JPH09164393A - Treatment of hardly-decomposable matter contained in return water - Google Patents

Treatment of hardly-decomposable matter contained in return water

Info

Publication number
JPH09164393A
JPH09164393A JP7328498A JP32849895A JPH09164393A JP H09164393 A JPH09164393 A JP H09164393A JP 7328498 A JP7328498 A JP 7328498A JP 32849895 A JP32849895 A JP 32849895A JP H09164393 A JPH09164393 A JP H09164393A
Authority
JP
Japan
Prior art keywords
treatment
return water
sludge
ozone
hardly decomposable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7328498A
Other languages
Japanese (ja)
Inventor
Shigeo Aoyanagi
重夫 青柳
Rie Kagami
理恵 加賀美
Keiichi Tsukamoto
慶一 塚本
Norimasa Yoshino
徳正 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP7328498A priority Critical patent/JPH09164393A/en
Publication of JPH09164393A publication Critical patent/JPH09164393A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)
  • Activated Sludge Processes (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a pretreating technique for removing the hardly- decomposable matter contained in return water by treating the return water generated in sewage treatment and sludge treatment with ozone as the pretreatment. SOLUTION: The mol.wt. distribution of the hardly-decomposable matter contained in return water is detected by high speed liq. chromatography, the UV absorbance (E 260) used in the detection is used as an index to pretreat the hardly-decomposable matter, and then the return water is biologically treated by the activated sludge process. A method for diffusing gaseous ozone obtained from a ozonizer into the return water introduced into a reaction tank, a method for diffusing gaseous ozone and hydrogen peroxide into the return water, a method for diffusing gaseous ozone into the return water and further irradiating the sludge by the use of a UV lamp dipped in the reaction tank and a method for diffusing hydrogen peroxide into the return water and further irradiating the sludge with use of the UV lamp dipped in the reaction tank are used as the pretreatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は下水処理とか汚泥処
理における返流水に含まれる難分解性物質の前処理方法
に関するものである。
TECHNICAL FIELD The present invention relates to a pretreatment method for a hardly decomposable substance contained in return water in sewage treatment or sludge treatment.

【0002】[0002]

【従来の技術】近年の下水道普及の進捗に伴って下水処
理水が年々増加しており、そのため汚泥の発生量もほぼ
同じ比率(約5%)で増加している。例えば昭和63年
度の下水処理水量は943500(万m3/年)、汚泥
の発生量は23700(万m3/年)であり、この汚泥
の処分は処分地に制約条件が大きい大都市のみならず、
処理を新しく開始した中小都市の場合でも大きな問題点
となっている。
2. Description of the Related Art The amount of treated sewage has been increasing year by year with the recent spread of sewage, and therefore the amount of sludge generated has been increasing at the same rate (about 5%). For example, sewage treatment water of fiscal 1988 is 943,500 (Thousand m 3 / year), the amount of sludge is 23700 (ten thousand m 3 / year), the disposal of this sludge if only large cities constraint is large disposal sites No
This is a big problem even in the case of small and medium-sized cities that have newly started processing.

【0003】都市下水処理場における水処理施設で発生
した余剰汚泥とか最初沈澱池で発生した生汚泥は、水処
理施設の系外に引き抜かれて汚泥処理施設に輸送され、
濃縮,消化,脱水等の工程を経て最終処分が行われる。
特に大都市圏においては、人口の集中等の要因により複
数の下水処理場が近接している場合が多く、これら各下
水処理場の発生汚泥を一カ所に集中して汚泥の集約処理
を行うことによって汚泥処理時間を短縮し、且つ汚泥処
理コストを低くすることができる。
Excess sludge generated in a water treatment facility in an urban sewage treatment plant or raw sludge first generated in a sedimentation basin is drawn out of the system of the water treatment facility and transported to the sludge treatment facility.
Final disposal is performed through processes such as concentration, digestion and dehydration.
Especially in metropolitan areas, there are many cases where multiple sewage treatment plants are close to each other due to factors such as population concentration, and sludge generated from each of these sewage treatment plants should be concentrated in one place for intensive treatment of sludge. Thus, the sludge treatment time can be shortened and the sludge treatment cost can be reduced.

【0004】上記集約処理は一般に汚泥を濃縮,消化後
に最終処分もしくは天日乾燥を経て最終処分する方法、
更に機械脱水して焼却,コンポスト化してから最終処分
する方法が主体となっている。上記集約処理を行うに
は、各処理場にて発生する汚泥を集中汚泥処理場に輸送
する必要があり、その輸送方法としてはトラック輸送、
船舶輸送、パイプ輸送等が考えられる。
The above-mentioned intensive treatment is generally a method of concentrating sludge and finally disposing it after digestion or finally drying it after sun drying.
Furthermore, the main method is mechanical dewatering, incineration, composting, and final disposal. In order to carry out the above-mentioned intensive treatment, it is necessary to transport the sludge generated at each treatment plant to the central sludge treatment plant.
Ship transportation and pipe transportation are possible.

【0005】集約処理の長所は、汚泥処理施設のスケ
ールメリット、環境対策の集約化、エネルギー回収
の効率化、維持管理費のコスト低減、汚泥の資源化
の向上等が挙げられる。更に各下水処理場での水処理系
への返流水負荷の低減とか汚泥処理施設跡地を高度処理
施設用地として有効利用することが可能になる等の利点
もある。
Advantages of the integrated treatment include scale advantage of the sludge treatment facility, integration of environmental measures, efficiency of energy recovery, reduction of maintenance cost, improvement of sludge resource utilization, and the like. Furthermore, there are advantages such as reduction of the return water load to the water treatment system at each sewage treatment plant, and effective use of the site of the sludge treatment facility as a site for advanced treatment facilities.

【0006】一方、汚泥を長距離圧送することに伴い、
汚泥の変質とか腐敗による濃縮性と脱水性の悪化とか、
悪臭の発生、施設の腐食等の新たな問題点も生じる。中
でも大量で且つ高濃度の汚濁物質を含む返流水の発生が
大きな問題点として挙げられる。
On the other hand, as sludge is pumped over a long distance,
Deterioration of sludge, deterioration of concentration and dehydration due to decay,
New problems such as generation of foul odor and facility corrosion will also occur. Above all, generation of return water containing a large amount and high concentration of pollutants is a major problem.

【0007】他方で汚泥処理プラントで発生する返流水
中には、高濃度の難分解性物質が含まれているため、従
来のように既設の水処理施設へ戻して処理することは困
難である。その結果、難分解性物質のほとんどが除去さ
れずに放流されてしまい、放流基準のCODMn濃度が2
0(mg/l)を越えてしまうこともある。従って返流
水に含まれる難分解性物質が放流基準を越えない程度ま
で処理できる前処理技術を確立することが要求される。
On the other hand, since the return water generated in the sludge treatment plant contains a high concentration of hardly decomposable substances, it is difficult to return it to the existing water treatment facility for treatment as in the conventional case. . As a result, most of the persistent substances were not removed and were released, resulting in COD Mn concentrations of 2
It may exceed 0 (mg / l). Therefore, it is required to establish a pretreatment technology that can treat the persistent substances contained in the return water to the extent that the discharge standard is not exceeded.

