JPH09165220A - Manganese-zinc ferrite having high magnetic permeability - Google Patents

Manganese-zinc ferrite having high magnetic permeability

Info

Publication number
JPH09165220A
JPH09165220A JP8062271A JP6227196A JPH09165220A JP H09165220 A JPH09165220 A JP H09165220A JP 8062271 A JP8062271 A JP 8062271A JP 6227196 A JP6227196 A JP 6227196A JP H09165220 A JPH09165220 A JP H09165220A
Authority
JP
Japan
Prior art keywords
magnetic permeability
temperature
ferrite
high magnetic
permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8062271A
Other languages
Japanese (ja)
Inventor
Yutaka Higuchi
豊 樋口
Katsuyuki Kiguchi
勝之 城口
Hitoshi Ueda
等 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8062271A priority Critical patent/JPH09165220A/en
Publication of JPH09165220A publication Critical patent/JPH09165220A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a Mn-Zn ferrite having high magnetic permeability and small variation of the permeability over a wide temperature range by baking a mixture of Fe2 O3 , ZnO and MnO. SOLUTION: A Mn-Zn ferrite having an initial permeability of >=8,000 and its variation of <=70% in the temperature range of -20 to +100 deg.C is produced by mixing 52.5-53.0mol% of Fe2 O3 , 22-25mol% of ZnO and the remaining part of MnO, calcining the mixture, pulverizing and compression molding the calcined product and baking in an oxygen-containing atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高透磁率で温度特性の
優れたMn―Zn系フェライトに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to Mn--Zn type ferrite having high magnetic permeability and excellent temperature characteristics.

【0002】[0002]

【従来の技術】高透磁率を有するMn―Zn系フェライ
トはFe23、ZnO、MnOを主成分として構成さ
れ、この主成分に対し、種々の添加物(Ca、Si、
V、Bi)を加えた材料となっていた。このMn―Zn
系フェライトは、トランスやノイズフィルタ等の磁心と
して用いられ、高透磁率特性を利用して部品の小型化が
進められている。
2. Description of the Related Art Mn--Zn ferrites having high magnetic permeability are mainly composed of Fe 2 O 3 , ZnO and MnO, and various additives (Ca, Si,
V, Bi) was added to the material. This Mn-Zn
The system ferrite is used as a magnetic core of a transformer, a noise filter, and the like, and the miniaturization of components is being promoted by utilizing high magnetic permeability characteristics.

【0003】[0003]

【発明が解決しようとする課題】例えばISDNのS/
T点インターフェースに使用するパルストランスでは、
その回線側のインダクタンスを20mH確保すること
が、CCITT I・430に定めるインピーダンスマ
スクを満足するための必須条件となる。ここで、その使
用される機器を考えると、公衆電話や回線終端装置(D
SU)のように屋外や軒下に設置されるものが考えら
れ、その環境条件は、LSIでは現在−10〜70℃が
保証されており、同様にパルストランスにおいても温度
保証が必要となる。ところが、従来のMn―Zn系高透
磁率フェライトの場合、低温側(20℃以下)で初透磁
率が著しく低下し、この環境条件下で設計すると低温側
でのインピーダンス規格を満足するために、巻数を増や
したり、必要以上に高い透磁率の材料を用いるといった
様に非常に非効率になるという問題点があった。本発明
は、上記の事を鑑みて、高透磁率で温度特性の優れたM
n―Zn系フェライトを得ることを目的とする。
For example, ISDN S /
In the pulse transformer used for the T point interface,
Ensuring the line side inductance of 20 mH is an essential condition for satisfying the impedance mask defined in CCITT I.430. Here, considering the equipment used, public telephones and line termination devices (D
(SU) is considered to be installed outdoors or under the eaves, and its environmental condition is currently guaranteed at −10 to 70 ° C. in the LSI, and similarly, temperature guarantee is also required in the pulse transformer. However, in the case of the conventional Mn-Zn-based high magnetic permeability ferrite, the initial magnetic permeability is remarkably reduced on the low temperature side (20 ° C. or less), and if designed under this environmental condition, the impedance standard on the low temperature side is satisfied. There has been a problem that the number of turns is increased and a material having a magnetic permeability higher than necessary is used, which is very inefficient. In view of the above, the present invention provides M having high magnetic permeability and excellent temperature characteristics.
The purpose is to obtain an n-Zn ferrite.

