JPH09163072A - Color image reader - Google Patents
Color image readerInfo
- Publication number
- JPH09163072A JPH09163072A JP7318883A JP31888395A JPH09163072A JP H09163072 A JPH09163072 A JP H09163072A JP 7318883 A JP7318883 A JP 7318883A JP 31888395 A JP31888395 A JP 31888395A JP H09163072 A JPH09163072 A JP H09163072A
- Authority
- JP
- Japan
- Prior art keywords
- light receiving
- light
- light source
- receiving element
- optical path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Facsimile Heads (AREA)
- Facsimile Scanning Arrangements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、カラー画像読取装
置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color image reading device.
【0002】[0002]
【従来の技術】従来のカラー画像読取装置の一例とし
て、図3に示すように、1個の白色光源31と、カラー
CCDセンサ32とを設け、白色光源31から出射して
読取対象体33で反射した光をレンズ34により集光し
てカラーCCDセンサ32に入射させるタイプのものが
あった。2. Description of the Related Art As an example of a conventional color image reading apparatus, as shown in FIG. 3, one white light source 31 and a color CCD sensor 32 are provided, and a white light source 31 emits light and a reading object 33 is used. There is a type in which the reflected light is condensed by the lens 34 and is incident on the color CCD sensor 32.
【0003】ところが、カラーCCDセンサ32の各受
光素子32R ,32G ,32B の感度は、図4に示すよ
うに、青色すなわちBの受光素子32B が最も低く、緑
色すなわちGの受光素子32G と赤色すなわちRの受光
素子32R とはほとんど同じであるが、Rの受光素子3
2R のほうが少し感度が高い。However, as shown in FIG. 4, the light receiving elements 32 R , 32 G , and 32 B of the color CCD sensor 32 have the lowest sensitivity for the blue or B light receiving element 32 B and the green or G light receiving element. Although 32 G and red, that is, the R light receiving element 32 R are almost the same, the R light receiving element 3
2 R is a little more sensitive.
【0004】[0004]
【発明が解決しようとする課題】このため、図3に示す
従来のカラー画像読取装置では、感度の低いBの受光素
子32B に合わせて白色光源31の光量を決定してお
り、白色光源31による消費電力が大きいという課題が
あった。また、RGBカラー信号の色によるレベルの差
が大きいので、それらを増幅してレベルを揃えるに際し
て、Bの受光素子32B の出力を大きな増幅率で増幅す
る必要があり、そのためノイズレベルが増加するという
課題もあった。しかも、白色光源31と各受光素子32
R ,32G ,32B との間の光路長に関しては何ら考慮
されておらず、図3に示すように、感度の低いBの受光
素子32B と白色光源31との間の光路長が最も長くな
るように各受光素子32R ,32G ,32B を配置した
ものが多かった。Therefore, in the conventional color image reading apparatus shown in FIG. 3, the light amount of the white light source 31 is determined according to the light receiving element 32 B of B having low sensitivity, and the white light source 31 is used. However, there is a problem that the power consumption is large. In addition, since there is a large difference in the levels of the RGB color signals depending on the colors, it is necessary to amplify the output of the B light receiving element 32 B with a large amplification factor when amplifying them and aligning the levels, which increases the noise level. There was also a problem. Moreover, the white light source 31 and each light receiving element 32
No consideration is given to the optical path length between R , 32 G , and 32 B, and as shown in FIG. 3, the optical path length between the B light receiving element 32 B having low sensitivity and the white light source 31 is the most In many cases, the light receiving elements 32 R , 32 G , and 32 B are arranged so as to be long.
【0005】そこで、図5に示すように、R,G,Bの
3個の光源31R ,31G ,31Bを設け、各光源31
R ,31G ,31B 毎に個別に光量を調整する構成とし
たものが提案されているが、この場合、3個の光源31
R ,31G ,31B を用いているので、製造コストが高
価であった。Therefore, as shown in FIG. 5, three light sources 31 R , 31 G and 31 B of R , G and B are provided, and each light source 31
A configuration has been proposed in which the amount of light is individually adjusted for each of R , 31 G , and 31 B , but in this case, three light sources 31 are used.
Since R , 31 G and 31 B are used, the manufacturing cost was high.
【0006】また、図6に示すように、3個のモノクロ
CCDセンサ35R ,35G ,35 B と、Rの光を反射
するフィルタ36R と、Gの光を反射するフィルタ36
G とを設け、色分解することによりモノクロCCDセン
サ35R ,35G ,35B の感度の低下を防ぐ構成とし
たものが提案されているが、この場合、3個のモノクロ
CCDセンサ35R ,35G ,35B や2個のフィルタ
36R ,36G を用いているので、製造コストが高価で
あった。Further, as shown in FIG. 6, three monochrome
CCD sensor 35R, 35G, 35 BAnd reflect the light of R
Filter 36RAnd a filter 36 that reflects the G light
GAnd monochrome separation by color separation.