【0008】[0008]

【発明が解決しようとする課題】従来から返流水中に含
まれる難分解性物質の処理を目的とした前処理技術は確
立されていないのが実状であるが、通常の生物処理プロ
セスにより返流水の汚濁物質負荷を低減する技術として
以下の4項目を挙げることができる。
Although the pretreatment technology for the purpose of treating the hardly decomposable substance contained in the return water has not been established in the past, the return water is treated by the normal biological treatment process. The following four items can be cited as the technologies for reducing the pollutant load.

【0009】(1)凝集沈殿処理法 返流水の重力濃縮槽廃水に対して無機凝集剤としてPA
C、高分子凝集剤として中カチオンのポリマーを用いて
凝集沈殿させる方法である。
(1) Coagulation-sedimentation treatment method PA as an inorganic coagulant for the gravity concentrating tank wastewater of the returning water
C. This is a method in which a medium cation polymer is used as the polymer flocculant to cause flocculation and precipitation.

【0010】(2)高速凝集・増粒沈殿法 主として返流水のss(浮遊物質)成分の除去を目的と
した方法。本法は返流水に無機凝集剤を添加し、次に有
機高分子凝集剤を加えてss成分を高速増粒沈殿装置内
で凝集・増粒化し、効率的に沈殿させる方法である。
(2) High-speed coagulation / aggregation precipitation method A method mainly intended to remove the ss (suspended matter) component of the return water. In this method, an inorganic coagulant is added to the return water, and then an organic polymer coagulant is added to coagulate / particle-size the ss component in a high-speed particle-size precipitator to efficiently precipitate.

【0011】(3)浮上濾過法 高速凝集・増粒沈殿法と同様に主として返流水のss成
分の除去を目的としている。ポリマーと硫酸バンドを添
加することにより、500〜1500(m/日)の高速
濾過が可能である。 (4)MAP法 主として返流水のリン除去を目的としている。溶液中に
マグネシウムイオン、アンモニウムイオン及びリン酸イ
オンが存在すると、適当なpH条件、例えば最適pH条
件として7.5〜8.5で各イオンが等モルで反応してリ
ン酸マグネシウムアンモニウムの結晶を生成し、反応に
関与した量のアンモニウムイオン及びリン酸が除去され
る。
(3) Floating filtration method Similar to the high-speed coagulation / aggregation precipitation method, the purpose is mainly to remove ss components of return water. By adding the polymer and the sulfuric acid band, high speed filtration of 500 to 1500 (m / day) is possible. (4) MAP method The main purpose is to remove phosphorus from the return water. When magnesium ion, ammonium ion and phosphate ion are present in the solution, each ion reacts equimolarly under appropriate pH condition, for example, 7.5 to 8.5 as the optimum pH condition to form magnesium ammonium phosphate crystal. The amount of ammonium ions and phosphoric acid that have formed and participated in the reaction are removed.

【0012】しかしながら上記各方法は生物処理プロセ
スへの汚濁物質負荷を低減することを目的としているた
め、何れもS−CODを示す難分解性物質を除去するこ
とが困難である。例えば(1)の凝集沈殿処理法はss
性CODはほぼ除去されるが、溶解性CODが処理水の
CODのほとんどを占めるという問題がある。(2)の
高速凝集・増粒沈殿法はss成分の除去に伴ってss性
COD、T−N(全窒素)もある程度除去される。又、
(3)の浮上濾過法は返流水中に含まれるss成分は下
水中に含まれるものとは性状が異なり、濃度も高いため
返流水の前処理法として適用するには濾過剤及び凝集剤
について新たに検討する必要がある。(4)のMAP法
はリン酸イオンとアンモニウムイオンを除去できるが、
難分解性物質を除去することはできない。
However, since each of the above-mentioned methods aims to reduce the pollutant load on the biological treatment process, it is difficult to remove the hardly decomposable substance exhibiting S-COD in any of the methods. For example, the coagulation sedimentation treatment method of (1) is ss
Although most of the soluble COD is removed, the soluble COD occupies most of the treated water COD. In the high-speed coagulation / granular precipitation method (2), ss COD and TN (total nitrogen) are also removed to some extent as the ss component is removed. or,
In the floating filtration method of (3), the ss components contained in the return water have different properties from those contained in the sewage, and since the concentration is high, it is necessary to use a filter agent and a coagulant as a pretreatment method for the return water. It is necessary to consider anew. The MAP method of (4) can remove phosphate ions and ammonium ions,
Persistent substances cannot be removed.

【0013】そこで本発明は上記の問題点に鑑みてなさ
れたものであって、返流水中に含まれる難分解性物質を
除去するための前処理技術を確立することを目的とする
ものである。
Therefore, the present invention has been made in view of the above problems, and it is an object of the present invention to establish a pretreatment technique for removing a hardly decomposable substance contained in return water. .

【0014】[0014]

【課題を解決するための手段】本発明は上記の課題を解
決するために、下水処理及び汚泥処理において発生する
返流水に含まれる難分解性物質の分子量分布を高速液体
クロマトグラフィーにより検出し、検出に用いた紫外線
吸光度(E260)を難分解性物質の指標として、難分
解性物質の前処理を行ってから活性汚泥法による生物処
理を行うことを特徴としている。上記返流水とは、下水
処理における汚泥濃縮槽からの分離液、脱水機からの脱
離液、多段炉スクラバー排水、流動炉スクラバー排水で
ある。
In order to solve the above problems, the present invention detects the molecular weight distribution of hardly decomposable substances contained in the return water generated in sewage treatment and sludge treatment by high performance liquid chromatography, The ultraviolet absorption (E260) used for the detection is used as an index for the hardly decomposable substance, and the pretreatment of the hardly decomposable substance is performed before the biological treatment by the activated sludge method. The above-mentioned return water is the separated liquid from the sludge concentration tank in the sewage treatment, the desorbed liquid from the dehydrator, the multistage furnace scrubber drainage, and the fluidized reactor scrubber drainage.

【0015】上記前処理として、反応槽に送り込まれ
た返流水に対してオゾン発生機から得られたオゾンガス
を放散する方法、返流水に対してオゾンガスと過酸化
水素を放散する方法、返流水に対してオゾンガスを放
散するとともに、反応槽内に浸漬した紫外線ランプを用
いて汚泥を照射処理する方法、返流水に対して過酸化
水素を放散するとともに、反応槽内に浸漬した紫外線ラ
ンプを用いて汚泥を照射処理する各方法を用いる。
As the above-mentioned pretreatment, a method of releasing ozone gas obtained from an ozone generator to the return water sent to the reaction tank, a method of releasing ozone gas and hydrogen peroxide to the return water, and a return water On the other hand, a method of irradiating ozone gas and irradiating sludge using an ultraviolet lamp immersed in the reaction tank, releasing hydrogen peroxide to return water, and using an ultraviolet lamp immersed in the reaction tank Each method of irradiation treatment of sludge is used.