【0004】[0004]

【課題を解決するための手段】本発明はMn―Zn系フ
ェライトにおいて、Fe23が52.5〜53.0モル
%、ZnOが22〜25モル%、残MnOであり、初透
磁率μiが温度−20〜100℃の範囲で8000以上
で、かつその変化率が70%以内であることを特徴とす
る高透磁率Mn―Zn系フェライトである。本発明は上
記Mn―Zn系フェライトにおいて、初透磁率μiの温
度特性でμiのセカンダリーピーク(Ts)が−25〜
10℃の範囲にある事を特徴とする高透磁率Mn―Zn
系フェライトである。また、本発明では、前記変化率が
40%以内のものを得ることもできる。また本発明は、
副成分としてCaOを0.05重量%以下、SiO2
0.01重量%以下、V25を0.05重量%以下、B
23を0.1重量%以下含有していても良い。本発明
において、主成分を限定した理由は、Fe23が53モ
ル%以上になると初透磁率μiの温度特性でセカンダリ
ーピーク(Ts)がマイナス側となり、室温付近での初
透磁率μiが8000以上を得られない。またFe23
が52.5モル%以下になるとセカンダリーピークが高
温側となりマイナス側でのμiが8000以上を得られ
ないからである。
SUMMARY OF THE INVENTION The present invention is in the Mn-Zn ferrite, Fe 2 O 3 is from 52.5 to 53.0 mol%, ZnO is 22 to 25 mol%, a residual MnO, initial permeability μi is a high magnetic permeability Mn—Zn based ferrite, wherein μi is 8000 or more in a temperature range of −20 to 100 ° C., and its change rate is within 70%. According to the present invention, in the above Mn—Zn-based ferrite, the secondary magnetic permeability (Ts) of μi is −25 to −25 in the temperature characteristic of the initial magnetic permeability μi.
High permeability Mn-Zn characterized by being in the range of 10 ° C
It is a system ferrite. Further, in the present invention, it is also possible to obtain the above-mentioned change rate within 40%. The present invention also provides
As subcomponents, CaO is 0.05% by weight or less, SiO 2 is 0.01% by weight or less, V 2 O 5 is 0.05% by weight or less, B
It may contain 0.1% by weight or less of i 2 O 3 . In the present invention, the reason why the main component is limited is that when Fe 2 O 3 is 53 mol% or more, the secondary peak (Ts) becomes negative in the temperature characteristic of the initial permeability μi, and the initial permeability μi near room temperature is I can't get over 8,000. Fe 2 O 3
Is less than 52.5 mol%, the secondary peak is on the high temperature side, and μi on the negative side cannot be 8,000 or more.

【0005】[0005]

【実施例】【Example】

実施例1 Fe23、MnO、ZnOを表1に示す様な主成分組成
をもつ原料を作製し、これを850℃で2時間仮焼、そ
の後ボールミルで8時間粉砕し、リング状に圧縮成形し
て1360℃で5時間、酸素濃度5%で焼成した。表1
には、異なった主成分組成をもつ試料の周波数10kH
zにおける各温度下での初透磁率μiと温度−20から
100℃の範囲におけるμiの変化率(△μi/μi)
を示す。また、20℃でのtanδ/μiとμiの温度
特性のセカンダリーピーク(Ts)も併記する。この表
1において、本発明の範囲内のものは実施例とし、範囲
外のものは比較例としている。また、試料No.2(実
施例2)と試料No.13(比較例5)との初透磁率μ
iの温度に対する変化のグラフを図1に示す。この図1
からもわかるとおり本発明の実施例は、温度−20℃、
20℃、100℃の各温度において、μiが8000以
上と高透磁率を有しており、しかもその−20℃〜10
0℃の間でμiの変化率が70%以下であり、高透磁率
でしかも温度に対する初透磁率の変化が小さい材料であ
ることがわかる。
Example 1 A raw material having a main component composition of Fe 2 O 3 , MnO, and ZnO as shown in Table 1 was prepared, calcined at 850 ° C. for 2 hours, and then pulverized by a ball mill for 8 hours and compressed into a ring. It was molded and fired at 1360 ° C. for 5 hours at an oxygen concentration of 5%. Table 1
The frequency of samples with different principal component composition is 10 kHz.
The initial permeability μi at each temperature in z and the change rate of μi in the temperature range of −20 to 100 ° C. (Δμi / μi)
Is shown. Further, the secondary peak (Ts) of the temperature characteristics of tan δ / μi and μi at 20 ° C. is also shown. In Table 1, those within the scope of the present invention are examples, and those outside the scope are comparative examples. In addition, the sample No. 2 (Example 2) and sample no. 13 (Comparative Example 5) with initial magnetic permeability μ
A graph of the change of i with temperature is shown in FIG. This figure 1
As can be seen from the above, the embodiment of the present invention has a temperature of −20 ° C.
At each temperature of 20 ° C. and 100 ° C., μi has a high magnetic permeability of 8000 or more, and its −20 ° C. to 10 ° C.
It can be seen that the rate of change of μi is 70% or less at 0 ° C., which is a material having a high magnetic permeability and a small change in the initial magnetic permeability with respect to temperature.