Service 35R, 35G, 35BIt is configured to prevent the sensitivity of
However, in this case, three monochrome
CCD sensor 35R, 35G, 35BAnd two filters
36R, 36GBecause the manufacturing cost is high,
there were.
【0007】更に、図7に示すように、白色光源31の
他に、Bの光源31B を別途設けて、Bの光量を増加さ
せる構成としたものが提案されているが、この場合、B
の光源31B を別途用いているので、製造コストが高価
であった。Further, as shown in FIG. 7, in addition to the white light source 31, a B light source 31 B is separately provided to increase the amount of B light.
Since the light source 31 B is used separately, the manufacturing cost was high.
【0008】本発明は、上記の点に鑑みて提案されたも
のであって、製造コストを増加させることなく、各受光
素子からの出力レベルの差を小さくでき、しかも白色光
源の消費電力を低減できるカラー画像読取装置を提供す
ることを目的としている。The present invention has been proposed in view of the above points, and it is possible to reduce the difference in the output level from each light receiving element without increasing the manufacturing cost and to reduce the power consumption of the white light source. An object of the present invention is to provide a color image reading device that can be used.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載した発明のカラー画像読取装置は、
1個の白色光源と、R,G,Bの各受光素子を有し、白
色光源から出射されて読取対象体の表面で反射した光を
受光する光電変換手段とを備えたカラー画像読取装置で
あって、R,G,Bの各受光素子のうち最も感度の低い
受光素子と白色光源との間の光路長が、他のいずれの受
光素子と白色光源との間の光路長よりも短くなるよう
に、R,G,Bの各受光素子を配置したものである。In order to achieve the above object, the color image reading apparatus of the invention described in claim 1 is
A color image reading apparatus having one white light source and R, G, B light receiving elements, and photoelectric conversion means for receiving the light emitted from the white light source and reflected by the surface of the object to be read. Therefore, the optical path length between the light receiving element having the lowest sensitivity among the R, G, and B light receiving elements and the white light source is shorter than the optical path length between any other light receiving element and the white light source. Thus, the R, G, and B light receiving elements are arranged.
【0010】また、請求項2に記載した発明のカラー画
像読取装置は、1個の白色光源と、R,G,Bの各受光
素子を有し、白色光源から出射されて読取対象体の表面
で反射した光を受光する光電変換手段とを備えたカラー
画像読取装置であって、R,G,Bの各受光素子のうち
最も感度の高い受光素子と白色光源との間の光路長が、
他のいずれの受光素子と白色光源との間の光路長よりも
長くなるように、R,G,Bの各受光素子を配置したも
のである。A color image reading apparatus according to a second aspect of the invention has one white light source and R, G, and B light receiving elements, and the surface of the reading object is emitted from the white light source. A color image reading apparatus including a photoelectric conversion unit that receives the light reflected by, and the optical path length between the white light source and the most sensitive light receiving element among the R, G, and B light receiving elements is
Each of the R, G and B light receiving elements is arranged so as to be longer than the optical path length between any other light receiving element and the white light source.
【0011】更に、請求項3に記載した発明のカラー画
像読取装置は、1個の白色光源と、R,G,Bの各受光
素子を有し、白色光源から出射されて読取対象体の表面
で反射した光を受光する光電変換手段とを備えたカラー
画像読取装置であって、R,G,Bの各受光素子のうち
最も感度の低い受光素子と白色光源との間の光路長が、
他のいずれの受光素子と白色光源との間の光路長よりも
短くなり、かつ、R,G,Bの各受光素子のうち最も感
度の高い受光素子と白色光源との間の光路長が、他のい
ずれの受光素子と白色光源との間の光路長よりも長くな
るように、R,G,Bの各受光素子を配置したものであ
る。Further, the color image reading apparatus of the invention described in claim 3 has one white light source and R, G, and B light receiving elements, and is emitted from the white light source and is on the surface of the object to be read. A color image reading apparatus including a photoelectric conversion unit that receives the light reflected by, and the optical path length between the light receiving element having the lowest sensitivity among the R, G, and B light receiving elements and the white light source is
The optical path length between any other light receiving element and the white light source is shorter than that, and the optical path length between the light receiving element having the highest sensitivity among the R, G, B light receiving elements and the white light source is Each of the R, G and B light receiving elements is arranged so as to be longer than the optical path length between any other light receiving element and the white light source.
【0012】[0012]
【発明の実施の形態】以下、本発明の好ましい実施の形
態を、図面を参照しつつ具体的に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be specifically described below with reference to the drawings.