【0016】かかる前処理方法によれば、返流水をオゾ
ン処理することにより、高速液体クロマトグラフィー
(HPLC)により検出される全難分解性物質は生物易
分解性物質に転換するので、その後の生物処理によって
生物易分解性物質が除去され、BOD,CODMnともに
放流基準値以下にすることができる 更にオゾンガスと過酸化水素を用いた放散処理、オゾン
ガス放散と紫外線ランプ照射処理、過酸化水素放散と紫
外線ランプ照射処理を行うことにより、オゾンよりも酸
化分解力の高いヒドロキシラジカル(OHラジカル)が
生成して、このヒドロキシラジカルにより難分解性物質
がE260の吸収を持たない生物易分解性物質に転換さ
れ、その後に生物処理を実施することにより生物易分解
性物質も除去されるので、全難分解性物質の除去率はオ
ゾン処理だけの場合よりも高くなる。
According to such a pretreatment method, all the hardly decomposable substances detected by high performance liquid chromatography (HPLC) are converted into easily biodegradable substances by subjecting the returned water to ozone treatment. Biodegradable substances are removed by treatment, and both BOD and COD Mn can be reduced to below the emission standard value. Further, emission treatment using ozone gas and hydrogen peroxide, ozone gas emission and ultraviolet lamp irradiation treatment, hydrogen peroxide emission By performing irradiation treatment with an ultraviolet lamp, hydroxy radicals (OH radicals), which have a higher oxidative decomposition power than ozone, are generated, and these hydroxy radicals transform persistent substances into easily biodegradable substances that do not absorb E260. The biodegradable substance is also removed by performing biological treatment after that. Quality removal rates are higher than with ozone treatment alone.

【0017】[0017]

【発明の実施の形態】以下に本発明にかかる返流水に含
まれる難分解性物質の処理方法の具体的な実施例につい
て説明する。本実施例では、返流水に含まれる難分解性
物質の分子量分布を高速液体クロマトグラフィー(以下
HPLCと略称)により検討した。次にHPLCにより
検出される全難分解性物質を指標として、返流水中に含
まれる難分解性物質の処理を行う前処理技術の評価につ
いて検討した。
BEST MODE FOR CARRYING OUT THE INVENTION Specific examples of a method for treating a hardly decomposable substance contained in return water according to the present invention will be described below. In this example, the molecular weight distribution of the hardly decomposable substance contained in the returned water was examined by high performance liquid chromatography (hereinafter abbreviated as HPLC). Next, the evaluation of the pretreatment technology for treating the persistent substances contained in the return water was examined by using all the persistent substances detected by HPLC as an index.

【0018】次に下水処理と汚泥処理に関するフローに
ついて簡単に説明する。先ず下水処理は「最初沈澱池」
→「標準活性汚泥法」→「最終沈澱池」→「消毒・放
流」を主体とし、汚泥処理は「汚泥濃縮槽による重力濃
縮」→「高分子凝集剤投入及びベルトプレス脱水機」→
「乾燥・焼却処理」を主体としている。返流水の内訳は
濃縮槽からの分離液、脱水機からの脱離液、多段炉スク
ラバー排水、流動炉スクラバー排水である。
Next, a flow regarding sewage treatment and sludge treatment will be briefly described. First of all, the sewage treatment is "First Sedimentation Pond".
→ "Standard activated sludge method" → "Final sedimentation tank" → "Disinfection and discharge" is the main, sludge treatment is "gravity concentration by sludge thickening tank" → "Polymer flocculant injection and belt press dehydrator" →
Mainly "drying and incineration". The breakdown of the return water is the separation liquid from the concentration tank, the desorption liquid from the dehydrator, the drainage of the multistage furnace scrubber, and the drainage of the fluidized reactor scrubber.

【0019】〔実施例1〕ポリエチレンオキシド(MW
1.7×105、9.5×104、4.6×104、2.5×
104)とポリエチレングリコール(MW9×103、5
×103、5.86×102、2.04×102)を各々0.
1%濃度に調製し、難分解性物質の分子量を求める検量
線を作成した。HPLCの検出に用いた紫外線吸光度
(E260)を難分解性物質の指標とした。
[Example 1] Polyethylene oxide (MW
1.7 × 10 5 , 9.5 × 10 4 , 4.6 × 10 4 , 2.5 ×
10 4 ) and polyethylene glycol (MW 9 × 10 3 , 5
× 10 3 , 5.86 × 10 2 , 2.04 × 10 2 ) respectively.
The concentration was adjusted to 1% and a calibration curve for determining the molecular weight of the hardly decomposable substance was prepared. The ultraviolet absorbance (E260) used for HPLC detection was used as an index of the hardly decomposable substance.

【0020】次に多段炉スクラバー排水、濃縮槽からの
分離液、脱水機からの脱離液等の返流水に含まれる難分
解性物質の分子量分布をHPLCにより検討した。分析
条件を表1に示す。
Next, the molecular weight distribution of the hardly decomposable substances contained in the return water such as the wastewater of the multistage furnace scrubber, the separated liquid from the concentration tank, the desorbed liquid from the dehydrator, etc. was examined by HPLC. Table 1 shows the analysis conditions.

【0021】[0021]

【表1】 [Table 1]

【0022】HPLCにより求めた難分解性物質の分子
量を求める検量線を図3に示す。該検量線の近似式は logM=7.18×10-33+1.98×10-12
2.33×100t+1.35×101 (M:分子量,t:時間)である。
A calibration curve for determining the molecular weight of the hardly decomposable substance determined by HPLC is shown in FIG. The approximate expression of the calibration curve is logM = 7.18 × 10 −3 t 3 + 1.98 × 10 −1 t 2
2.33 × 10 0 t + 1.35 × 10 1 (M: molecular weight, t: time).

【0023】次に多段炉スクラバー排水、濃縮槽分離
水、返流水に含まれる難分解性物質のクロマトグラムを
図4に示す。各サンプルとも主にMWが17000,8
000,2900,700の分子量を有する難分解性物
質のピークが現出した。この難分解性物質の分子量とピ
ークの溶出時間の関係を表2に示す。
Next, FIG. 4 shows a chromatogram of the hardly decomposable substances contained in the multistage furnace scrubber wastewater, the water separated from the concentration tank, and the return water. Mainly MW of 17,000,8 for each sample
A peak of a hardly decomposable substance having a molecular weight of 000, 2900, 700 appeared. Table 2 shows the relationship between the molecular weight of this hardly decomposable substance and the elution time of the peak.

