the burner. To improve the atomization efficiency, the liquid sample is atomized into fine particles. A chemical device M (nebulizer) is provided.
【0005】図2左方より導入される試料溶液は、霧化
器M内に挿入された吸引管7を通ってその先端部である
円錐状噴霧口9の入口まで達する。一方、図2下方より
霧化器M内に導入される助燃ガス(空気)が吸引管7の
周囲に沿って図右方に進み、霧化器Mと吸引管7との隙
間である円環状の助燃ガス吹き出し口8から噴出され
る。このときの助燃ガスの噴出に伴う負圧により吸引管
7先端部から液体試料が引き出されて助燃ガスの噴出流
に混入されて噴霧される。円錐状噴霧口9の直前には、
霧化器Mの固定部材14に固着された支持腕15を介し
てガラス製の球状衝突体(インパクトボール)10が近
接配置されており、円錐状噴霧口9より噴出された試料
粒子はこの球状衝突体10に衝突して更に微細粒子化さ
れる。このようにして微細化された試料粒子は、霧化器
Mの周囲に配置される円環状の燃料ガス吹き出し口11
(霧化器Mとその固定部材14との隙間)から吹き出さ
れるアセチレン等の燃料ガスの流れに乗ってL字形に霧
化室12内を移動し、バーナのフレームF中で良好に原
子化されその吸光度が測定される。The sample solution introduced from the left side of FIG. 2 passes through the suction pipe 7 inserted in the atomizer M and reaches the inlet of the conical spray port 9 which is the tip end thereof. On the other hand, the auxiliary combustion gas (air) introduced into the atomizer M from the lower side of FIG. 2 advances to the right side of the drawing along the periphery of the suction pipe 7, and has an annular shape which is a gap between the atomizer M and the suction pipe 7. It is ejected from the auxiliary combustion gas outlet 8. At this time, the liquid sample is drawn out from the tip portion of the suction pipe 7 due to the negative pressure caused by the jet of the supporting gas, and is mixed with the jet flow of the supporting gas to be sprayed. Just before the conical spray port 9,
A spherical colliding body (impact ball) 10 made of glass is arranged in close proximity via a supporting arm 15 fixed to a fixing member 14 of the atomizer M, and the sample particles ejected from the conical spray port 9 have this spherical shape. It collides with the colliding body 10 and is further made into fine particles. The sample particles thus miniaturized are the annular fuel gas outlets 11 arranged around the atomizer M.
(A gap between the atomizer M and its fixing member 14) rides on the flow of fuel gas such as acetylene blown from the atomizer M, moves in the atomization chamber 12 in an L-shape, and atomizes well in the frame F of the burner. The absorbance is measured.
【0006】なお、吸引管7の四方に設けられた調節ね
じ17は、助燃ガス吹き出し口8と吸引管7との芯出し
調整を行うためのものである。The adjusting screws 17 provided on the four sides of the suction pipe 7 are for adjusting the centering of the auxiliary combustion gas outlet 8 and the suction pipe 7.
【0007】[0007]
【発明が解決しようとする課題】以上説明したような原
子化部3では、試料を微細粒子化して原子化効率を上げ
ることと同時に、これを安定したフレームF中に導入し
て安定した吸光度を得ることが分析精度の上で重要であ
る。In the atomizing section 3 as described above, the sample is made into fine particles to increase the atomization efficiency, and at the same time, this is introduced into the stable frame F to obtain stable absorbance. Obtaining is important for analysis accuracy.