【0013】図1は、本発明に係るカラー画像読取装置
の概略構成図であって、このカラー画像読取装置は、白
色光源1、レンズ2、およびカラーCCDセンサ3を備
えている。白色光源1は、白色光を読取対象体の一例と
しての原稿4の表面に照射する。レンズ2は、原稿4の
表面で反射した光を集光してカラーCCDセンサ3に入
射させる。光電変換手段の一例としてのカラーCCDセ
ンサ3は、R,G,Bの各受光素子3R ,3G ,3B を
備えており、レンズ2により集光された原稿4からの反
射光を受光してRGBカラー信号を出力する。受光素子
3R ,3G ,3 B は、図1の左右方向において、白色光
源1から遠い順に受光素子3B ,受光素子3G ,受光素
子3R と配置されている。白色光源1、レンズ2、およ
びカラーCCDセンサ3は、図1の紙面と直交する方向
に所定の長さを有しており、受光素子3R ,3G ,3B
は、それぞれ図1の紙面と直交する方向に多数配列され
ている。受光素子3R は、赤色の光に感度のピークを有
している。受光素子3G は、緑色の光に感度のピークを
有している。受光素子3B は、青色の光に感度のピーク
を有している。原稿4は、図外の透明な原稿台上に載置
されており、図外の送り機構により図1の左右方向に所
定ピッチで送られる。FIG. 1 shows a color image reading apparatus according to the present invention.
FIG. 1 is a schematic configuration diagram of the color image reading device
Equipped with color light source 1, lens 2, and color CCD sensor 3
I have. The white light source 1 emits white light as an example of an object to be read.
The surface of the original 4 is irradiated. The lens 2 is
The light reflected on the surface is collected and enters the color CCD sensor 3.
To shoot. A color CCD cell as an example of photoelectric conversion means.
The sensor 3 is a light receiving element 3 for each of R, G and B.R, 3G, 3BTo
It is equipped with an anti-reflective light from the original 4 which is condensed by the lens 2.
It receives the emitted light and outputs RGB color signals. Light receiving element
3R, 3G, 3 BIs white light in the left-right direction of FIG.
Light receiving element 3 in order from the source 1B, Light receiving element 3G, Photosensor
Child 3RIt is arranged. White light source 1, lens 2, and
And the color CCD sensor 3 are arranged in a direction orthogonal to the plane of FIG.
Has a predetermined length and the light receiving element 3R, 3G, 3B
Are arrayed in a direction orthogonal to the plane of FIG.
ing. Light receiving element 3RHas a sensitivity peak for red light
doing. Light receiving element 3GHas a peak sensitivity to green light
Have. Light receiving element 3BHas a peak sensitivity to blue light
have. Place the original 4 on a transparent original table (not shown).
It is installed in the left and right direction of Fig. 1 by a feeding mechanism (not shown).
It is sent at a fixed pitch.
【0014】次に、このように構成されたカラー画像読
取装置の動作について説明する。白色光源1から出射さ
れた白色光は、原稿4の表面に当たって反射し、レンズ
2により集光されて、カラーCCDセンサ3の各受光素
子3R ,3G ,3B に入射する。これにより各受光素子
3R ,3G ,3B が、R,G,Bの入射光の強さに応じ
たRGBカラー信号を出力する。ここで、白色光源1か
ら出射されて各受光素子3R ,3G ,3B に入射する各
光5R ,5G ,5B の光路長LR ,LG ,LBについて
検討すると、図2に示すように、受光素子3R ,3G ,
3B から原稿4表面までの光路長LR1,LG1,LB1は、
光5G の光路長LG1が最も短く、光5Rの光路長LR1と
光5B の光路長LB1とは同じ長さである。また、原稿4
表面から白色光源1までの光路長LR2,LG2,LB2は、
光5B の光路長LB2が最も短く、光5R の光路長LR2が
最も長い。そして、それらの合計である全体の光路長L
R,LG ,LB は、光5B の光路長LB が最も短く、光
5R の光路長LR が最も長い。すなわち、感度の最も低
いBの受光素子3B に入射する光5B の光路長LBが最
も短く、感度の最も高いRの受光素子3R に入射する光
5R の光路長LR が最も長くなるように、受光素子
3R ,3G ,3B が配置されている。したがって、感度
の最も低いBの受光素子3B に入射する光5B が最も強
く、感度の最も高いRの受光素子3R に入射する光5R
が最も弱い。この結果、受光素子3B の感度の低さが入
射光5B の強さによって補われ、受光素子3R ,3G ,
3B からのRGBカラー信号の色によるレベルの差が小
さくなる。Next, the operation of the color image reading apparatus thus constructed will be described. The white light emitted from the white light source 1 strikes the surface of the original 4 and is reflected, is condensed by the lens 2, and enters the light receiving elements 3 R , 3 G , 3 B of the color CCD sensor 3. As a result, each of the light receiving elements 3 R , 3 G , 3 B outputs an RGB color signal according to the intensity of the R, G, B incident light. Here, each light 5 R, 5 G, the optical path length of 5 B L R that is incident is emitted from the white light source 1 to the light receiving elements 3 R, 3 G, 3 B , L G, when examined L B, FIG. 2, the light receiving elements 3 R , 3 G ,
The optical path lengths L R1 , L G1 , and L B1 from 3 B to the surface of the original 4 are