【0024】[0024]

【表2】 [Table 2]

【0025】HPLCの分析の結果、返流水には主にM
W17000,8000,2900,700の分子量を
有する難分解性物質が含まれていることが明らかとなっ
た。
As a result of the HPLC analysis, it was found that the return water was mainly M
It was revealed that a persistent substance having a molecular weight of W17,000, 8000, 2900, 700 was contained.

【0026】次に比較例として生物処理による難分解性
物質の除去実験を行った。
Next, as a comparative example, an experiment for removing hardly decomposable substances by biological treatment was conducted.

【0027】〔比較例〕HPLCにより検出される全難
分解性物質(E260の吸収を持つ)を指標とし、返流
水の生物処理後における全難分解性物質の除去特性を中
心に評価した。具体的方法として、図4に示した活性汚
泥法による生物処理を行い、処理前後のCODMn,HP
LCにより検出される全難分解性物質及びBODを測定
した。
[Comparative Example] All the hardly-decomposable substances (having absorption of E260) detected by HPLC were used as an index, and the removal characteristics of all the hardly-decomposable substances after the biological treatment of the return water were evaluated. As a concrete method, biological treatment by the activated sludge method shown in FIG. 4 is performed to obtain COD Mn , HP before and after treatment.
Total persistent substances and BOD detected by LC were measured.

【0028】図5のチャートに基づいて活性汚泥法によ
る生物処理方法を説明する。先ずステップ10で返流水
4リットルを採取し、ステップ11で該返流水のCOD
Mn(化学的酸素要求量)と全難分解性物質及びBOD
(生物化学的酸素要求量)を測定し、ステップ12で5
リットル曝気容器に入れてステップ13で別途に用意し
た種汚泥4リットルを加える。そして曝気8時間処理を
行ってからステップ14で沈殿1時間処理を行った。ス
テップ15で処理水のCODMnと全難分解性物質及びB
ODを測定した。
A biological treatment method by the activated sludge method will be described with reference to the chart of FIG. First, in step 10, 4 liters of return water is collected, and in step 11, COD of the return water is collected.
Mn (chemical oxygen demand) and all persistent substances and BOD
(Biochemical oxygen demand) was measured and 5 in step 12
In a liter aeration container, add 4 liters of seed sludge prepared separately in step 13. Then, after performing aeration for 8 hours, in step 14, precipitation was performed for 1 hour. In step 15, treated water COD Mn and all persistent substances and B
The OD was measured.

【0029】表3に生物処理の各プロセスにおける除去
特性を示す。
Table 3 shows the removal characteristics in each process of biological treatment.

【0030】[0030]

【表3】 [Table 3]

【0031】表3によればHPLCにより検出される全
難分解性物質はほとんど除去されなかった。又、生物処
理後に残存したCODMnを示す汚濁物質は遅分解性と非
分解性の性質を有する難分解性物質と考えることができ
る。従って返流水を生物処理するだけではCODMnは放
流基準値の20(mg/l)以下にはならない。従って
返流水に含まれている難分解性物質を処理するには前処
理技術が不可欠であることがわかる。
According to Table 3, almost all the persistent substances detected by HPLC were hardly removed. Further, the pollutant which shows COD Mn remaining after the biological treatment can be considered as a hardly decomposable substance having properties of slow decomposition and non-decomposition. Therefore, COD Mn does not fall below the discharge standard value of 20 (mg / l) simply by biologically treating the returned water. Therefore, it can be seen that the pretreatment technology is indispensable for treating the persistent substances contained in the return water.

【0032】〔実施例2〕そこでオゾン処理による難分
解性物質の除去について実験を試みた。特にHPLCに
より検出される全難分解性物質(E260の吸収を持
つ)を指標とし、返流水中に含まれる全難分解性物質の
前処理技術としてオゾン処理を評価した。オゾン処理方
法を図1に示し、オゾン処理条件を表4に示す。
[Example 2] Therefore, an experiment was conducted on the removal of the hardly decomposable substance by ozone treatment. In particular, ozone treatment was evaluated as a pretreatment technique for all the persistent substances contained in the return water, using the total persistent substances (having absorption of E260) detected by HPLC as an index. The ozone treatment method is shown in FIG. 1, and the ozone treatment conditions are shown in Table 4.

【0033】[0033]

【表4】 [Table 4]

【0034】図1の主要な構成要素を説明すると、1は
反応槽、2は恒温槽、3はオゾン発生機、4は排オゾン
処理装置、5はサンプリング管、6,7はオゾン濃度
計、8,9はそれぞれオゾンガスと排オゾンガスの流量
計、10は散気管である。
Explaining the main components of FIG. 1, 1 is a reaction tank, 2 is a constant temperature tank, 3 is an ozone generator, 4 is an exhaust ozone treatment device, 5 is a sampling pipe, 6 and 7 are ozone concentration meters, Reference numerals 8 and 9 are flowmeters for ozone gas and exhaust ozone gas, respectively, and 10 is an air diffuser.

【0035】そして反応槽1に送り込まれた返流水に対
してオゾン発生機3で得られたオゾンガスがオゾン濃度
計6及び流量計8を介して散気管10に供給され、返流
水中に放散される。反応に使われずに排出されるオゾン
ガスは排オゾン処理装置4で基準値以下に分解処理され
てから大気中に放散される。オゾン処理が終了した濃縮
汚泥液はサンプリング管5によって引き抜かれて測定が
行われる。
With respect to the return water sent to the reaction tank 1, the ozone gas obtained by the ozone generator 3 is supplied to the diffuser pipe 10 via the ozone concentration meter 6 and the flow meter 8, and is diffused into the return water. It The ozone gas discharged without being used in the reaction is decomposed to a reference value or less by the exhaust ozone processing device 4 and then released into the atmosphere. The concentrated sludge liquid that has been subjected to the ozone treatment is drawn out by the sampling pipe 5 and measured.

【0036】本実施例2では50リットルの返流水を図
1に示した半回分式反応槽でオゾン処理する。そして処
理前後の処理水のCODMnとHPLCによる全難分解性
物質及びBODを測定した。更にオゾン処理した返流水
を前記図5に示す活性汚泥法による生物処理方法を用い
て処理し、同様に処理前後の処理水のCODMnとHPL
Cによる全難分解性物質及びBODの除去率を測定し
た。その結果を表5に示す。
In Example 2, 50 liters of returned water is subjected to ozone treatment in the semi-batch type reaction tank shown in FIG. Then, the COD Mn of the treated water before and after the treatment and the total persistent substance and BOD by HPLC were measured. Further, the returned water subjected to the ozone treatment was treated by using the biological treatment method by the activated sludge method shown in FIG. 5, and the treated water before and after the treatment was treated similarly to COD Mn and HPL.
The removal rate of all persistent substances and BOD by C was measured. Table 5 shows the results.