【0008】上述した原子化部3の構成によれば、噴霧
された試料が霧化室12の内壁等に付着して再度液滴化
し、重力により壁面等を伝って霧化室12下方に設けら
れたドレン13に集められ排出されるが(以下、排出試
料という)、その際、霧化室12内におけるドレン13
の入口稜線部13a、ドレン配管の継目段差13b、霧
化室12内壁の稜線部12b、霧化室12を構成する縦
筒部と横筒部との継目段差12a等の排出試料の流れ経
路における流れ抵抗により排出試料が一時滞留し、液滴
となって不規則に間欠的に霧化室12内を滴下または流
出するため、霧化室12内の体積が該液滴の間欠的な滴
下により瞬間的に変動し、フレームFが息継ぎ現象を生
じてふらつき、吸光度にばらつきが生じる原因となって
いることを本願発明者は見いだした。そしてこのような
新規な知見に基づき、上記の排出試料の間欠流を防止
し、フレームFを安定させることにより分析精度を向上
させることができる原子吸光分光光度計を提供すること
を本発明は目的としている。According to the structure of the atomization section 3 described above, the atomized sample adheres to the inner wall of the atomization chamber 12 and is re-dropped, and the sample is provided below the atomization chamber 12 through the wall surface by gravity. The collected drain 13 collects and discharges it (hereinafter referred to as discharged sample). At that time, the drain 13 in the atomization chamber 12 is discharged.
In the flow path of the discharged sample such as the inlet ridge line portion 13a, the joint pipe step portion 13b of the drain pipe, the ridge line portion 12b of the inner wall of the atomization chamber 12, and the joint step portion 12a between the vertical cylinder portion and the horizontal cylinder portion that configure the atomization chamber 12. Due to the flow resistance, the discharged sample temporarily stays and becomes droplets, and drops or flows out irregularly and intermittently in the atomization chamber 12. Therefore, the volume in the atomization chamber 12 is intermittently dropped by the droplets. The inventor of the present application found that the frame F causes a breathing phenomenon and fluctuates instantaneously, causing fluctuations in the absorbance. Then, based on such a novel finding, the present invention aims to provide an atomic absorption spectrophotometer capable of preventing the intermittent flow of the discharged sample and stabilizing the frame F to improve the analysis accuracy. I am trying.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に、本発明の原子吸光分光光度計は、その原子化部3の
霧化室内(室内12、ドレン配管13を含む)におい
て、噴霧後、霧化室12内壁に付着して再液滴化した試
料が自重により該内壁を伝って霧化室12下方に設けら
れたドレン13より排出される際の試料排出経路の流れ
抵抗を無くす加工を施すことにより、排出試料が滞留し
て間欠的に霧化室内を流れ落ちることによる該室内の気
流の乱れを防止しフレームを安定させて吸光度を安定さ
せるようにしたことを特徴とする。In order to achieve the above object, the atomic absorption spectrophotometer of the present invention is provided with an atomization chamber (including the chamber 12 and the drain pipe 13) of the atomization unit 3 after spraying. Processing for eliminating flow resistance of the sample discharge path when the sample adhered to the inner wall of the atomization chamber 12 and re-dropped is discharged along the inner wall by its own weight and discharged from the drain 13 provided below the atomization chamber 12. By performing the above, it is possible to prevent the turbulence of the air flow in the chamber due to the discharged sample staying and intermittently flowing down in the atomizing chamber, and to stabilize the frame to stabilize the absorbance.
【0010】なお、流れ抵抗とは霧化室12構成部材の
継目段差12a、霧化室12内壁の稜線部12b、ドレ
ン入口の稜線部13a、ドレン配管の継目段差13b等
に代表される排出液体の流れ抵抗を成す部分を指す。The flow resistance means the discharged liquid represented by the seam step 12a of the constituent members of the atomization chamber 12, the ridge line portion 12b of the inner wall of the atomization chamber 12, the ridge line portion 13a of the drain inlet, the seam step 13b of the drain pipe, and the like. Refers to the part that forms the flow resistance.
【0011】上記のように構成された原子吸光分光光度
計は、霧化室12内を流れ落ちてドレン13から排出さ
れる排出試料を、一時的に溜まって間欠的に流れること
なくスムーズにドレン13へと導くことができ、フレー
ムFの息継ぎ現象を防止して安定させ、良好な吸光度を
維持することができる。In the atomic absorption spectrophotometer having the above-described structure, the discharged sample flowing down in the atomizing chamber 12 and discharged from the drain 13 is smoothly accumulated without temporarily accumulating the sample. Therefore, the breathing phenomenon of the frame F can be prevented and stabilized, and good absorbance can be maintained.