【0006】[0006]

【表1】 [Table 1]

【0007】実施例2 Fe23 52.6モル%、MnO 22.9モル%、
ZnO 24.5モル%を主成分とし、これにCaO、
SiO2、V25、Bi23を表2に示す分量含有する
原料を作製し、これを850℃で2時間仮焼、その後ボ
ールミルで8時間粉砕し、リング状に圧縮成形して13
60℃で5時間、酸素濃度5%で焼成した。その試料に
ついても実施例1と同様、周波数100kHzにおける
各温度下でのμiとμiの変化率を表2に示す。また、
周波数300kHzにおけるμiも併記する。この表2
に示すように、本発明の実施例は、μiの周波数特性も
優れている。尚、CaOが0.06重量%となると、−
20℃でのμiが低下した。又、SiO2が0.013
重量%となると−20℃でのμiが低下した。又、Bi
23が0.12重量%となると、−20℃でのμiが低
下した。
Example 2 Fe 2 O 3 52.6 mol%, MnO 22.9 mol%,
24.5 mol% of ZnO as a main component, and CaO,
A raw material containing SiO 2 , V 2 O 5 , and Bi 2 O 3 in the amounts shown in Table 2 was prepared, calcined at 850 ° C. for 2 hours, pulverized by a ball mill for 8 hours, and compression-molded into a ring. 13
Calcination was performed at 60 ° C. for 5 hours at an oxygen concentration of 5%. Table 2 also shows μi and the rate of change of μi at each temperature at a frequency of 100 kHz, as in Example 1. Also,
Μi at a frequency of 300 kHz is also shown. This Table 2
As shown in the above, the embodiment of the present invention also has excellent frequency characteristics of μi. When CaO becomes 0.06% by weight,-
Μi at 20 ° C. decreased. In addition, SiO 2 is 0.013
%, The μi at −20 ° C. decreased. Also, Bi
When the content of 2 O 3 was 0.12% by weight, μi at −20 ° C. decreased.

【0008】[0008]

【表2】 [Table 2]

【0009】[0009]

【発明の効果】本発明によれば、低温側(−20℃)か
ら高温側(100℃)まで高い透磁率を有し、しかも、
その温度差で透磁率の変化率が小さいMn―Zn系フェ
ライトを得ることができる。
According to the present invention, it has a high magnetic permeability from the low temperature side (-20 ° C) to the high temperature side (100 ° C), and
Due to the temperature difference, it is possible to obtain Mn—Zn based ferrite having a small change rate of magnetic permeability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る実施例と比較例との初透磁率μi
の温度特性である。
FIG. 1 shows an initial magnetic permeability μi of an example according to the present invention and a comparative example.
Is the temperature characteristic.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年3月11日[Submission date] March 11, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 高透磁率Mn―Zn系フェライトTitle of invention High permeability Mn-Zn ferrite

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高透磁率で温度特性の
優れたMn―Zn系フェライトに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to Mn--Zn type ferrite having high magnetic permeability and excellent temperature characteristics.

【0002】[0002]

【従来の技術】高透磁率を有するMn―Zn系フェライ
トはFe23、ZnO、MnOを主成分として構成さ
れ、この主成分に対し、種々の添加物(Ca、Si、
V、Bi)を加えた材料となっていた。このMn―Zn
系フェライトは、トランスやノイズフィルタ等の磁心と
して用いられ、高透磁率特性を利用して部品の小型化が
進められている。
2. Description of the Related Art Mn--Zn ferrites having high magnetic permeability are mainly composed of Fe 2 O 3 , ZnO and MnO, and various additives (Ca, Si,
V, Bi) was added to the material. This Mn-Zn
The system ferrite is used as a magnetic core of a transformer, a noise filter, and the like, and the miniaturization of components is being promoted by utilizing high magnetic permeability characteristics.