【0037】[0037]

【表5】 [Table 5]

【0038】オゾンはE260に吸収をもつC=C二重
結合とか芳香環を開裂させ、難分解性物質をE260の
吸収を持たない生物易分解性物質に変えるため、HPL
Cにより検出される全難分解性物質はほとんど除去され
たが、BODは上昇した。CODMnの除去率が全難分解
性物質の除去率と比較して低いのは、CODMnを示す汚
濁物質中の生物易分解性物質も除去され、BOD,CO
Mnともに放流基準値以下となった。
Ozone cleaves a C = C double bond having an absorption in E260 or an aromatic ring to convert a hardly decomposable substance into a biodegradable substance having no absorption of E260.
Almost all the persistent substances detected by C were removed, but the BOD was increased. The removal rate of COD Mn is lower than the removal rate of all hardly decomposable substance, bio readily degradable substances in polluted material exhibiting COD Mn is also removed, BOD, CO
Both D Mn were below the discharge standard value.

【0039】従って返流水をオゾン処理すると、HPL
Cにより検出される全難分解性物質は生物易分解性物質
に転換する。従ってその後の生物処理によって生物易分
解性物質が除去されるので、BOD,CODMnともに放
流基準値以下にすることができる。
Therefore, if the returned water is treated with ozone, HPL
All persistent substances detected by C are converted into biodegradable substances. Therefore, since the biodegradable substance is removed by the subsequent biological treatment, both BOD and COD Mn can be set to the release standard value or less.

【0040】〔実施例3〕次にオゾン処理+過酸化水素
処理による難分解性物質の除去について実験を試みた。
HPLCにより検出される全難分解性物質(E260の
吸収を持つ)を指標とし、返流水中に含まれる全難分解
性物質の前処理技術としてオゾン処理+過酸化水素処理
を評価した。オゾン処理+過酸化水素処理は図1に示し
た装置をそのまま採用し、反応槽1中にオゾン発生機3
から得られるオゾンガスに加えて、図外の過酸化水素発
生装置から得られる過酸化水素を導入して処理を行っ
た。処理条件を表6に示す。
[Embodiment 3] Next, an experiment was conducted on the removal of hardly decomposable substances by ozone treatment + hydrogen peroxide treatment.
Ozone treatment + hydrogen peroxide treatment was evaluated as a pretreatment technique for all the persistent substances contained in the return water, using the total persistent substances (having absorption of E260) detected by HPLC as an index. For ozone treatment + hydrogen peroxide treatment, the device shown in FIG. 1 is adopted as it is, and the ozone generator 3 is placed in the reaction tank 1.
In addition to the ozone gas obtained from (1), hydrogen peroxide obtained from a hydrogen peroxide generator (not shown) was introduced for treatment. Table 6 shows the processing conditions.

【0041】[0041]

【表6】 [Table 6]

【0042】本実施例3では50リットルの返流水を半
回分式反応槽でオゾン処理+過酸化水素処理する。そし
て処理前後の処理水のCODMnとHPLCによる全難分
解性物質及びBODを測定した。更に処理した返流水を
図5に示す活性汚泥法による生物処理方法を用いて処理
し、同様に処理前後の処理水のCODMnとHPLCによ
る全難分解性物質及びBODの除去率を測定した。その
結果を表7に示す。
In the third embodiment, 50 liters of returned water is treated with ozone and hydrogen peroxide in a semi-batch type reaction tank. Then, the COD Mn of the treated water before and after the treatment and the total persistent substance and BOD by HPLC were measured. Further, the treated return water was treated using the biological treatment method by the activated sludge method shown in FIG. 5, and similarly, the COD Mn of the treated water before and after the treatment and the removal rate of all hardly decomposable substances and BOD by HPLC were measured. Table 7 shows the results.

【0043】[0043]

【表7】 [Table 7]

【0044】オゾン処理+過酸化水素処理を行うことに
より、オゾンよりも酸化分解力の高いヒドロキシラジカ
ル(通常OHラジカルと呼称される)が生成し、このヒ
ドロキシラジカルにより難分解性物質が除去される。オ
ゾンとOHラジカルはE260に吸収をもつC=C二重
結合とか芳香環を開裂させ、難分解性物質をE260の
吸収を持たない生物易分解性物質に変えるため、HPL
Cにより検出される全難分解性物質の除去率はオゾン処
理だけの場合よりも高くなる。
By carrying out the ozone treatment + hydrogen peroxide treatment, a hydroxy radical (usually called an OH radical) having a higher oxidative decomposition power than ozone is generated, and the hydroxy radical removes a hardly decomposable substance. . Ozone and OH radicals cleave C = C double bonds or aromatic rings that have absorption in E260, and transform persistent substances into biodegradable substances that do not absorb E260.
The removal rate of all persistent substances detected by C is higher than that in the case of only ozone treatment.

【0045】しかしオゾン処理の場合と同様にBODは
上昇した。CODMnの除去率が全難分解性物質の除去率
と比較して低いのは、CODMnを示す汚濁物質中の生物
易分解性物質が除去されなかったものと考えられる。そ
の後に生物処理を実施することにより生物易分解性物質
も除去され、BOD,CODMnともに放流基準値以下と
なった。
However, BOD increased as in the case of ozone treatment. The reason why the removal rate of COD Mn is lower than the removal rate of all the hardly decomposable substances is considered to be that the easily biodegradable substances in the pollutants showing COD Mn were not removed. After that, biological treatment was performed to remove easily biodegradable substances, and both BOD and COD Mn were below the release standard value.

【0046】従って返流水をオゾン処理+過酸化水素処
理すると、オゾンとOHラジカルがHPLCにより検出
される全難分解性物質は生物易分解性物質に転換する。
従ってその後の生物処理によって生物易分解性物質が除
去されるので、オゾン処理+過酸化水素処理が有効であ
ることが判明した。
Therefore, when the returned water is treated with ozone and hydrogen peroxide, all the hardly decomposable substances in which ozone and OH radicals are detected by HPLC are converted into biodegradable substances.
Therefore, it was found that the ozone treatment + hydrogen peroxide treatment is effective because the biodegradable substance is removed by the subsequent biological treatment.

【0047】〔実施例4〕本実施例ではオゾン処理+紫
外線処理による難分解性物質の除去について実験を試み
た。HPLCにより検出される全難分解性物質(E26
0の吸収を持つ)を指標とし、返流水中に含まれる全難
分解性物質の前処理技術としてオゾン処理+紫外線処理
を評価した。オゾン処理+紫外線処理は図1に示した装
置に加えて、反応槽1中に紫外線ランプを浸漬して処理
を行った(図示省略)。処理条件を表8に示す。
[Embodiment 4] In this embodiment, an experiment was conducted on the removal of hardly decomposable substances by ozone treatment + ultraviolet treatment. All persistent substances detected by HPLC (E26
Ozone treatment + ultraviolet treatment was evaluated as a pretreatment technique for all persistent substances contained in the return water. The ozone treatment + ultraviolet treatment was performed by dipping an ultraviolet lamp in the reaction tank 1 in addition to the apparatus shown in FIG. 1 (not shown). Table 8 shows the processing conditions.