【0012】[0012]
【発明の実施の形態】以下、本発明の原子吸光分光光度
計の一実施例について図面を参照して説明する。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the atomic absorption spectrophotometer of the present invention will be described below with reference to the drawings.
【0013】図1は本発明に係る原子吸光分光光度計の
原子化部3を示す一実施例である。概略構成、試料導入
方法、噴霧原理、測定手法等は図2に示した従来構成と
変更がないため、同部材には同図番を付してその説明を
割愛する。FIG. 1 is an embodiment showing an atomizing section 3 of an atomic absorption spectrophotometer according to the present invention. Since the schematic configuration, sample introduction method, spraying principle, measurement method, etc. are the same as those of the conventional configuration shown in FIG. 2, the same reference numerals are given to the same members and their explanations are omitted.
【0014】図1において、円錐状噴霧口9から噴出さ
れた試料は球状衝突体10に衝突し微細粒子化されて霧
化室12内をガス流に乗って進むように構成されている
が、微細化しきれずにガス流に乗らず落下するもの、或
いはフレームFに到達するまでに霧化室12の内壁等に
付着して再度液滴化するもの等からなる排出試料が、全
注入試料量の90〜95%にも及ぶ。これらの試料量の大部
分に当たる排出試料は、自重により内壁面等を伝って霧
化室12下方に設けられたドレン13に集められ排出さ
れる。In FIG. 1, the sample ejected from the conical spray port 9 collides with the spherical colliding body 10, is made into fine particles, and travels in the atomization chamber 12 along with the gas flow. The total amount of the injected sample is the discharged sample consisting of those that cannot be completely atomized and fall without riding the gas flow, or those that adhere to the inner wall of the atomization chamber 12 and become droplets again before reaching the frame F. 90 to 95% of. The discharged sample, which corresponds to most of the amount of the sample, is transmitted by its own weight along the inner wall surface and the like, and is collected and discharged in the drain 13 provided below the atomization chamber 12.
【0015】排出試料が霧化室12内壁を伝って流れ落
ちるのに際して、例えば、従来構成である図2におい
て、霧化室12を構成する縦筒部内壁で再液滴化したも
のはこの縦筒部内壁を伝って下ってくるが、横筒部との
継目段差12aの部分で一時的に滞留し、巨大液滴とな
って落下するため、霧化室12内の気流が乱れ、フレー
ムFを不安定なものとしていたが、本発明にかかる図1
の同部12aでは、この段差を同一面として解消するも
のとしたので、縦筒部下端まで到達した排出試料は紙面
奥方向に横筒部の壁を伝ってスムーズにドレン13へと
向かう。When the discharged sample flows down along the inner wall of the atomization chamber 12, for example, in FIG. 2 showing the conventional structure, the re-dropped liquid is re-dropped on the inner wall of the vertical cylinder portion forming the atomization chamber 12 is the vertical cylinder. Although it goes down along the inner wall of the part, it temporarily stays at the joint step 12a with the horizontal tubular part and drops as huge droplets, so that the air flow in the atomization chamber 12 is disturbed and the frame F is disturbed. Although it is considered to be unstable, FIG.
In the same portion 12a, since this step is eliminated as the same surface, the discharged sample reaching the lower end of the vertical tubular portion smoothly travels through the wall of the horizontal tubular portion toward the drain 13 in the depth direction of the paper.
【0016】また、噴霧器M側を伝って流れ落ちる排出
試料は、図2に示す12bのような霧化室内壁の稜線部
にも滞留し、液滴の巨大化と流出とを繰り返して脈流し
ていたが、図1に示す本発明の構成では、稜線部の内壁
を傾斜させることによりこれを解決した。Further, the discharged sample flowing down along the sprayer M side also stays at the ridge portion of the wall of the atomizing chamber such as 12b shown in FIG. 2 and pulsates by repeatedly enlarging and flowing out the droplets. However, in the configuration of the present invention shown in FIG. 1, this is solved by inclining the inner wall of the ridge.
