JPH09166465A - Oscillatory-type measuring instrument - Google Patents

Oscillatory-type measuring instrument

Info

Publication number
JPH09166465A
JPH09166465A JP32664095A JP32664095A JPH09166465A JP H09166465 A JPH09166465 A JP H09166465A JP 32664095 A JP32664095 A JP 32664095A JP 32664095 A JP32664095 A JP 32664095A JP H09166465 A JPH09166465 A JP H09166465A
Authority
JP
Japan
Prior art keywords
measuring
vibration
measuring tube
equation
axial force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32664095A
Other languages
Japanese (ja)
Other versions
JP3134984B2 (en
Inventor
Masami Kidai
雅巳 木代
Hironobu Yao
博信 矢尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP07326640A priority Critical patent/JP3134984B2/en
Priority to DE19652002A priority patent/DE19652002C2/en
Publication of JPH09166465A publication Critical patent/JPH09166465A/en
Priority to US08/925,019 priority patent/US5965824A/en
Application granted granted Critical
Publication of JP3134984B2 publication Critical patent/JP3134984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an oscillatory-type measuring instrument in which the influence of an axial force and additional mass is corrected and by which a measurement can be performed with high accuracy by using a specified expression to compute fluid density. SOLUTION: A resonance system is constituted of a straight pipe-shaped measuring pipe 2, sensors 6a, 6b, a drive circuit 8, and a driver 5, and frequency band and phase are adjusted by the circuit 8, and the measuring pipe 2 is resonated in a tertiary mode and a primary mode. Both frequencies are measured by a signal processing circuit 9, and a resonance frequency ratio fr is found. In addition, an axial force T acting on the measuring pipe 2 is found on the basis of the frequency ratio fr . Then, a fluid density ρw is computed by the circuit 9 on the basis of an expression based on the Rayleigh method which finds a resonance angular frequency ω (where E of measuring pipe: Young's modulus; I: cross-section secondary moment; Si: cross-sectional area of hollow part; ρt : density; St: actual cross-sectional area; L: length in axial direction: y: vibrating amplitude in position X; n: number of additional mass pieces; mk and yk : mass and vibrating amplitude of k-th additional mass), and a density measuring error due to the axial force and the additional mass is corrected. Thereby, a measurement can be performed with high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、加振される少な
くとも1本の直管状測定管内を流れる流体の密度を測定
する振動型測定器、特に測定精度を向上させることが可
能な振動型測定器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration type measuring device for measuring the density of a fluid flowing in at least one straight tubular measuring pipe to be vibrated, and more particularly to a vibration type measuring device capable of improving measurement accuracy. Regarding

【0002】[0002]

【従来の技術】図1は振動型測定器の一般的な例を示す
構成図である。図1の符号2は中空の直管状測定管で、
測定対象の流体はこの中を流れるように、図示されない
外部配管と接続される。3a,3bはこの直管状測定管
2の両端部にロウ付けまたは溶接等の手法により固定さ
れる固定材、4a,4bはこの固定材3a,3bに溶接
等の手段にて結合されている補強材で、直管状測定管2
より十分大きい剛性を有している。直管状測定管2は固
定材3a,3bおよび補強材4a,4bにより、その両
端が節となって振動するよう固定される。
2. Description of the Related Art FIG. 1 is a block diagram showing a general example of a vibration measuring instrument. Reference numeral 2 in FIG. 1 is a hollow straight tube measuring tube,
The fluid to be measured is connected to an external pipe (not shown) so as to flow through it. Fixing members 3a and 3b are fixed to both ends of the straight tubular measuring tube 2 by a method such as brazing or welding, and 4a and 4b are reinforcing members that are joined to the fixing members 3a and 3b by means such as welding. Material, straight tubular measuring tube 2
It has a sufficiently large rigidity. The straight tubular measuring pipe 2 is fixed by fixing members 3a and 3b and reinforcing members 4a and 4b so that both ends thereof serve as nodes to vibrate.

【0003】直管状測定管2の中央にはドライバー5
と、このドライバー5に対して上,下流に対称な位置
に、測定管2の振動を検出するセンサ6a,6bが測定
管2には直接、また、補強材4a,4bにはアダプタ7
b,7cを介して取り付けられている。ここで、振動を
検出するセンサが6a,6bと2つ付いているのは、こ
の振動型測定器をコリオリ式質量流量計として使用する
際には、後述する方法により密度を測定すると同時に、
上流側と下流側に取り付けられた2つのセンサ間の位相
差(時間差)により、質量流量を測るためである。も
し、この振動型測定器を密度測定のみの目的で構成する
ならば、上記センサ6a,6bは6aだけで良い。
A driver 5 is provided at the center of the straight measuring tube 2.
The sensors 6a and 6b for detecting the vibration of the measuring pipe 2 are directly located on the measuring pipe 2, and the adapters 7 are provided on the reinforcing members 4a and 4b at positions symmetrical with respect to the driver 5 in the upstream and downstream directions.
It is attached via b and 7c. Here, two sensors 6a and 6b for detecting vibration are attached because when this vibration type measuring instrument is used as a Coriolis mass flowmeter, the density is measured by the method described later and at the same time,
This is because the mass flow rate is measured by the phase difference (time difference) between the two sensors mounted on the upstream side and the downstream side. If this vibration type measuring device is constructed only for density measurement, the sensors 6a and 6b need only be 6a.

【0004】直管状測定管2は、測定管の振動を検出す
るセンサ6aと、駆動回路8と、ドライバー5により、
その共振周波数で発振させられる。センサ6a,6bの
検出信号と、測定管2に取り付けられた温度センサ10
により検出された測定管2の温度とは、信号処理回路9
に送られる。信号処理回路9では、センサ6a,6bの
検出信号から測定管2の共振周波数を求め、測定管2の
温度と併せて後述するような演算を行ない、密度に変換
して出力する。
The straight tubular measuring tube 2 is composed of a sensor 6a for detecting the vibration of the measuring tube, a drive circuit 8 and a driver 5.
It is oscillated at the resonance frequency. The detection signals of the sensors 6a and 6b and the temperature sensor 10 attached to the measuring tube 2
The temperature of the measuring tube 2 detected by the signal processing circuit 9
Sent to In the signal processing circuit 9, the resonance frequency of the measuring tube 2 is obtained from the detection signals of the sensors 6a and 6b, and the temperature of the measuring tube 2 is subjected to the following calculation, and the density is converted and output.

【0005】さて、一般に測定管2のような一様断面は
りの横振動の共振周波数fは、 EI(∂4 Y/∂X4 )+(ρwSi+ρtSt)(∂2 Y/∂t2 )=0 …(4) ただし、Y(x,t):位置x,時刻tにおける測定管
の振動変位を示す。の如く示される(4)式の微分方程
式を然るべき境界条件のもとで解くことにより、 f=λ2 √{EI/(ρwSi+ρtSt)}/(2πL2 ) …(5) ただし、λ:測定管の境界条件と振動モードで決定され
る定数である。の如く求められる。
Generally, the resonance frequency f of the transverse vibration of a beam having a uniform cross section like the measuring tube 2 is EI (∂ 4 Y / ∂X 4 ) + (ρwSi + ρtSt) (∂ 2 Y / ∂t 2 ) = 0. (4) However, Y (x, t): indicates the vibration displacement of the measuring pipe at the position x and the time t. By solving the differential equation of the equation (4) expressed as follows under appropriate boundary conditions, f = λ 2 √ {EI / (ρwSi + ρtSt)} / (2πL 2 ) ... (5) where λ: measuring tube It is a constant determined by the boundary condition and the vibration mode of. Is required.