【0048】[0048]

【表8】 [Table 8]

【0049】50リットルの返流水を半回分式反応槽で
オゾン処理+紫外線処理する。そして処理前後の処理水
のCODMnとHPLCによる全難分解性物質及びBOD
を測定した。更に処理した返流水を前記図5に示す活性
汚泥法による生物処理方法を用いて処理し、同様に処理
前後の処理水のCODMnとHPLCによる全難分解性物
質及びBODの除去率を測定した。その結果を表9に示
す。
50 liters of returned water is treated with ozone and ultraviolet rays in a semi-batch type reaction tank. And COD Mn of the treated water before and after treatment and all the persistent substances and BOD by HPLC
Was measured. Further, the treated return water was treated using the biological treatment method by the activated sludge method shown in FIG. 5, and similarly, the COD Mn of the treated water before and after the treatment and the removal rate of all the persistent substances and BOD by HPLC were measured. . Table 9 shows the results.

【0050】[0050]

【表9】 [Table 9]

【0051】オゾン処理+紫外線処理を行うことによ
り、オゾン処理+過酸化水素処理の場合と同様にオゾン
よりも酸化分解力の高いOHラジカルが生成して、この
OHラジカルにより難分解性物質が除去される。特にH
PLCにより検出される全難分解性物質の除去率はオゾ
ン処理だけの場合よりも高くなる。
By carrying out the ozone treatment + ultraviolet treatment, OH radicals having a higher oxidative decomposition power than ozone are generated as in the case of ozone treatment + hydrogen peroxide treatment, and the OH radicals remove the hardly decomposable substances. To be done. Especially H
The removal rate of all persistent substances detected by PLC is higher than that of ozone treatment alone.

【0052】しかしオゾン処理の場合と同様にBODは
上昇した。CODMnの除去率が全難分解性物質の除去率
と比較して低いのは、CODMnを示す汚濁物質中の生物
易分解性物質が除去されなかったものと考えられる。そ
の後に生物処理を実施することにより生物易分解性物質
も除去され、BOD,CODMnともに放流基準値以下と
なった。
However, BOD increased as in the case of ozone treatment. The reason why the removal rate of COD Mn is lower than the removal rate of all the hardly decomposable substances is considered to be that the easily biodegradable substances in the pollutants showing COD Mn were not removed. After that, biological treatment was performed to remove easily biodegradable substances, and both BOD and COD Mn were below the release standard value.

【0053】従って返流水をオゾン処理+紫外線処理す
ると、オゾンとOHラジカルがHPLCにより検出され
る全難分解性物質は生物易分解性物質に転換し、その後
の生物処理によって生物易分解性物質が除去されるの
で、オゾン処理+紫外線処理が有効であることが判明し
た。
Therefore, when the returned water is treated with ozone and ultraviolet rays, all the hardly decomposable substances in which ozone and OH radicals are detected by HPLC are converted into biodegradable substances, and biodegradable substances are converted into biodegradable substances by the subsequent biological treatment. It was found that the ozone treatment + ultraviolet treatment is effective because it is removed.

【0054】〔実施例5〕次に過酸化水素処理+紫外線
処理による難分解性物質の除去について実験を試みた。
HPLCにより検出される全難分解性物質(E260の
吸収を持つ)を指標とし、返流水中に含まれる全難分解
性物質の前処理技術として過酸化水素処理+紫外線処理
を評価した。過酸化水素処理+紫外線処理は図2に示し
た装置を用いて実施した。処理条件を表10に示す。
[Embodiment 5] Next, an experiment was conducted on the removal of hardly decomposable substances by hydrogen peroxide treatment + ultraviolet treatment.
Using all the persistent substances (having absorption of E260) detected by HPLC as an index, hydrogen peroxide treatment + ultraviolet treatment was evaluated as a pretreatment technique for all the persistent substances contained in the return water. The hydrogen peroxide treatment + ultraviolet treatment was carried out using the apparatus shown in FIG. Table 10 shows the processing conditions.

【0055】[0055]

【表10】 [Table 10]

【0056】図2の主要な構成要素を説明すると、1は
反応槽、2は恒温槽、5はサンプリング管、8,9は流
量計、10は散気管、11はコンプレッサ、12は過酸
化水素(H22)供給管、13は紫外線ランプである。
The main components of FIG. 2 will be described. 1 is a reaction tank, 2 is a constant temperature tank, 5 is a sampling tube, 8 and 9 are flow meters, 10 is a diffusing tube, 11 is a compressor, and 12 is hydrogen peroxide. (H 2 O 2 ) supply pipe, 13 is an ultraviolet lamp.

【0057】そして反応槽1に送り込まれた汚泥に対し
てコンプレッサ11で得られたエアが流量計8を介して
散気管10に供給され、汚泥中に放散されると同時に過
酸化水素供給管12からH22ガスが供給され、紫外線
ランプ13から汚泥中に紫外線が放射される。処理が終
了した濃縮汚泥液はサンプリング管5によって引き抜か
れて測定が行われる。
The air obtained by the compressor 11 for the sludge sent to the reaction tank 1 is supplied to the diffuser pipe 10 via the flow meter 8 and is diffused into the sludge, and at the same time, the hydrogen peroxide supply pipe 12 is supplied. H 2 O 2 gas is supplied from the UV lamp 13 and the UV lamp 13 radiates UV rays into the sludge. The concentrated sludge liquid that has been treated is drawn out by the sampling tube 5 and measured.

【0058】本実施例5では50リットルの返流水を反
応槽1で過酸化水素処理+紫外線処理を行い、処理前後
の処理水のCODMnとHPLCによる全難分解性物質及
びBODを測定した。更に処理した返流水を前記図5に
示す活性汚泥法による生物処理方法を用いて処理し、同
様に処理前後の処理水のCODMnとHPLCによる全難
分解性物質及びBODの除去率を測定した。その結果を
表11に示す。
In this Example 5, 50 liters of returned water was subjected to hydrogen peroxide treatment + ultraviolet treatment in the reaction tank 1, and COD Mn of treated water before and after the treatment and total persistent substances and BOD by HPLC were measured. Further, the treated return water was treated using the biological treatment method by the activated sludge method shown in FIG. 5, and similarly, the COD Mn of the treated water before and after the treatment and the removal rate of all the persistent substances and BOD by HPLC were measured. . Table 11 shows the results.

【0059】[0059]

【表11】 [Table 11]

【0060】従って過酸化水素処理+紫外線処理を行う
ことにより、オゾン処理+過酸化水素処理の場合と同様
にオゾンよりも酸化分解力の高いOHラジカルが生成し
て、このOHラジカルにより難分解性物質が除去され
る。特にHPLCにより検出される全難分解性物質の除
去率はオゾン処理だけの場合よりも高くなる。
Therefore, by carrying out the hydrogen peroxide treatment + ultraviolet treatment, OH radicals having a higher oxidative decomposition power than ozone are generated as in the case of the ozone treatment + hydrogen peroxide treatment, and the OH radicals are hard to decompose. Material is removed. In particular, the removal rate of all the persistent substances detected by HPLC is higher than that of ozone treatment alone.