【0017】図2の従来構成においては、ドレン13の
入口稜線部(端角部)13aに角があったためにこの部
分で表面張力により排出試料が滞留し、ある程度溜まる
と一気にドレン13へと流れ込んで霧化室12内の気流
を乱す原因となっていたが、図1に示す本発明の構成に
よれば、この部分に面取りがなされているので、排出試
料は滑らかにドレン13へと流れる。In the conventional configuration shown in FIG. 2, since the inlet ridgeline (edge corner) 13a of the drain 13 has a corner, the discharged sample stays at this portion due to surface tension, and when it collects to a certain extent, it flows into the drain 13 at once. However, according to the configuration of the present invention shown in FIG. 1, since this portion is chamfered, the discharged sample smoothly flows to the drain 13.
【0018】同様に、図2に示すような従来のドレン配
管13は単純にパイプをつないだものとされていたた
め、この継目段差13bが抵抗となって生じる排出流体
の脈流もまた分析精度を低下させる原因となっていた
が、図1に示す本発明の構成ではこの部分の段差も解消
して霧化室12内への影響をことごとく解消するものと
している。Similarly, since the conventional drain pipe 13 as shown in FIG. 2 is simply connected to the pipe, the pulsating flow of the discharged fluid generated by the joint step 13b as a resistance also has a high analysis accuracy. Although it has been the cause of the decrease, the structure of the present invention shown in FIG. 1 eliminates the step in this portion and eliminates all the influence on the inside of the atomization chamber 12.
【0019】本発明が適用される部位は上述した部位に
限定されるものではなく、これ以外にも排出流体の流れ
抵抗があり脈流を生じる部分全てに適用される。The part to which the present invention is applied is not limited to the above-mentioned part, but it is applicable to all parts other than this, which have a flow resistance of the discharged fluid and generate a pulsating flow.
【0020】さらに、霧化室12内壁における排出試料
の流れ性を向上させるために、霧化室12をステンレス
やフッ素樹脂等の撥水性の良い素材で形成することが望
ましい。或いは内壁を研磨紙等で図の垂直方向に粗面し
てドレン13へ向かう流れ性を向上させることが望まし
い。排出試料が滞留しやすい部位或いは霧化室12内壁
をフッ素樹脂表面処理剤等により濡れ性を向上させて、
水滴の形成を抑制して、水膜のまま滑らかに流れるよう
にしてもよい。Further, in order to improve the flowability of the discharged sample on the inner wall of the atomizing chamber 12, it is desirable that the atomizing chamber 12 is formed of a material having good water repellency such as stainless steel or fluororesin. Alternatively, it is desirable that the inner wall be roughened with abrasive paper or the like in the vertical direction in the figure to improve the flowability toward the drain 13. By improving the wettability of the portion where the discharged sample is likely to stay or the inner wall of the atomization chamber 12 with a fluororesin surface treatment agent or the like,
The formation of water droplets may be suppressed so that the water film can flow smoothly.
【0021】また、図2に示す従来の球状衝突体10及
び支持腕15の構成では、支持腕15を伝う排出試料は
液滴となって直接ドレン13へ滴下するが、これも室内
の気流を乱す要因となるので、図1に示す滴下のない支
持腕15の構成を併せて採用することが望ましい。Further, in the structure of the conventional spherical colliding body 10 and the supporting arm 15 shown in FIG. 2, the discharged sample propagating through the supporting arm 15 becomes a droplet and directly drops to the drain 13, but this also causes the air flow in the room to be reduced. It is desirable that the configuration of the supporting arm 15 without dropping shown in FIG.
【0022】[0022]
【発明の効果】本発明に係る原子吸光分光光度計は、吸
光度を低下させる原因に対する新規の知見に基づき、試
料原子化部3の霧化室12内壁を伝ってドレン13へと
流れる排出試料が脈打つことなくスムーズに流れるよう
に流れ抵抗を構成する要因を排除した構成としたので、
排出試料の間欠流を防止され、フレームFが安定して、
安定した吸光度を維持して精度のよい分析が可能となっ
た。According to the atomic absorption spectrophotometer of the present invention, the discharged sample flowing through the inner wall of the atomization chamber 12 of the sample atomization unit 3 to the drain 13 is based on the new finding for the cause of lowering the absorbance. Because it is a configuration that eliminates the factors that constitute the flow resistance so that it flows smoothly without pulsing,
Intermittent flow of discharged sample is prevented, frame F is stable,
Stable absorbance was maintained and accurate analysis became possible.