【0006】上記(5)式は、ρwについて容易に陽に
解くことができ、 ρw={(λ4 EI/4π2 4 2 )−ρtSt}/Si …(6) となる。この(6)式に測定管の共振周波数fと、測定
管の温度によりヤング率Eの温度変化や熱膨張による
I,L,St,Siの変化を補正した値とを代入するこ
とにより、流体の密度ρwを測定することができる。と
ころが、直管状の測定管を用いた図1のような構造の場
合は、例えば流体の温度や雰囲気の温度の変化により、
測定管2と補強材4a,4bの間に温度差が生じると、
測定管2に軸方向の力(軸力)が発生する。周知のよう
に、このような軸力は測定管2の共振周波数fを変化さ
せるため、上記(6)式にもとづく密度ρwの測定に誤
差を生じさせることになる。
The above formula (5) can be easily and explicitly solved for ρw, and ρw = {(λ 4 EI / 4π 2 L 4 f 2 ) −ρtSt} / Si (6) By substituting the resonance frequency f of the measuring tube into this equation (6) and a value obtained by correcting the temperature change of the Young's modulus E due to the temperature of the measuring tube and the change of I, L, St, Si due to thermal expansion, Can be measured. However, in the case of a structure such as that shown in FIG. 1 using a straight tubular measuring tube, for example, due to changes in the temperature of the fluid or the temperature of the atmosphere,
If a temperature difference occurs between the measuring pipe 2 and the reinforcing members 4a and 4b,
An axial force (axial force) is generated in the measuring pipe 2. As is well known, since such an axial force changes the resonance frequency f of the measuring tube 2, it causes an error in the measurement of the density ρw based on the equation (6).

【0007】[0007]

【発明が解決しようとする課題】そこで、従来は測定管
2を曲管にする、または測定管2の両端部にベローやダ
イアフラムのような構造を挿入して軸力の作用を防ぐも
の、もしくは測定時の流体と雰囲気の温度差に制限を設
けるなどの対策を施している。しかし、測定管を曲管に
するのは、液溜まりができて腐食し衛生上良くない,洗
浄しにくい,圧力損失が大きいなどの欠点があり、ユー
ザの使い勝手を悪くしている。また、ベローやダイアフ
ラムを使用するものは構造が複雑になる,機械的強度が
落ちて運搬時の衝撃等に弱くなる,軸力を完全には防げ
ないなどの問題が生じる。さらに、測定時の流体と雰囲
気の温度差に制限を設けるのは、特にフィールドにおけ
るオンライン測定時にユーザに大きな制約を強いること
になる。
Therefore, conventionally, the measuring tube 2 is a curved tube, or a structure such as a bellows or a diaphragm is inserted at both ends of the measuring tube 2 to prevent the action of axial force, or Measures such as limiting the temperature difference between the fluid and the atmosphere during measurement are taken. However, the use of a curved measuring tube has drawbacks such as liquid pooling and corrosion, which is not good for hygiene, is difficult to clean, and has a large pressure loss, which makes it inconvenient for the user. In addition, a structure using a bellows or a diaphragm has a complicated structure, mechanical strength is lowered and is weak against impact during transportation, and axial force cannot be completely prevented. Furthermore, setting a limit on the temperature difference between the fluid and the atmosphere during measurement imposes a great restriction on the user, especially during online measurement in the field.

【0008】軸力の問題を解決する別の手法として、測
定管2と補強材4a,4bの温度差を測る、またはスト
レインゲージ等で測定管の歪みを測るなどして、測定管
に作用する軸力を測定し、密度測定値を補正する方法が
ある。しかし、これにも下記のような問題がある。すな
わち、先の(4)式の微分方程式で軸力(張力)Tが作
用するときは、 EI(∂4 Y/∂X4 )−T(∂2 Y/∂X2 ) +(ρwSi+ρtSt)(∂2 Y/∂t2 )=0 …(7) となる。
As another method for solving the problem of axial force, it acts on the measuring pipe by measuring the temperature difference between the measuring pipe 2 and the reinforcing members 4a and 4b, or by measuring the strain of the measuring pipe with a strain gauge or the like. There is a method of measuring the axial force and correcting the density measurement value. However, this also has the following problems. That is, when the axial force differential equations of the previous (4) (tension) T acts on, EI (∂ 4 Y / ∂X 4) -T (∂ 2 Y / ∂X 2) + (ρwSi + ρtSt) ( ∂ 2 Y / ∂t 2 ) = 0 (7).

【0009】上記(7)式の方程式を然るべき境界条件
のもとで解けば、(5),(6)式のような密度を求め
る式を得ることができるが、それは一般に、 g(f,ρw,T,E,I,Si,ρt,St)=0 …(8) の如く密度ρwを陽に含まない形で、かつ極めて複雑な
関数として与えられる。したがって、(6)式のように
直接密度ρwを求めることができず、逐次近似のような
数値解析を適用するにも式が複雑すぎて実用に供さな
い。
By solving the equation (7) under appropriate boundary conditions, an equation for obtaining the density as shown in equations (5) and (6) can be obtained. In general, g (f, ρw, T, E, I, Si, ρt, St) = 0 (8) The density ρw is not explicitly included and is given as an extremely complicated function. Therefore, the density ρw cannot be directly obtained as in the equation (6), and the equation is too complicated to apply the numerical analysis such as the iterative approximation to practical use.

【0010】上記に加えて、密度測定精度を悪化させる
要因として、ドライバー5やセンサ6a,6bや温度セ
ンサ10の如き測定管に付加される質量がある。このよ
うな付加質量は、その慣性力がせん断力として測定管に
作用し、微分方程式(7)式を、ひいては関数(8)を
さらに複雑化し、密度ρwの計算を難しくする。さら
に、軸力を測定管2と補強材4a,4bの温度差より求
める方法は、補強材の熱伝達特性と流体,雰囲気の温度
変化の過程により、補強材の温度分布が変化するため、
正確に軸力を求めることができない。また、ストレイン
ゲージを測定管に接着する方法は、接着の技術,長期信
頼性に不安があり、量産製品には向かない。以上のこと
から、この発明の課題は要するに、測定管を量産化に都
合のよい形状としつつ測定精度を向上させることにあ
る。
In addition to the above, a factor that deteriorates the density measurement accuracy is the mass added to the measuring tube such as the driver 5, the sensors 6a and 6b, and the temperature sensor 10. In such an additional mass, the inertial force acts on the measuring tube as a shearing force, which further complicates the differential equation (7) and thus the function (8), and makes the calculation of the density ρw difficult. Further, in the method of obtaining the axial force from the temperature difference between the measuring pipe 2 and the reinforcing members 4a and 4b, the temperature distribution of the reinforcing member changes due to the heat transfer characteristics of the reinforcing member and the temperature change process of the fluid and atmosphere.
Axial force cannot be calculated accurately. Further, the method of adhering the strain gauge to the measuring tube is not suitable for mass-produced products because there is concern about the adhering technique and long-term reliability. From the above, the object of the present invention is to improve the measurement accuracy while making the measuring tube into a shape convenient for mass production.