【0061】しかしオゾン処理の場合と同様にBODは
上昇した。CODMnの除去率が全難分解性物質の除去率
と比較して低いのは、CODMnを示す汚濁物質中の生物
易分解性物質が除去されなかったものと考えられる。そ
の後に生物処理を実施することにより生物易分解性物質
も除去され、BOD,CODMnともに放流基準値以下と
なった。
However, the BOD increased as in the case of ozone treatment. The reason why the removal rate of COD Mn is lower than the removal rate of all the hardly decomposable substances is considered to be that the easily biodegradable substances in the pollutants showing COD Mn were not removed. After that, biological treatment was performed to remove easily biodegradable substances, and both BOD and COD Mn were below the release standard value.

【0062】従って返流水を過酸化水素処理+紫外線処
理すると、OHラジカルがHPLCにより検出される全
難分解性物質を生物易分解性物質に転換し、その後の生
物処理によって生物易分解性物質が除去されるので、過
酸化水素処理+紫外線処理が有効であることが判明し
た。
Therefore, when the returned water is treated with hydrogen peroxide and ultraviolet rays, OH radicals convert all hardly decomposable substances detected by HPLC into biodegradable substances, and biodegradable substances are converted into biodegradable substances by the subsequent biological treatment. Since it was removed, it was found that the hydrogen peroxide treatment + ultraviolet treatment was effective.

【0063】[0063]

【発明の効果】以上説明した本発明にかかる返流水に含
まれる難分解性物質の処理方法によれば、前処理として
返流水をオゾン処理することにより、高速液体クロマト
グラフィー(HPLC)により検出される全難分解性物
質が生物易分解性物質に転換するので、その後の生物処
理によって生物易分解性物質が除去され、BOD,CO
Mnともに放流基準値以下にすることができる 更に他の前処理としてオゾンガスと過酸化水素を用いた
放散処理、オゾンガス放散と紫外線ランプ照射処理、過
酸化水素放散と紫外線ランプ照射処理を行うことによ
り、オゾンよりも酸化分解力の高いヒドロキシラジカル
(OHラジカル)が生成して、このヒドロキシラジカル
により難分解性物質がE260の吸収を持たない生物易
分解性物質に転換され、その後に生物処理を実施するこ
とにより生物易分解性物質も除去されるので、全難分解
性物質の除去率はオゾン処理だけの場合よりも高くなる
という効果が得られ、各種下水処理及び汚泥処理におい
て発生する返流水中に含まれる難分解性物質を除去する
ための前処理技術を確立することができる。
EFFECTS OF THE INVENTION According to the above-described method for treating a hardly decomposable substance contained in return water according to the present invention, the return water is subjected to ozone treatment as a pretreatment, and is detected by high performance liquid chromatography (HPLC). Since all the persistent biodegradable substances are converted into biodegradable substances, the biodegradable substances are removed by the subsequent biological treatment, and BOD, CO
D Mn can be less than the discharge standard value. Furthermore, as other pretreatments, a diffusion treatment using ozone gas and hydrogen peroxide, an ozone gas emission and an ultraviolet lamp irradiation treatment, a hydrogen peroxide emission and an ultraviolet lamp irradiation treatment can be performed. , Hydroxy radicals (OH radicals), which have a higher oxidative decomposition power than ozone, are generated, and these hydroxy radicals transform persistent substances into easily biodegradable substances that do not have E260 absorption, and then perform biological treatment. By doing so, biodegradable substances are also removed, so the effect that the removal rate of all persistent substances is higher than in the case of ozone treatment alone is obtained, and the return water generated in various sewage treatment and sludge treatment is obtained. It is possible to establish a pretreatment technique for removing the hardly decomposable substance contained in.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第2実施例にかかる返流水のオゾン処
理を示す概要図。
FIG. 1 is a schematic diagram showing ozone treatment of return water according to a second embodiment of the present invention.

【図2】本発明の第5実施例にかかる返流水の過酸化水
素処理と紫外線ランプ照射処理を示す概要図。
FIG. 2 is a schematic diagram showing a hydrogen peroxide treatment and an ultraviolet lamp irradiation treatment of return water according to a fifth embodiment of the present invention.

【図3】高速液体クロマトグラフィーにより求めた難分
解性物質の分子量を求める検量線を示すグラフ。
FIG. 3 is a graph showing a calibration curve for obtaining the molecular weight of a hardly decomposable substance obtained by high performance liquid chromatography.

【図4】返流水に含まれる難分解性物質のクロマトグラ
ム。
FIG. 4 is a chromatogram of a hardly decomposable substance contained in return water.

【図5】活性汚泥法による生物処理方法を説明するため
のチャート図。
FIG. 5 is a chart diagram for explaining a biological treatment method by the activated sludge method.

【符号の説明】[Explanation of symbols]

1…反応槽 2…恒温槽 3…オゾン発生機 4…排オゾン処理装置 5…サンプリング管 6,7…オゾン濃度計 8,9…流量計 10…散気管 11…コンプレッサ 12…過酸化水素供給管 13…紫外線ランプ DESCRIPTION OF SYMBOLS 1 ... Reaction tank 2 ... Constant temperature tank 3 ... Ozone generator 4 ... Exhaust ozone treatment device 5 ... Sampling pipe 6,7 ... Ozone concentration meter 8, 9 ... Flowmeter 10 ... Diffuser pipe 11 ... Compressor 12 ... Hydrogen peroxide supply pipe 13 ... UV lamp

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 502 C02F 9/00 502N 502R 504 504A 11/00 11/00 Z G01N 30/74 G01N 30/74 E 30/88 30/88 A (72)発明者 吉野 徳正 東京都品川区大崎2丁目1番17号 株式会 社明電舎内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C02F 9/00 502 C02F 9/00 502N 502R 504 504A 11/00 11/00 Z G01N 30/74 G01N 30/74 E 30/88 30/88 A (72) Inventor Tokumasa Yoshino 2-17 Osaki, Shinagawa-ku, Tokyo Stock company inside Meidensha