【図1】 本発明に係る原子吸光分光光度計の原子化部
を示す図である。FIG. 1 is a diagram showing an atomization part of an atomic absorption spectrophotometer according to the present invention.
【図2】 従来の原子吸光分光光度計の原子化部を示す
図である。FIG. 2 is a diagram showing an atomization section of a conventional atomic absorption spectrophotometer.
【図3】 従来の原子吸光分光光度計の基本構成説明図
である。FIG. 3 is a diagram illustrating the basic configuration of a conventional atomic absorption spectrophotometer.
M‥‥‥‥‥‥‥‥‥霧化器 F‥‥‥‥‥‥‥‥‥フレーム 1‥‥‥‥‥‥‥‥‥光源部 2‥‥‥‥‥‥‥‥‥原子化部光学系 3‥‥‥‥‥‥‥‥‥原子化部 4‥‥‥‥‥‥‥‥‥分光器 5‥‥‥‥‥‥‥‥‥検出器 6‥‥‥‥‥‥‥‥‥信号処理部 7‥‥‥‥‥‥‥‥‥吸引管 8‥‥‥‥‥‥‥‥‥助燃ガス吹き出し口 9‥‥‥‥‥‥‥‥‥円錐状噴霧口 10‥‥‥‥‥‥‥‥‥球状衝突体 11‥‥‥‥‥‥‥‥‥燃料ガス吹き出し口 12‥‥‥‥‥‥‥‥‥霧化室 13‥‥‥‥‥‥‥‥‥ドレン 14‥‥‥‥‥‥‥‥‥固定部材 15‥‥‥‥‥‥‥‥‥支持腕 16‥‥‥‥‥‥‥‥‥空気ガイド 17‥‥‥‥‥‥‥‥‥調節ねじ M ‥‥‥‥‥‥‥‥‥‥ Atomizer F ‥‥‥‥‥‥‥‥‥‥ Frame 1 ‥‥‥‥‥‥‥‥‥ Light source 2 ‥‥‥‥‥‥‥‥‥ System 3 ‥‥‥‥‥‥‥‥‥ Atomization unit 4 ‥‥‥‥‥‥‥‥‥ Spectrometer 5 ‥‥‥‥‥‥‥‥‥‥ Detector 6 ‥‥‥‥‥‥‥‥‥‥ Part 7 ‥‥‥‥‥‥‥‥‥‥ Suction tube 8 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ Sphere impactor 11 ‥‥‥‥‥‥‥‥ Fuel gas outlet 12 ‥‥‥‥‥‥‥‥‥ Atomization chamber 13 ‥‥‥‥‥‥‥‥‥ Drain 14 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥ ‥‥ Fixing member 15 ‥‥‥‥‥‥‥‥‥ Support arm 16 ‥‥‥‥‥‥‥‥‥ Air guide 17 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥
Claims (4)
に噴出させて微細霧粒子化した状態で燃焼フレーム中に
送り込んで原子化し、このフレームに元素によって決ま
っている特定波長の光を通過させてその吸光度から元素
分析を行う装置であって、前記霧化室に噴出された試料
が霧化室内壁に付着して再液滴化し、これが自重により
該内壁を伝って噴霧室下方に設けられたドレンより排出
されるように構成されたものにおいて、該霧化室内の試
料排出経路に流れ抵抗をなくす加工を施し、排出試料が
滞留して間欠的に霧化室内を流れ落ちることによる該室
内の気流の乱れを防止しフレームを安定させて吸光度を
安定させるようにしたことを特徴とする原子吸光分光光
度計。1. A liquid sample introduced into an atomizer is ejected into an atomization chamber and atomized in the state of being atomized into fine mist particles, and a specific wavelength of a specific wavelength determined by the element is determined in this frame. A device for passing light and performing elemental analysis based on its absorbance, wherein the sample ejected into the atomization chamber adheres to the atomization chamber inner wall and is re-dropped, and this is propagated along the inner wall due to its own weight to the spray chamber. In a device configured to be discharged from a drain provided below, a sample discharge path in the atomization chamber is processed to eliminate flow resistance, and discharged sample stays and intermittently flows down in the atomization chamber. Atomic absorption spectrophotometer, characterized in that turbulence of the air flow in the room due to is prevented and the frame is stabilized to stabilize the absorbance.