【0011】[0011]

【課題を解決するための手段】このような課題を解決す
べく、請求項1の発明では、加振される少なくとも1本
の直管状測定管内を流れる流体の密度を測定する振動型
測定器であって、前記直管状測定管の共振角振動数ω,
直管状測定管の温度および直管状測定管に作用する軸力
Tを測定する手段を備え、下記数5の(1)式に基づき
前記流体の密度を求めるようにしている。
In order to solve such a problem, the invention of claim 1 provides a vibration type measuring device for measuring the density of a fluid flowing in at least one straight tubular measuring pipe to be vibrated. The resonance angular frequency ω of the straight tubular measuring tube,
A means for measuring the temperature of the straight tubular measuring tube and the axial force T acting on the straight tubular measuring tube is provided, and the density of the fluid is obtained based on the following equation (1).

【数5】 ただし、(1)式の各記号の意味は下記の通りである。 E :測定管のヤング率 I :測定管の断面2次モーメント ρw:流体密度 Si:測定管の中空部の断面積 ρt:測定管密度 St:測定管の実断面積 L :測定管の軸方向の長さ x :測定管の軸方向の位置。測定管の端部の片方でx=0、もう片方でx= Lとする。 y :xを変数とする関数で、測定管の軸方向の位置xにおける測定管の振動 振幅。 n :測定管の付加質量の個数 mk:k番目の前記付加質量の質量(k=1〜n) yk:k番目の前記付加質量の振動振幅(k=1〜n)(Equation 5) However, the meaning of each symbol in the formula (1) is as follows. E: Young's modulus of the measuring tube I: Second moment of area of the measuring tube ρw: Fluid density Si: Cross-sectional area of hollow portion of the measuring tube ρt: Density of the measuring tube St: Actual sectional area of the measuring tube L: Axial direction of the measuring tube Length x: axial position of the measuring tube. Set x = 0 at one end of the measuring tube and x = L at the other end. y: A function with x as a variable, which is the vibration amplitude of the measuring tube at the position x in the axial direction of the measuring tube. n: number of additional masses of measuring tube mk: mass of the kth additional mass (k = 1 to n) yk: vibration amplitude of the kth additional mass (k = 1 to n)

【0012】請求項2の発明では、加振される少なくと
も1本の直管状測定管内を流れる流体の密度を測定する
振動型測定器であって、前記直管状測定管の共振角振動
数ω,直管状測定管の温度および直管状測定管に作用す
る軸力Tを測定する手段を備え、下記数6の(2)式に
基づき前記流体の密度を求めるようにする。
According to a second aspect of the present invention, there is provided a vibration type measuring instrument for measuring a density of a fluid flowing in at least one straight tubular measuring pipe, wherein the resonant angular frequency ω of the straight tubular measuring pipe is A means for measuring the temperature of the straight tubular measuring tube and the axial force T acting on the straight tubular measuring tube is provided, and the density of the fluid is obtained based on the following equation (2).

【数6】 ただし、(2)式のA,B,C:測定管の振動形状およ
び付加質量により定まる定数である。
(Equation 6) However, A, B, and C in the equation (2) are constants determined by the vibration shape of the measuring tube and the added mass.

【0013】請求項2の発明では、1つの状態における
変数ρW ,E,I,ω,L,Si,Tの値の組を、3つ
の異なる状態において求めて前記(2)式に代入し、前
記定数A,B,Cを未知変数とする独立した3つの方程
式を作り、その連立方程式を解くことにより、前記定数
A,B,Cを求めることができ(請求項3の発明)、ま
たは、1つの状態における変数ρW ,E,I,ω,L,
Si,Tの値の組を、3つより多い異なる状態において
求めて前記(2)式に代入し、前記定数A,B,Cを未
知変数とする独立した3つより多い等式を作り、これら
等式の誤差が一番小さくなるよう最小二乗法により、前
記定数A,B,Cを求めることができる(請求項4の発
明)。
According to the second aspect of the present invention, a set of values of the variables ρ W , E, I, ω, L, Si and T in one state is obtained in three different states and substituted into the equation (2). , The constants A, B, and C can be obtained by making three independent equations with unknown variables as unknown variables and solving the simultaneous equations (invention of claim 3), or The variables ρ W , E, I, ω, L, in one state
A set of values of Si and T is obtained in more than three different states and substituted into the equation (2) to make more than three independent equations with the constants A, B and C as unknown variables, The constants A, B, and C can be obtained by the least-squares method so that the error of these equations becomes the smallest (the invention of claim 4).

【0014】請求項1〜4の発明では、前記軸力Tを、
前記直管状測定管の第1の振動モードの共振周波数と第
2の振動モードの共振周波数との比より求めることがで
きる(請求項5の発明)。請求項5の発明では、前記直
管状測定管における第1の振動モードを1次モード、第
2の振動モードを3次モードとすることができ(請求項
6の発明)、または、前記直管状測定管における第1の
振動モードを3次モード、第2の振動モードを5次モー
ドとすることができる(請求項7の発明)。
In the first to fourth aspects of the invention, the axial force T is
It can be obtained from the ratio of the resonance frequency of the first vibration mode and the resonance frequency of the second vibration mode of the straight tubular measuring tube (the invention of claim 5). In the invention of claim 5, the first vibration mode in the straight tube measuring tube can be a primary mode and the second vibration mode can be a tertiary mode (invention of claim 6), or the straight tube. The first vibration mode and the second vibration mode of the measuring tube can be the third mode and the fifth mode, respectively (the invention of claim 7).

【0015】請求項8の発明では、加振される少なくと
も1本の直管状測定管内を流れる流体の密度または質量
流量の少なくとも一方を測定するとともに、前記直管状
測定管に作用する軸力Tを、前記直管状測定管の第1の
振動モードの共振周波数と第2の振動モードの共振周波
数との比frより求め、この軸力Tにもとづき測定値の
補正を行なう振動型測定器において、前記軸力Tを下記
数7の(3)式から求めるようにする。
According to the invention of claim 8, at least one of the density and the mass flow rate of the fluid flowing in the at least one straight tubular measuring pipe to be excited is measured, and the axial force T acting on the straight tubular measuring pipe is measured. In the vibration-type measuring instrument, which is obtained from the ratio fr of the resonance frequency of the first vibration mode and the resonance frequency of the second vibration mode of the straight measuring tube, and corrects the measured value based on the axial force T, The axial force T is calculated from the equation (3) of the following expression 7.

【数7】 ただし、u :0以上の整数 aj:周波数比frと軸力Tの関係を表わす、frj
掛かる係数 である。
(Equation 7) However, u: an integer of 0 or more aj: a coefficient that represents the relationship between the frequency ratio fr and the axial force T and that is applied to fr j .

【0016】請求項8の発明では、前記(3)式におい
て、u=2であることができる(請求項9の発明)。請
求項5ないし7のいずれかに記載の発明では、前記
(3)式により、軸力Tを周波数比frより求めること
ができ(請求項10の発明)、請求項10の発明では前
記(3)式において、u=2であることができる(請求
項11の発明)。
In the invention of claim 8, u = 2 in the equation (3) can be satisfied (invention of claim 9). In the invention according to any one of claims 5 to 7, the axial force T can be obtained from the frequency ratio fr by the equation (3) (invention of claim 10), and in the invention of claim 10 the above (3 In the formula, u = 2 can be satisfied (the invention of claim 11).