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 下水処理及び汚泥処理において発生する
返流水に含まれる難分解性物質の分子量分布を高速液体
クロマトグラフィーにより検出し、検出に用いた紫外線
吸光度(E260)を難分解性物質の指標として、難分
解性物質の前処理を行ってから活性汚泥法による生物処
理を行うことを特徴とする返流水に含まれる難分解性物
質の処理方法。
1. The molecular weight distribution of the hardly decomposable substance contained in the return water generated in the sewage treatment and the sludge treatment is detected by high performance liquid chromatography, and the ultraviolet absorbance (E260) used for the detection is an index of the hardly decomposed substance. As a method for treating a hardly decomposable substance contained in return water, the method comprises a step of performing a pretreatment of the hardly decomposable substance and then a biological treatment by the activated sludge method.
【請求項2】 前記返流水とは、下水処理における汚泥
濃縮槽からの分離液、脱水機からの脱離液、多段炉スク
ラバー排水、流動炉スクラバー排水である請求項1記載
の返流水に含まれる難分解性物質の処理方法。
2. The returned water includes the separated liquid from the sludge thickening tank in the sewage treatment, the desorbed liquid from the dehydrator, the multistage furnace scrubber drainage, and the fluidized reactor scrubber drainage. Treatment method for persistent substances.
【請求項3】 上記前処理として、反応槽に送り込まれ
た返流水に対してオゾン発生機から得られたオゾンガス
を放散することを特徴とする請求項1記載の返流水に含
まれる難分解性物質の処理方法。
3. The pre-treatment is characterized in that ozone gas obtained from an ozone generator is diffused with respect to the return water sent to the reaction tank, which is difficult to decompose in the return water. How to treat substances.
【請求項4】 上記前処理として、反応槽に送り込まれ
た返流水に対してオゾンガスと過酸化水素を放散するこ
とを特徴とする請求項1記載の返流水に含まれる難分解
性物質の処理方法。
4. The treatment of the hardly decomposable substance contained in the return water according to claim 1, wherein ozone gas and hydrogen peroxide are diffused into the return water sent to the reaction tank as the pretreatment. Method.
【請求項5】 上記前処理として、反応槽に送り込まれ
た返流水に対してオゾンガスを放散するとともに、反応
槽内に浸漬した紫外線ランプを用いて汚泥を照射処理し
たことを特徴とする請求項1記載の返流水に含まれる難
分解性物質の処理方法。
5. As the pretreatment, ozone gas is diffused into the return water sent into the reaction tank, and the sludge is irradiated with an ultraviolet lamp immersed in the reaction tank. 1. The method for treating a hardly decomposable substance contained in the return water according to 1.
【請求項6】 上記前処理として、反応槽に送り込まれ
た返流水に対して過酸化水素を放散するとともに、反応
槽内に浸漬した紫外線ランプを用いて汚泥を照射処理し
たことを特徴とする請求項1記載の返流水に含まれる難
分解性物質の処理方法。
6. The pretreatment is characterized in that hydrogen peroxide is diffused into the return water sent to the reaction tank and the sludge is irradiated by using an ultraviolet lamp immersed in the reaction tank. The method for treating a hardly decomposable substance contained in the return water according to claim 1.
JP7328498A 1995-12-18 1995-12-18 Treatment of hardly-decomposable matter contained in return water Pending JPH09164393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7328498A JPH09164393A (en) 1995-12-18 1995-12-18 Treatment of hardly-decomposable matter contained in return water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7328498A JPH09164393A (en) 1995-12-18 1995-12-18 Treatment of hardly-decomposable matter contained in return water

Publications (1)

Publication Number Publication Date
JPH09164393A true JPH09164393A (en) 1997-06-24

Family

ID=18210960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7328498A Pending JPH09164393A (en) 1995-12-18 1995-12-18 Treatment of hardly-decomposable matter contained in return water

Country Status (1)

Country Link
JP (1) JPH09164393A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096606A (en) * 1989-09-01 1992-03-17 Kao Corporation Refrigeration oil composition containing a fluoroethane and an ester compound
JP2000354878A (en) * 1999-06-15 2000-12-26 Japan Organo Co Ltd Method and apparatus for treating liquid containing chemical substance having hormone-like activity
CN102276081A (en) * 2011-05-26 2011-12-14 武汉纺织大学 Process for treating industrial organic waste water by serial catalytic oxidization
CN105540734A (en) * 2016-03-01 2016-05-04 东莞道汇环保科技有限公司 Wastewater treatment equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096606A (en) * 1989-09-01 1992-03-17 Kao Corporation Refrigeration oil composition containing a fluoroethane and an ester compound
JP2000354878A (en) * 1999-06-15 2000-12-26 Japan Organo Co Ltd Method and apparatus for treating liquid containing chemical substance having hormone-like activity
JP4703801B2 (en) * 1999-06-15 2011-06-15 オルガノ株式会社 Method and apparatus for treating a liquid containing a chemical substance having hormone-like activity
CN102276081A (en) * 2011-05-26 2011-12-14 武汉纺织大学 Process for treating industrial organic waste water by serial catalytic oxidization
CN105540734A (en) * 2016-03-01 2016-05-04 东莞道汇环保科技有限公司 Wastewater treatment equipment

Similar Documents

Publication Publication Date Title
CN105585220A (en) Urban sewage treatment system and purification method
WO2015081658A1 (en) Sludge treatment system and method therefor
DE69918414D1 (en) METHOD AND APPARATUS FOR TREATING WASTEWATER WITH AN ANERAL FLOW REACTOR
US5492633A (en) Water treatment process with ozone
CN101704617A (en) Equipment for reclaiming and processing petrified enterprise sewage and process technology thereof
JPH0975993A (en) Treatment of organic matter-containing waste water and device therefor
US5593592A (en) Biodegradation process for treating organic wastewater
Parandoush et al. Reducing excess sludge volume in sequencing batch reactor by integrating ultrasonic waves and ozonation
JPH09164393A (en) Treatment of hardly-decomposable matter contained in return water
CN110734199A (en) garlic processing wastewater treatment process
JPH01293119A (en) Method for removing malodorous component
Jamalinezhad et al. Performance evaluation of ultraviolet radiation and ozone disinfection for municipal secondary effluent reuse (Case study in Isfahan North wastewater treatment plant)
CN103951141A (en) Garbage leachate treatment process and device
JP2652493B2 (en) COD removal method for leachate from landfill
CN111410375A (en) Device and method for reusing sewage in expressway service area
CN109264936A (en) High ammonia nitrogen, high phosphorus, high chroma mud waste water ozone generator treatment process
JP3707272B2 (en) Sewage treatment method and apparatus
CN1176035C (en) Method for removing trace amount of organic matter by using ozone/ultraviolet-biological activity carbon
CN114620869B (en) Ultraviolet catalytic oxidation wastewater treatment system and method
EP0563926B1 (en) Water treatment process with ozone
JP3215619B2 (en) Purification device and operation method thereof
Xia et al. Chemical and biological flocculation process to treat municipal sewage and analysis of biological function
Lorenz et al. Oxone Enhanced Biological Activated Carbon in Denver, Colorado: A Pilot Plant Study
Wang Advanced oxidation treatment of aged raw and biologically treated landfill leachates
Panter et al. AERATION LAGOON AS ADVANCED SOLUTION FOR LEACHATE EPURATION-A STUDY CASE IN GLINA PURGE UNIT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080117

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250