って、霧化室内の試料排出経路の流れ抵抗であるドレン
入口稜線部に面取り加工を施したことを特徴とする原子
吸光分光光度計。2. The atomic absorption spectrophotometer according to claim 1, wherein a chamfering process is applied to a drain inlet ridge line portion which is a flow resistance of a sample discharge path in the atomization chamber. Total.
って、霧化室内の試料排出経路の流れ抵抗であるドレン
配管の継目段差を無くす加工を施したことを特徴とする
原子吸光分光光度計。3. The atomic absorption spectrophotometer according to claim 1, wherein a process for eliminating a seam step in the drain pipe which is a flow resistance of the sample discharge path in the atomization chamber is performed. Photometer.
って、霧化室内の試料排出経路の流れ抵抗である霧化室
を構成する縦筒部と横筒部との継目段差を無くす加工を
施したことを特徴とする原子吸光分光光度計。4. The atomic absorption spectrophotometer according to claim 1, wherein the step difference between the vertical tube portion and the horizontal tube portion forming the atomization chamber, which is the flow resistance of the sample discharge path in the atomization chamber, is eliminated. Atomic absorption spectrophotometer characterized by being processed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32714595A JPH09166544A (en) | 1995-12-15 | 1995-12-15 | Atomic absorption spectrophotometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32714595A JPH09166544A (en) | 1995-12-15 | 1995-12-15 | Atomic absorption spectrophotometer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09166544A true JPH09166544A (en) | 1997-06-24 |
Family
ID=18195821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32714595A Pending JPH09166544A (en) | 1995-12-15 | 1995-12-15 | Atomic absorption spectrophotometer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09166544A (en) |
-
1995
- 1995-12-15 JP JP32714595A patent/JPH09166544A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4139112B2 (en) | Deposition equipment for depositing particles on the surface | |
US5725153A (en) | Oscillating capillary nebulizer | |
US4990740A (en) | Intra-microspray ICP torch | |
US5969352A (en) | Spray chamber with dryer | |
US9541479B2 (en) | Apparatus and method for liquid sample introduction | |
JPS6249108B2 (en) | ||
US20140283627A1 (en) | Apparatus and method for liquid sample introduction | |
JPH05264432A (en) | Method and system for diffusional dilution of fluid containing particles | |
US3525476A (en) | Fluid diffuser with fluid pressure discharge means and atomizing of material in holder | |
JP2007518087A (en) | Method and apparatus for increasing the size of microparticles | |
JPH01223347A (en) | Liquid tester | |
JPH09166544A (en) | Atomic absorption spectrophotometer | |
Geertsen et al. | Influence of design and operating parameters of pneumatic concentric nebulizer on micro-flow aerosol characteristics and ICP-MS analytical performances | |
Koropchak et al. | Aerosol particle size effects on plasma spectrometric analysis | |
JP4123432B2 (en) | Liquid introduction plasma torch | |
US3469789A (en) | Sample introducing device for spectro-chemical analysis | |
JPH08201294A (en) | Nebulizer for icp analysis and icp analysis method using nebylizer thereof | |
RU2009125589A (en) | DETECTOR FOR LIQUID CHROMATOGRAPHY AND FLOW REGULATOR FOR IT | |
JP2002131226A (en) | Atomic absorption spectrophotometer | |
JP3435931B2 (en) | Atomic absorption spectrophotometer | |
JP2004347507A (en) | Flame atomic absorption spectrophotometer | |
JP3052295B2 (en) | Atomized sample introduction device for spectroscopic analysis | |
JP2949108B1 (en) | Nebulizer array | |
Emekwuru et al. | Analysis of a two-fluid sprayer and its use to develop the number size distribution moments spray model, Part I: Experimental Analysis | |
JPH09145608A (en) | Atomic absorption spectrophotometer |