【0017】[0017]

【発明の実施の形態】この発明の実施の形態は図1と同
じであり、信号処理回路9での処理が一般的なものと異
なるので、以下、その相違点について説明する。すなわ
ち、(4)式で微分方程式で軸力(張力)Tが作用する
ときは(7)式のようになり、然るべき境界条件のもと
で解いても(8)式のように密度ρwを陽に含まない形
となり、極めて複雑な関数となるので、ここでは、共振
の角振動数を求めるレーリー法を、直管状測定管をもつ
振動型測定器に適用することで、軸力や付加質量による
密度測定誤差の補正を図るようにする。
BEST MODE FOR CARRYING OUT THE INVENTION The embodiment of the present invention is the same as that of FIG. 1, and the processing in the signal processing circuit 9 is different from the general processing. Therefore, the difference will be described below. That is, when the axial force (tension) T acts on the differential equation in the equation (4), the equation becomes as in the equation (7), and even if it is solved under appropriate boundary conditions, the density ρw becomes as in the equation (8). Since it becomes a form that does not explicitly include it and becomes a very complicated function, here, by applying the Rayleigh method to find the angular frequency of resonance to a vibration type measuring instrument with a straight tubular measuring tube, the axial force and the added mass Correct the density measurement error due to.

【0018】上記レーリー法にもとづく式は、出願人ら
の検討によれば次の数8の(1)式の如く表わされるこ
とが確かめられている。
According to the study by the applicants, it has been confirmed that the formula based on the Rayleigh method is expressed as the following formula (1).

【数8】 この(1)式によれば、 (イ)軸力・付加質量の影響を補正できる。 (ロ)式の形が簡潔なので、密度ρwについて陽に解く
ことができ、計算も容易である。 (ハ)実用上十分な密度測定精度が得られる。 などの利点が得られ、これにより、簡単で使い勝手の良
い直管状測定管を用いて精度の良い密度測定が可能とな
る。
(Equation 8) According to the equation (1), (a) the influence of the axial force and the added mass can be corrected. Since the formula (b) has a simple form, the density ρw can be explicitly solved and the calculation is easy. (C) Practically sufficient density measurement accuracy can be obtained. As a result, it is possible to perform accurate density measurement using a straight tubular measuring tube which is simple and easy to use.

【0019】(1)式は積分項を含むが、出願人らの検
討によればこのような積分は実用上その都度計算する必
要はなく、予め定めた定数に置き換えて良いことが分か
っている。次の数9で示す(2)式は(1)式を密度ρ
wについて陽に解いた上で、(1)式中の積分項,総和
(サメイション)項Σを定数A,B,Cに置き換えたも
のである。定数A,B,Cは予め求めて定めておけば十
分な精度が得られ、これにより、式の形が簡潔となり、
計算が簡単となる。
Although equation (1) includes an integral term, it has been found from the study by the applicants that such integral need not be calculated each time in practical use, and may be replaced with a predetermined constant. . Equation (2) shown by the following equation 9 is obtained by converting equation (1) into the density
After explicitly solving for w, the integral term and the summation (summation) term Σ in the equation (1) are replaced with constants A, B, and C. If the constants A, B, and C are obtained and determined in advance, sufficient accuracy can be obtained, which simplifies the form of the equation,
Calculation becomes easy.

【数9】 (Equation 9)

【0020】(2)式の定数A,B,Cを実際に積分し
て求めるのは、必ずしも現実的ではない。つまり、図1
に示すような実際の測定装置1には、寸法誤差や組立時
の残留応力等が残っている可能性がある。したがって、
より精度を上げるには、実際に密度測定をして校正する
ことが望ましい。その校正は、例えば以下のように行な
えば良い。
It is not always practical to actually integrate and obtain the constants A, B and C in the equation (2). That is, FIG.
There is a possibility that dimensional errors, residual stress at the time of assembly, etc. remain in the actual measuring device 1 as shown in FIG. Therefore,
For higher accuracy, it is desirable to actually measure and calibrate the density. The calibration may be performed as follows, for example.

【0021】すなわち、或る状態において、ρw,E,
I,ω,L,Si,Tの値を測定する。これを(2)式
に代入すると、A,B,Cを未知数とする方程式が1つ
できる。このような測定を状態を変えて(密度,温度,
軸力等を変化させて)3回行ない、3つの方程式を作り
これらを連立させて解けば、3つの未知数を一意に求め
ることができる。この方法は、現実の測定値により定数
A,B,Cを決定するので、より測定装置に合った定数
を求められ、測定精度を向上させることができる。ただ
し、連立方程式が独立でないと未知数A,B,Cを一意
に決定できないし、独立性が小さいと求まるA,B,C
の誤差が大きくなる可能性がある。したがって、より独
立性の高い3つの状態で測定することが望ましい。
That is, in a certain state, ρw, E,
The values of I, ω, L, Si and T are measured. By substituting this into the equation (2), one equation having A, B, and C as unknowns can be created. By changing the state of such measurements (density, temperature,
It is possible to uniquely obtain the three unknowns by repeating the equation three times (changing the axial force etc.) and creating three equations and solving them simultaneously. According to this method, the constants A, B, and C are determined based on the actual measured values, so that a constant more suitable for the measuring device can be obtained, and the measurement accuracy can be improved. However, if the simultaneous equations are not independent, the unknowns A, B, C cannot be uniquely determined, and if the independence is small, A, B, C can be obtained.
The error of may become large. Therefore, it is desirable to measure in three more independent states.

【0022】校正の別の方法として、次のようにするこ
とができる。すなわち、上記と同じ測定を状態を変えて
行なうが、測定回数を3回よりも多くする。こうする
と、未知数の数よりも方程式の数の方が多くなり、一般
には全ての方程式を満たすA,B,Cは存在しない。そ
こで、最小二乗法により誤差が最も小さくなる定数A,
B,Cを決定する。この方法では測定の手間は増加する
が、より多くの場合の測定値を定数A,B,Cに反映さ
せることができるので、広い使用範囲(状態)で平均的
に測定精度を得たい場合に有効である。
As another method of calibration, the following can be performed. That is, the same measurement as above is performed in different states, but the number of measurements is made more than three times. In this case, the number of equations becomes larger than the number of unknowns, and in general, there are no A, B, and C that satisfy all equations. Therefore, a constant A, which minimizes the error by the method of least squares,
Determine B and C. Although this method increases the labor of measurement, since the measured values in more cases can be reflected in the constants A, B, and C, when it is desired to obtain the measurement accuracy on average in a wide use range (state). It is valid.

【0023】式(1),(2)では、密度ρwを求める
ために、測定管に作用する軸力を測定する必要がある。
先の式(5)は軸力を考慮しない場合の測定管の共振周
波数fを求める式である。ここで、軸力Tが作用した場
合、(5)式は、 fv=λv(T)2 √{EI/(ρwSi+ρtSt)}/(2πL2 ) …(9) fv: 測定管のv次モードの共振周波数 λv(T):測定管のv次モードのモード定数(Tの関
数である) と変形される。
In equations (1) and (2), it is necessary to measure the axial force acting on the measuring tube in order to obtain the density ρw.
The above formula (5) is a formula for obtaining the resonance frequency f of the measuring tube when the axial force is not taken into consideration. Here, when the axial force T acts, the equation (5) is as follows: fv = λv (T) 2 √ {EI / (ρwSi + ρtSt)} / (2πL 2 ) ... (9) fv: Resonance frequency λv (T): transformed into the mode constant of the v-th mode of the measuring tube (which is a function of T).