【0003】[0003]

【発明が解決しようとする課題】例えばISDNのS/
T点インターフェースに使用するパルストランスでは、
その回線側のインダクタンスを20mH確保すること
が、CCITT I・430に定めるインピーダンスマ
スクを満足するための必須条件となる。ここで、その使
用される機器を考えると、公衆電話や回線終端装置(D
SU)のように屋外や軒下に設置されるものが考えら
れ、その環境条件は、LSIでは現在−10〜70℃が
保証されており、同様にパルストランスにおいても温度
保証が必要となる。ところが、従来のMn―Zn系高透
磁率フェライトの場合、低温側(20℃以下)で初透磁
率が著しく低下し、この環境条件下で設計すると低温側
でのインピーダンス規格を満足するために、巻数を増や
したり、必要以上に高い透磁率の材料を用いるといった
様に非常に非効率になるという問題点があった。本発明
は、上記の事を鑑みて、高透磁率で温度特性の優れたM
n―Zn系フェライトを得ることを目的とする。
For example, ISDN S /
In the pulse transformer used for the T point interface,
Ensuring the line side inductance of 20 mH is an essential condition for satisfying the impedance mask defined in CCITT I.430. Here, considering the equipment used, public telephones and line termination devices (D
(SU) is considered to be installed outdoors or under the eaves, and its environmental condition is currently guaranteed at −10 to 70 ° C. in the LSI, and similarly, temperature guarantee is also required in the pulse transformer. However, in the case of the conventional Mn-Zn-based high magnetic permeability ferrite, the initial magnetic permeability is remarkably reduced on the low temperature side (20 ° C. or less), and if designed under this environmental condition, the impedance standard on the low temperature side is satisfied. There has been a problem that the number of turns is increased and a material having a magnetic permeability higher than necessary is used, which is very inefficient. In view of the above, the present invention provides M having high magnetic permeability and excellent temperature characteristics.
The purpose is to obtain an n-Zn ferrite.

【0004】[0004]

【課題を解決するための手段】本発明はMn―Zn系フ
ェライトにおいて、Fe23が52.5〜53.0モル
%、ZnOが22〜25モル%、残MnOであり、初透
磁率μiの温度特性でμiのセカンダリーピーク(T
s)が−25〜10℃の範囲にある事を特徴とする高透
磁率Mn―Zn系フェライトである。本発明のMn―Z
n系フェライトによれば、温度−20〜100℃で、初
透磁率μiが8000以上の高透磁率を得ることができ
る。しかも、温度−20〜100℃で、初透磁率μiの
変化率も70%以下となる優れた温度安定性を兼ね備え
ている。
SUMMARY OF THE INVENTION The present invention is in the Mn-Zn ferrite, Fe 2 O 3 is from 52.5 to 53.0 mol%, ZnO is 22 to 25 mol%, a residual MnO, initial
The secondary peak of μi (T
s) is in the range of -25 to 10 ° C, which is a high magnetic permeability Mn-Zn ferrite. Mn-Z of the present invention
According to the n-type ferrite, at a temperature of -20 to 100 ° C,
It is possible to obtain a high magnetic permeability with a magnetic permeability μi of 8000 or more.
You. Moreover, at a temperature of −20 to 100 ° C., the initial magnetic permeability μi
Combines excellent temperature stability with a change rate of 70% or less
ing.