【0024】ここで、測定管の任意のv次モードとq次
モードの共振周波数fvとfqとの比frは、式(9)
より、 fr=λv(T)2 /λq(T)2 …(10) となり、軸力のみの関数となる。したがって、測定管の
2つのモードの共振周波数の比を測定すれば、軸力Tを
得ることができる。
Here, the ratio fr of the resonance frequencies fv and fq of the arbitrary v-order mode and q-order mode of the measuring tube is given by the equation (9).
As a result, fr = λv (T) 2 / λq (T) 2 (10), which is a function of only the axial force. Therefore, the axial force T can be obtained by measuring the ratio of the resonance frequencies of the two modes of the measuring tube.

【0025】この方法は、2つの共振周波数を測定する
ため、図1に示す駆動回路8や信号処理回路9がやや複
雑になるものの、測定装置1の中の直管状測定管2と測
定管の振動を検出するセンサ6a(6b)とドライバー
5による既存の振動系をそのまま利用して測定できるの
で、測定装置1の構造を複雑にしなくて済む。また、直
接軸力を測定できるため、軸力を測定管2と補強材4
a,4bの温度差より求める方法に比べて、精度が良
い。さらに、ストレインゲージを測定管に接着する方法
に比べて、厄介な接着をしなくても良い分だけ量産に向
き、信頼性も高くなる。
Since this method measures two resonance frequencies, the drive circuit 8 and the signal processing circuit 9 shown in FIG. 1 are somewhat complicated, but the straight tube measuring tube 2 and the measuring tube in the measuring apparatus 1 are not complicated. Since the existing vibration system including the sensor 6a (6b) for detecting vibration and the driver 5 can be used as it is for measurement, the structure of the measuring apparatus 1 does not have to be complicated. Further, since the axial force can be directly measured, the axial force can be measured by the measuring pipe 2 and the reinforcing member 4.
The accuracy is better than that obtained by the temperature difference between a and 4b. Further, as compared with the method of bonding the strain gauge to the measuring tube, it is suitable for mass production because the troublesome bonding is unnecessary, and the reliability is high.

【0026】図2に測定管のモードによる振動形状の変
化例を示す。同図は一様な断面を持ち、両端が固定され
た直線状のはりの場合の振動形状の計算結果を示し、同
図(イ)に1次、同(ロ)に3次、そして同(ハ)に5
次のモードをそれぞれ示している。一般に、図1に示す
ような測定管2は、図2に示すような振動のモードを無
数に持っており、その中のどの2つのモードの共振周波
数の比を用いても、式(10)より軸力を求めることが
できる。しかし、現実に共振周波数を測定する際には、
測定管を共振させてその周波数を測定するか、または、
周波数掃引を行なって伝達関数を測定するといった手法
が使われるが、いずれにせよ図1の測定装置1のよう
に、トライバー5が直管状測定管2の中央に付いている
場合、測定管中央が振動の腹になり誘起し易い奇数次モ
ードを用いることが望ましい。また、一般に周波数の低
い低次のモードの方が誘起し易く測定し易い。出願人ら
の検討によれば、1次モードと3次モード、または3次
モードと5次モードの共振周波数の比を用いると好都合
であることが確かめられている。
FIG. 2 shows an example of changes in the vibration shape depending on the mode of the measuring tube. The figure shows the calculation result of the vibration shape in the case of a linear beam with a uniform cross section and fixed at both ends. The figure shows the first order in (a), the third order in (b), and the same ( C) 5
Each of the following modes is shown. In general, the measuring tube 2 as shown in FIG. 1 has an infinite number of vibration modes as shown in FIG. 2, and even if the ratio of the resonance frequencies of any two modes among them is used, the equation (10) More axial force can be obtained. However, when actually measuring the resonance frequency,
Resonate the measuring tube and measure its frequency, or
A method of performing a frequency sweep to measure the transfer function is used, but in any case, when the triber 5 is attached to the center of the straight tubular measuring tube 2 as in the measuring apparatus 1 of FIG. It is desirable to use an odd-order mode that becomes an antinode of vibration and is easily induced. In general, a low-order mode having a low frequency is easier to induce and easier to measure. Applicants' studies have determined that it is convenient to use the ratio of the resonant frequencies of the first-order mode and the third-order mode, or the third-order mode and the fifth-order mode.

【0027】図3に、1次モードと3次モードの共振周
波数の比と軸力との相関の1例を示す。同図のf1は1
次モードの共振周波数、f3は3次モードの共振周波数
であり、横軸は軸力、縦軸は3次モードの共振周波数を
1次モードの共振周波数で割って求めた周波数比を示
す。一般に、式(9)のλv(T)は複雑な関数形とな
り、この関数をそのまま用いて周波数比frから軸力T
を求めるのは現実的ではない。出願人らの検討によれ
ば、数10に示す(3)式のような多項式で近似する方
法が現実的で、その際にはu=2、すなわち2次関数で
近似すれば実用上十分であることが判明している。
FIG. 3 shows an example of the correlation between the ratio of the resonance frequencies of the first-order mode and the third-order mode and the axial force. F1 in the figure is 1
The resonance frequency of the next mode, f3 is the resonance frequency of the third mode, the horizontal axis shows the axial force, and the vertical axis shows the frequency ratio obtained by dividing the resonance frequency of the third mode by the resonance frequency of the first mode. In general, λv (T) in the equation (9) has a complicated function form, and this function is used as it is to calculate the axial force T from the frequency ratio fr.
It is not realistic to ask for. According to the study by the applicants, a method of approximating with a polynomial such as the formula (3) shown in Formula 10 is realistic, and in that case, it is practically sufficient to approximate with u = 2, that is, a quadratic function. It turns out to be.

【数10】 (Equation 10)

【0028】図4は図3に示す軸力と周波数比を、1次
関数(直線近似)と2次関数で近似した場合の近似誤差
を示している。なお、2次関数近似の係数は、最小二乗
法により導出した。同図からも明らかなように、1次関
数近似では比較的大きな近似誤差が出ているのに対し、
2次関数近似では誤差が非常に小さくなっていることが
分かる。この近似方法は、式(1)や(2)を用いて上
述のような密度測定を行なう場合に限らず、例えばコリ
オリ式質量流量計として、図1の測定装置1のような直
管状測定管を用いた場合でも適用できる。一般に、コリ
オリ式質量流量計では、上流側と下流側の2つのセンサ
(図1ではセンサ6a,6b)の検出信号の位相差(時
間差)から質量流量を求めるが、この位相差(時間差)
は測定管に作用する軸力によって変化する。これを補正
するために、周波数比から軸力を求める際に式(3)の
近似が使用でき、その際にはu=2、すなわち2次関数
で近似すれば実用上十分であることも同様である。
FIG. 4 shows an approximation error when the axial force and the frequency ratio shown in FIG. 3 are approximated by a linear function (linear approximation) and a quadratic function. The coefficient of the quadratic function approximation was derived by the least square method. As is clear from the figure, while the linear function approximation has a relatively large approximation error,
It can be seen that the error is extremely small in the quadratic function approximation. This approximation method is not limited to the case where the above-described density measurement is performed by using the equations (1) and (2), and for example, as a Coriolis mass flowmeter, a straight tubular measuring tube such as the measuring device 1 of FIG. 1 is used. It is also applicable when using. Generally, in a Coriolis mass flowmeter, the mass flow rate is obtained from the phase difference (time difference) between the detection signals of the two upstream and downstream sensors (sensors 6a and 6b in FIG. 1). This phase difference (time difference)
Varies depending on the axial force acting on the measuring tube. In order to correct this, the approximation of the equation (3) can be used when the axial force is obtained from the frequency ratio, and in that case, it is practically sufficient to approximate u = 2, that is, a quadratic function. Is.

【0029】[0029]

【実施例】以上の観点から、実際に密度測定した例につ
いて以下に説明する。ここで、使用する装置は図1に示
すものである。図1では測定管は1本であるが、複数本
の場合も同様の手法を適用することができる。軸力測定
のための共振周波数比は、3次モードの共振周波数を1
次モードの共振周波数で除した共振周波数比を用いた。
共振周波数の測定は、直管状測定管2と測定管の振動を
検出するセンサ6a(6b)と駆動回路8とドライバー
5によって共振系を構成し、駆動回路8で周波数帯域と
位相を調整することにより、3次モードと1次モードの
両方で測定管2を共振させ、信号処理回路9でこの両方
の周波数を計測し除することにより行なった。また、温
度センサ10で測定管2の温度を測定した。
EXAMPLES From the above viewpoints, examples of actual density measurement will be described below. The apparatus used here is that shown in FIG. Although the number of measuring tubes is one in FIG. 1, the same method can be applied to the case of a plurality of measuring tubes. The resonance frequency ratio for the axial force measurement is the resonance frequency of the third mode is 1
The resonance frequency ratio divided by the resonance frequency of the next mode was used.
To measure the resonance frequency, a resonance system is configured by the straight tubular measuring tube 2, the sensor 6a (6b) for detecting the vibration of the measuring tube, the drive circuit 8 and the driver 5, and the drive circuit 8 adjusts the frequency band and the phase. Thus, the measurement tube 2 was made to resonate in both the third-order mode and the first-order mode, and both frequencies were measured and removed by the signal processing circuit 9. Further, the temperature of the measuring tube 2 was measured by the temperature sensor 10.

【0030】表1は測定値(真値)と(2)式による計
算結果との対応関係を示す。表中のf1は1次モードの
共振周波数、f3は3次モードの共振周波数を示してい
る。ここで、データNo.1〜3は測定管2内に密度の
異なる流体を入れた場合のもので、測定装置1を一定温
度に保ち、測定管2内に軸力が発生しないようにしてい
る。その結果、共振周波数比はほぼ一定になっている。
また、データNo.4〜7は測定管内の流体の密度を一
定にし、測定管に作用する軸力を変化させた場合で、軸
力により周波数比が変化していることが分かる。
Table 1 shows the correspondence between the measured value (true value) and the calculation result by the equation (2). In the table, f1 indicates the resonance frequency of the primary mode, and f3 indicates the resonance frequency of the tertiary mode. Here, the data No. Reference numerals 1 to 3 denote cases in which fluids having different densities are put into the measuring tube 2, and the measuring device 1 is kept at a constant temperature so that no axial force is generated in the measuring tube 2. As a result, the resonance frequency ratio is almost constant.
In addition, data No. 4 to 7 are cases where the density of the fluid in the measuring tube is made constant and the axial force acting on the measuring tube is changed, and it can be seen that the frequency ratio is changed by the axial force.

【表1】 [Table 1]

【0031】さて、データNo.1〜7の測定値f1,
f3および測定管温度から密度を計算する手順として
は、まず、周波数比frより軸力を求める。ここでの値
は図3の場合と異なってはいるが、軸力Tは周波数比f
rの2次関数で良好な近似ができ(u=2)、具体的に
は次の(11)式となる。 T=a2・fr2 +a1・fr+a0 …(11) a2:1692.2 a1:−20338.7 a0:59229.3
Data No. Measured values f1 of 1 to 7
As a procedure for calculating the density from f3 and the measurement tube temperature, first, the axial force is obtained from the frequency ratio fr. Although the value here is different from that in FIG. 3, the axial force T is equal to the frequency ratio f.
Good approximation can be performed with a quadratic function of r (u = 2), and specifically, the following equation (11) is obtained. T = a2 · fr 2 + a1 · fr + a0 (11) a2: 1692.2 a1: −20338.7 a0: 59229.3

【0032】次に、密度演算式として(2)式を用い、
定数A,B,Cを決定した。定数決定にはデータNo.
1,2,4の3つを用い、各々の場合の(11)式より
求めた軸力Tと、ヤング率Eの温度変化や熱膨張による
I,L,Siの変化を測定管温度により補正した値と、
流体密度の真値ρwと、さらに共振の角振動数ω(=2
πf1または2πf3、f1とf3のいずれを使用して
も良いが、全てのデータで統一することが必要である。
本実施例ではf3を用いた。)を(2)式に代入し、
A,B,Cを未知数とする3元1次連立方程式を作り、
それを解いて求めた。定数決定に使用したデータは7つ
のデータの中から独立性の高いと考えられるものを選ん
だ。その結果、 A=0.0155343 B=0.0004201 C=−0.000023 を得た。
Next, using the equation (2) as the density calculation equation,
The constants A, B and C were determined. Data No. is used to determine the constant.
Correct the axial force T obtained from equation (11) and the Young's modulus E due to temperature change and I, L, and Si changes due to thermal expansion by measuring tube temperature by using the three types of 1, 2, and 4. Value and
The true value ρw of the fluid density and the angular frequency ω of resonance (= 2
Either πf1 or 2πf3, f1 and f3 may be used, but it is necessary to unify them for all data.
In this example, f3 was used. ) Is substituted into the equation (2),
Make a three-dimensional system of linear equations with A, B, and C as unknowns,
I solved it and asked for it. The data used to determine the constants were selected from the seven data that were considered highly independent. As a result, A = 0.0155343 B = 0.0004201 C = -0.000023 was obtained.

【0033】以上により(2)式のA,B,Cを決定し
た後、その(2)式にデータNo.1〜7の測定結果を
代入して密度を計算し、真値と比較して誤差を計算し
た。表1の2〜4列目を見ると、データNo.1,2,
4は定数A,B,Cの決定に使用したので誤差が0にな
るのは当然だが、その他のデータにおいても誤差が0.
001〔g/cm3 〕以下になっており、十分な測定精
度が得られることが分かる。
After determining A, B and C in the equation (2) as described above, the data No. is added to the equation (2). The density was calculated by substituting the measurement results of 1 to 7, and the error was calculated by comparing with the true value. Looking at columns 2 to 4 in Table 1, data No. 1,2,
Since 4 was used for determining the constants A, B, and C, the error is naturally 0, but the error is 0.
It is 001 [g / cm 3 ] or less, which means that sufficient measurement accuracy can be obtained.