【0005】また本発明は、副成分としてCaOを0.
05重量%以下、SiO2を0.01重量%以下、V2
5を0.05重量%以下、Bi23を0.1重量%以下
含有していても良い。本発明において、主成分を限定し
た理由は、Fe23が53モル%を越えると初透磁率μ
iの温度特性でセカンダリーピーク(Ts)がマイナス
側となり、室温付近での初透磁率μiが8000以上を
得られない。またFe23が52.5モル%未満になる
とセカンダリーピークが高温側となりマイナス側でのμ
iが8000以上を得られないからである。一方、Zn
Oが25モル%を越えると、キュリー温度(Tc)が1
00℃付近まで低下して温度保証帯域が狭くなるため、
望ましくない。さらに、ZnOが22モル%未満となる
と、キュリー温度が高くなり、温度特性カーブのうねり
が大きくなるのに伴い、−20〜0℃においてμiが8
000以上を得られないからである。
Further, according to the present invention, CaO is added as a sub-component.
05 wt% or less, the SiO 2 0.01 wt% or less, V 2 O
5 may be contained at 0.05% by weight or less, and Bi 2 O 3 may be contained at 0.1% by weight or less. In the present invention, the main component is limited because the initial magnetic permeability μ when Fe 2 O 3 exceeds 53 mol%.
In the temperature characteristic of i, the secondary peak (Ts) is on the negative side, and the initial permeability μi near room temperature cannot be 8,000 or more. When Fe 2 O 3 is less than 52.5 mol%, the secondary peak becomes the high temperature side and μ on the negative side.
This is because i cannot be 8,000 or more. On the other hand, Zn
When O exceeds 25 mol%, the Curie temperature (Tc) is 1
Since the temperature guarantee band becomes narrower as the temperature drops to around 00 ° C,
Not desirable. Further, ZnO is less than 22 mol%
When the Curie temperature rises, the swell of the temperature characteristic curve
Becomes larger, μi becomes 8 at -20 to 0 ° C.
This is because you cannot get more than 000.

【0006】[0006]

【実施例】 実施例1 Fe23、MnO、ZnOを表1に示す様な主成分組成
をもつ原料を作製し、これを850℃で2時間仮焼、そ
の後ボールミルで8時間粉砕し、リング状に圧縮成形し
て1360℃で5時間、酸素濃度5%で焼成した。表1
には、異なった主成分組成をもつ試料の周波数10kH
zにおける各温度下での初透磁率μiと温度−20から
100℃の範囲におけるμiの変化率(△μi/μi)
を示す。また、20℃でのtanδ/μiとμiの温度
特性のセカンダリーピーク(Ts)も併記する。この表
1において、本発明の範囲内のものは実施例とし、範囲
外のものは比較例としている。また、試料No.2(実
施例2)と試料No.13(比較例5)との初透磁率μ
iの温度に対する変化のグラフを図1に示す。この図1
からもわかるとおり本発明の実施例は、温度−20℃、
20℃、100℃の各温度において、μiが8000以
上と高透磁率を有しており、しかもその−20℃〜10
0℃の間でμiの変化率が70%以下であり、高透磁率
でしかも温度に対する初透磁率の変化が小さい材料であ
ることがわかる。
Example 1 A raw material of Fe 2 O 3 , MnO, and ZnO having a main component composition as shown in Table 1 was prepared, calcined at 850 ° C. for 2 hours, and then pulverized by a ball mill for 8 hours. It was compression molded into a ring shape and baked at 1360 ° C. for 5 hours at an oxygen concentration of 5%. Table 1
The frequency of samples with different principal component composition is 10 kHz.
The initial permeability μi at each temperature in z and the change rate of μi in the temperature range of −20 to 100 ° C. (Δμi / μi)
Is shown. Further, the secondary peak (Ts) of the temperature characteristics of tan δ / μi and μi at 20 ° C. is also shown. In Table 1, those within the scope of the present invention are examples, and those outside the scope are comparative examples. In addition, the sample No. 2 (Example 2) and sample no. 13 (Comparative Example 5) with initial magnetic permeability μ
A graph of the change of i with temperature is shown in FIG. This figure 1
As can be seen from the above, the embodiment of the present invention has a temperature of −20 ° C.
At each temperature of 20 ° C. and 100 ° C., μi has a high magnetic permeability of 8000 or more, and its −20 ° C. to 10 ° C.
It can be seen that the rate of change of μi is 70% or less at 0 ° C., which is a material having a high magnetic permeability and a small change in the initial magnetic permeability with respect to temperature.

【0007】[0007]

【表1】 [Table 1]

【0008】[0008]

【発明の効果】本発明によれば、低温側(−20℃)か
ら高温側(100℃)まで高い透磁率を有し、しかも、
その温度差で透磁率の変化率が小さいMn―Zn系フェ
ライトを得ることができる。
According to the present invention, it has a high magnetic permeability from the low temperature side (-20 ° C) to the high temperature side (100 ° C), and
Due to the temperature difference, it is possible to obtain Mn—Zn based ferrite having a small change rate of magnetic permeability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る実施例と比較例との初透磁率μi
の温度特性である。
FIG. 1 shows an initial magnetic permeability μi of an example according to the present invention and a comparative example.
Is the temperature characteristic.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Mn―Zn系フェライトにおいて、Fe
23が52.5〜53.0モル%、ZnOが22〜25
モル%、残MnOであり、初透磁率μiが温度−20〜
100℃の範囲で8000以上で、かつその変化率が7
0%以内である事を特徴とする高透磁率Mn―Zn系フ
ェライト。
1. An Mn—Zn ferrite comprising Fe
2 O 3 is 52.5 to 53.0 mol%, ZnO is 22 to 25
Mol%, residual MnO, and the initial permeability μ
8000 or more in the range of 100 ° C. and the rate of change is 7
High magnetic permeability Mn-Zn ferrite characterized by being within 0%.
【請求項2】 請求項1に記載されるMn―Zn系フェ
ライトにおいて、初透磁率μiの温度特性でμiのセカ
ンダリーピーク(Ts)が−25〜10℃の範囲にある
事を特徴とする高透磁率Mn―Zn系フェライト。
2. The Mn—Zn-based ferrite according to claim 1, wherein a secondary peak (Ts) of μi in a temperature characteristic of an initial magnetic permeability μi is in a range of −25 to 10 ° C. Magnetic permeability Mn-Zn ferrite.
JP8062271A 1996-03-19 1996-03-19 Manganese-zinc ferrite having high magnetic permeability Pending JPH09165220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8062271A JPH09165220A (en) 1996-03-19 1996-03-19 Manganese-zinc ferrite having high magnetic permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8062271A JPH09165220A (en) 1996-03-19 1996-03-19 Manganese-zinc ferrite having high magnetic permeability

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5070988A Division JP2907253B2 (en) 1993-03-05 1993-03-05 High permeability Mn-Zn ferrite

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9056699A Division JPH1072217A (en) 1997-03-11 1997-03-11 High permeability mn-zn ferrite and pulse transformer

Publications (1)

Publication Number Publication Date
JPH09165220A true JPH09165220A (en) 1997-06-24

Family

ID=13195328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8062271A Pending JPH09165220A (en) 1996-03-19 1996-03-19 Manganese-zinc ferrite having high magnetic permeability

Country Status (1)

Country Link
JP (1) JPH09165220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6217789B1 (en) 1997-03-13 2001-04-17 Tdk Corporation Mn-Zn system ferrite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6217789B1 (en) 1997-03-13 2001-04-17 Tdk Corporation Mn-Zn system ferrite

Similar Documents

Publication Publication Date Title
JPH06290925A (en) High frequency low loss ferrite for power supply
JPH09165220A (en) Manganese-zinc ferrite having high magnetic permeability
JP3550251B2 (en) Ferrite sintered body for high frequency region and signal chip inductor using the same
JP2907253B2 (en) High permeability Mn-Zn ferrite
JPH0433755B2 (en)
JPH11302069A (en) High permeability mn-zn-based ferrite and ferrite core for pulse transformer
JP2802839B2 (en) Oxide soft magnetic material
JPH1072217A (en) High permeability mn-zn ferrite and pulse transformer
JP2726388B2 (en) High magnetic permeability high saturation magnetic flux density Ni-based ferrite core and method of manufacturing the same
JPH10256025A (en) Manganese-zinc ferrite
JP4436493B2 (en) High frequency low loss ferrite material and ferrite core using the same
JP2939035B2 (en) Soft magnetic oxide substance
JP3245206B2 (en) Manganese-zinc ferrite
JP2731358B2 (en) Method for producing Mn-Zn ferrite
JP2510788B2 (en) Low power loss oxide magnetic material
JP3238735B2 (en) Manganese-zinc ferrite
JP2002353024A (en) Ferrite magnetic core having low-temperature coefficient, and electronic component
JPH11199235A (en) Ferrite material
JP3044666B2 (en) Low loss ferrite for power supply
JP3678479B2 (en) Low temperature coefficient ferrite core and electronic components
JPH097814A (en) Oxide magnetic material and its manufacturing method
JP2731357B2 (en) Method for producing Mn-Zn ferrite
JP2627676B2 (en) Manufacturing method of oxide magnetic material
JP2718276B2 (en) Oxide magnetic material
JP2000299217A (en) High permeability oxide magnetic material