【0034】[0034]

【発明の効果】この発明によれば、密度演算に式(1)
を用いることにより、図1に示すような直管状測定管を
用いたシンプル・堅牢・使い勝手の良い構造で、軸力・
付加質量の影響を簡単な計算により補正して、精度の良
い測定が可能となる利点が得られる。また、式(1)を
密度ρwについて陽に解き、積分とサメイション(Σ)
をまとめてA,B,Cの3つの定数に置き換えることに
より、さらに計算を容易にすることができる。定数A,
B,Cを連立方程式を解いたり最小二乗法を用いたりし
て、実測データにより校正することにより、高い精度を
得ることができる。また、軸力を共振周波数の比より求
めることで、正確かつ量産に適した測定が可能となる。
その際には、1次モードと3次モードまたは3次モード
と5次モードの共振周波数の比を用いることが望まし
い。さらに、式(3)のように、軸力を共振周波数比の
多項式として近似することで実用的にすることができ、
その次数も2次で十分であり、計算を簡単化できるなど
の利点が得られる。
According to the present invention, the equation (1) is applied to the density calculation.
The simple, robust, and easy-to-use structure that uses a straight tubular measuring tube as shown in Fig. 1
The effect of the added mass can be corrected by a simple calculation to obtain an advantage that accurate measurement can be performed. Further, the equation (1) is explicitly solved for the density ρw, and the integral and the summation (Σ)
The calculation can be further facilitated by replacing all of the three with A, B, and C constants. Constant A,
High accuracy can be obtained by calibrating B and C with actual measurement data by solving simultaneous equations or using the least squares method. Further, by obtaining the axial force from the resonance frequency ratio, accurate and suitable for mass production can be measured.
In that case, it is desirable to use the ratio of the resonance frequencies of the first-order mode and the third-order mode or the third-order mode and the fifth-order mode. Furthermore, by approximating the axial force as a polynomial of the resonance frequency ratio as in the formula (3), it can be made practical,
The order is sufficient to be quadratic, and there is an advantage that the calculation can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態および一般的な構成を示
す構成図である。
FIG. 1 is a configuration diagram showing an embodiment and a general configuration of the present invention.

【図2】測定管のモードによる振動形状の変化例を示す
波形図である。
FIG. 2 is a waveform diagram showing an example of a change in the vibration shape depending on the mode of the measuring tube.

【図3】1次モードと3次モードの共振周波数の比と軸
力との相関の1例を示すグラフである。
FIG. 3 is a graph showing an example of the correlation between the ratio of the resonance frequencies of the first-order mode and the third-order mode and the axial force.

【図4】図3に示す軸力と周波数比を1次関数と2次関
数で近似した場合の近似誤差を示すグラフである。
FIG. 4 is a graph showing an approximation error when the axial force and the frequency ratio shown in FIG. 3 are approximated by a linear function and a quadratic function.

【符号の説明】[Explanation of symbols]

1…測定装置、2…直管状測定管、3a,3b…固定
材、4a,4b…補強材、5…ドライバー、6a,6b
…センサ、7a,7b,7c…アダプタ、8…駆動回
路、9…信号処理回路、10…温度センサ。
DESCRIPTION OF SYMBOLS 1 ... Measuring device, 2 ... Straight tubular measuring tube, 3a, 3b ... Fixing material, 4a, 4b ... Reinforcing material, 5 ... Driver, 6a, 6b
... sensor, 7a, 7b, 7c ... adapter, 8 ... drive circuit, 9 ... signal processing circuit, 10 ... temperature sensor.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 加振される少なくとも1本の直管状測定
管内を流れる流体の密度を測定する振動型測定器であっ
て、前記直管状測定管の共振角振動数ω,直管状測定管
の温度および直管状測定管に作用する軸力Tを測定する
手段を備え、下記数1の(1)式に基づき前記流体の密
度を求めることを特徴とする振動型測定器。 【数1】 ただし、(1)式の各記号の意味は下記の通りである。 E :測定管のヤング率 I :測定管の断面2次モーメント ρw:流体密度 Si:測定管の中空部の断面積 ρt:測定管密度 St:測定管の実断面積 L :測定管の軸方向の長さ x :測定管の軸方向の位置。測定管の端部の片方でx=0、もう片方でx= Lとする。 y :xを変数とする関数で、測定管の軸方向の位置xにおける測定管の振動 振幅。 n :測定管の付加質量の個数 mk:k番目の前記付加質量の質量(k=1〜n) yk:k番目の前記付加質量の振動振幅(k=1〜n)
1. A vibration-type measuring instrument for measuring the density of a fluid flowing in at least one straight tubular measuring tube, wherein the resonance angular frequency ω of said straight tubular measuring tube is equal to that of said straight tubular measuring tube. A vibration type measuring instrument comprising means for measuring a temperature and an axial force T acting on a straight tubular measuring tube, wherein the density of the fluid is obtained based on the following equation (1). [Equation 1] However, the meaning of each symbol in the formula (1) is as follows. E: Young's modulus of the measuring tube I: Second moment of area of the measuring tube ρw: Fluid density Si: Cross-sectional area of hollow portion of the measuring tube ρt: Density of the measuring tube St: Actual sectional area of the measuring tube L: Axial direction of the measuring tube Length x: axial position of the measuring tube. Set x = 0 at one end of the measuring tube and x = L at the other end. y: A function with x as a variable, which is the vibration amplitude of the measuring tube at the position x in the axial direction of the measuring tube. n: number of additional masses of measuring tube mk: mass of the kth additional mass (k = 1 to n) yk: vibration amplitude of the kth additional mass (k = 1 to n)
【請求項2】 加振される少なくとも1本の直管状測定
管内を流れる流体の密度を測定する振動型測定器であっ
て、前記直管状測定管の共振角振動数ω,直管状測定管
の温度および直管状測定管に作用する軸力Tを測定する
手段を備え、下記数2の(2)式に基づき前記流体の密
度を求めることを特徴とする振動型測定器。 【数2】 ただし、(2)式のA,B,C:測定管の振動形状およ
び付加質量により定まる定数である。
2. A vibration type measuring instrument for measuring a density of a fluid flowing in at least one straight tubular measuring pipe to be vibrated, wherein the resonance angular frequency ω of the straight tubular measuring pipe, A vibration type measuring instrument comprising means for measuring a temperature and an axial force T acting on a straight tubular measuring tube, wherein the density of the fluid is obtained based on the following equation (2). (Equation 2) However, A, B, and C in the equation (2) are constants determined by the vibration shape of the measuring tube and the added mass.
【請求項3】 1つの状態における変数ρW ,E,I,
ω,L,Si,Tの値の組を、3つの異なる状態におい
て求めて前記(2)式に代入し、前記定数A,B,Cを
未知変数とする独立した3つの方程式を作り、その連立
方程式を解くことにより、前記定数A,B,Cを求める
ことを特徴とする請求項2に記載の振動型測定器。
3. Variables ρ W , E, I, in one state
A set of values of ω, L, Si, and T is obtained in three different states and is substituted into the equation (2) to make three independent equations with the constants A, B, and C as unknown variables. The vibration-type measuring instrument according to claim 2, wherein the constants A, B, and C are obtained by solving simultaneous equations.
【請求項4】 1つの状態における変数ρW ,E,I,
ω,L,Si,Tの値の組を、3つより多い異なる状態
において求めて前記(2)式に代入し、前記定数A,
B,Cを未知変数とする独立した3つより多い等式を作
り、これら等式の誤差が一番小さくなるよう最小二乗法
により、前記定数A,B,Cを求めることを特徴とする
請求項2に記載の振動型測定器。
4. The variables ρ W , E, I, in one state
A set of values of ω, L, Si, and T is obtained in more than three different states and substituted into the equation (2) to obtain the constant A,
It is characterized in that more than three independent equations with B and C as unknown variables are created, and the constants A, B and C are obtained by the least squares method so that the error of these equations is minimized. Item 2. The vibration measuring instrument according to Item 2.
【請求項5】 前記軸力Tを、前記直管状測定管の第1
の振動モードの共振周波数と第2の振動モードの共振周
波数との比より求めることを特徴とする請求項1ないし
4のいずれかに記載の振動型測定器。
5. The axial force T is the first force of the straight tubular measuring tube.
The vibration-type measuring instrument according to claim 1, wherein the vibration-type measuring instrument is obtained from a ratio between the resonance frequency of the vibration mode and the resonance frequency of the second vibration mode.
【請求項6】 前記直管状測定管における第1の振動モ
ードを1次モード、第2の振動モードを3次モードとす
ることを特徴とする請求項5に記載の振動型測定器。
6. The vibration-type measuring instrument according to claim 5, wherein the first vibration mode of the straight tubular measuring tube is a first-order mode and the second vibration mode is a third-order mode.
【請求項7】 前記直管状測定管における第1の振動モ
ードを3次モード、第2の振動モードを5次モードとす
ることを特徴とする請求項5に記載の振動型測定器。
7. The vibration-type measuring instrument according to claim 5, wherein the first vibration mode of the straight pipe measuring tube is a third-order mode and the second vibration mode is a fifth-order mode.
【請求項8】 加振される少なくとも1本の直管状測定
管内を流れる流体の密度または質量流量の少なくとも一
方を測定するとともに、前記直管状測定管に作用する軸
力Tを、前記直管状測定管の第1の振動モードの共振周
波数と第2の振動モードの共振周波数との比frより求
め、この軸力Tにもとづき測定値の補正を行なう振動型
測定器において、前記軸力Tを下記数3の(3)式から
求めることを特徴とする振動型測定器。 【数3】 ただし、u :0以上の整数 aj:周波数比frと軸力Tの関係を表わす、frj
掛かる係数 である。
8. The axial force T acting on the straight tubular measuring pipe is measured while measuring at least one of the density and the mass flow rate of a fluid flowing in at least one straight tubular measuring pipe to be excited. In the vibration type measuring device for obtaining the ratio fr of the resonance frequency of the first vibration mode and the resonance frequency of the second vibration mode of the pipe and correcting the measured value based on this axial force T, the axial force T is as follows: A vibration-type measuring instrument characterized by being obtained from the equation (3) of equation 3. (Equation 3) However, u: an integer of 0 or more aj: a coefficient that represents the relationship between the frequency ratio fr and the axial force T and that is applied to fr j .
【請求項9】 前記(3)式において、u=2であるこ
とを特徴とする請求項8に記載の振動型測定器。
9. The vibration measuring instrument according to claim 8, wherein u = 2 in the equation (3).
【請求項10】 下記数4の(3)式により、軸力Tを
周波数比frより求めることを特徴とする請求項5ない
し7のいずれかに記載の振動型測定器。 【数4】 ただし、u :0以上の整数 aj:周波数比frと軸力Tの関係を表わす、frj
掛かる係数 である。
10. The vibration measuring instrument according to claim 5, wherein the axial force T is obtained from the frequency ratio fr by the following equation (3). (Equation 4) However, u: an integer of 0 or more aj: a coefficient that represents the relationship between the frequency ratio fr and the axial force T and that is applied to fr j .
【請求項11】 前記(3)式において、u=2である
ことを特徴とする請求項10に記載の振動型測定器。
11. The vibration measuring instrument according to claim 10, wherein u = 2 in the equation (3).
JP07326640A 1995-12-15 1995-12-15 Vibration type measuring instrument Expired - Fee Related JP3134984B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP07326640A JP3134984B2 (en) 1995-12-15 1995-12-15 Vibration type measuring instrument
DE19652002A DE19652002C2 (en) 1995-12-15 1996-12-13 Vibration meter
US08/925,019 US5965824A (en) 1995-12-15 1997-09-08 Vibration type measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07326640A JP3134984B2 (en) 1995-12-15 1995-12-15 Vibration type measuring instrument

Publications (2)

Publication Number Publication Date
JPH09166465A true JPH09166465A (en) 1997-06-24
JP3134984B2 JP3134984B2 (en) 2001-02-13

Family

ID=18190049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07326640A Expired - Fee Related JP3134984B2 (en) 1995-12-15 1995-12-15 Vibration type measuring instrument

Country Status (1)

Country Link
JP (1) JP3134984B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022078A (en) * 2009-07-17 2011-02-03 Ihi Corp Apparatus and method for measuring vibration of turbine blade
JP2013231737A (en) * 2013-07-24 2013-11-14 Micro Motion Inc Instrument electronic device and method for geometric heat compensation of flowmeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022078A (en) * 2009-07-17 2011-02-03 Ihi Corp Apparatus and method for measuring vibration of turbine blade
JP2013231737A (en) * 2013-07-24 2013-11-14 Micro Motion Inc Instrument electronic device and method for geometric heat compensation of flowmeter

Also Published As

Publication number Publication date
JP3134984B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
US5965824A (en) Vibration type measuring instrument
KR100436483B1 (en) Meter electronics for coriolis flowmeter, and method for validating a flow calibration factor used thereby
US5069075A (en) Mass flow meter working on the coriolis principle
US6327915B1 (en) Straight tube Coriolis flowmeter
US6763730B1 (en) Vibrating tube meter
EP1817554B1 (en) Method and apparatus for determining flow pressure using density information
KR101868375B1 (en) Detection of a change in the cross-sectional area of a fluid tube in a vibrating meter by determining a lateral mode stiffness
RU2643226C1 (en) Device and method for detecting asymmetric flow in vibration flowmeters
JP4373781B2 (en) Determination of flow tube and fluid characteristics in a Coriolis flow meter.
EP1788362A1 (en) Diagnostic apparatus and methods for a coriolis flow meter
JP2005502041A5 (en)
CN110582689B (en) Correcting measured flow rate for viscosity effects
US6227059B1 (en) System and method for employing an imaginary difference signal component to compensate for boundary condition effects on a Coriolis mass flow meter
JP3134984B2 (en) Vibration type measuring instrument
US9976890B2 (en) Vibrating flowmeter and related methods
JP3278037B2 (en) Vibration type measuring instrument
JP4230672B2 (en) Density measurement method and apparatus using Coriolis mass flowmeter
US11796365B2 (en) Cleaning and detecting a clean condition of a vibratory meter
JP2966356B2 (en) Mass flow meter converter
JP2023513689A (en) Apparatus and associated method for applying temperature flow coefficients in vibratory flowmeters
JP2002168672A (en) Method for calibrating coriori flowmeter
JP2023532039A (en) Method, system and electronics for correcting Coriolis flowmeter measurements for temperature effects

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091201

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111201

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20121201

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20131201

LAPS Cancellation because of no payment of annual fees