Shortest optical path length L G1 light 5 G is the optical path length L B1 in the optical path length L R1 and the light 5 B light 5 R are the same length. Also, manuscript 4
The optical path lengths L R2 , L G2 , and L B2 from the surface to the white light source 1 are
The light path length L B2 of the light 5 B is the shortest, and the light path length L R2 of the light 5 R is the longest. And the total optical path length L which is the sum of them
R, L G, L B is the shortest optical path length L B of the light 5 B, the optical path length L R of the light 5 R longest. That is, the light path length L B of the light 5 B incident on the B light receiving element 3 B having the lowest sensitivity is the shortest, and the light path length L R of the light 5 R incident on the R light receiving element 3 R having the highest sensitivity is the shortest. The light receiving elements 3 R , 3 G and 3 B are arranged so as to be long. Therefore, the light 5 B incident on the B light receiving element 3 B having the lowest sensitivity is the strongest and the light 5 R incident on the R light receiving element 3 R having the highest sensitivity is
Is the weakest. As a result, the low sensitivity of the light receiving element 3 B is compensated by the intensity of the incident light 5 B , and the light receiving elements 3 R , 3 G ,
The difference between the levels of the RGB color signals from 3 B is reduced.
【0015】このように、R,G,Bの各受光素子
3R ,3G ,3B のうち最も感度の低いBの受光素子3
B と白色光源1との間の光路長LB が最も短くなり、か
つ、最も感度の高い受光素子3R と白色光源1との間の
光路長LR が最も長くなるように、R,G,Bの各受光
素子3R ,3G ,3B を配置したので、白色光源の消費
電力を低減できる。すなわち、光の強さは白色光源1か
らの距離の2乗に反比例するので、光路長LB を短くす
ることにより、受光素子3B に入射する光5B の強さを
強くできる。しかも、原稿4からの反射光は散乱光であ
るので、白色光源1により原稿4を明るく照射すること
が重要になるが、白色光源1と原稿4表面との間の光路
長LB2も光5B が最も短いので、原稿4を最も明るく照
らした光5Bが受光素子3B に入射する。したがって、
受光素子3B の感度の低さが入射光5 B の強さによって
補われ、受光素子3B からのBのカラー信号のレベルが
大きくなるので、白色光源1の光量を小さくできること
から、白色光源の消費電力を低減できる。As described above, each of the R, G and B light receiving elements
3R, 3G, 3BB light receiving element 3 with the lowest sensitivity
BPath length L between the and white light source 1BIs the shortest
One, the most sensitive light receiving element 3RBetween the white light source 1 and
Optical path length LREach of R, G and B light so that
Element 3R, 3G, 3BAs the white light source is used,
Power can be reduced. That is, the intensity of light is the white light source 1
Since it is inversely proportional to the square of the distance, the optical path length LBShorten
The light receiving element 3BLight 5 incident onBThe strength of
Can be strong Moreover, the reflected light from the original 4 is scattered light.
So that the white light source 1 illuminates the original 4 brightly.
Is important, but the optical path between the white light source 1 and the surface of the original 4
Long LB2Light 5BIs the shortest, so the original 4 is illuminated brightest.
Light 5BIs the light receiving element 3BIncident on. Therefore,
Light receiving element 3BThe low sensitivity of the incident light 5 BBy the strength of
Complementary, light receiving element 3BThe level of the B color signal from
Since it becomes large, the light quantity of the white light source 1 can be made small.
Therefore, the power consumption of the white light source can be reduced.
【0016】さらに、受光素子3R ,3G ,3B からの
RGBカラー信号の色によるレベルの差が小さくなるの
で、それらを増幅するに際して、各色の増幅率の差を小
さくできることから、増幅によるノイズレベルの差も小
さくできる。Further, since the difference in level depending on the colors of the RGB color signals from the light receiving elements 3 R , 3 G and 3 B becomes small, it is possible to reduce the difference in the amplification factor of each color when amplifying them, so that the amplification is performed. The difference in noise level can also be reduced.
【0017】しかも、光源を複数個設けたり、色分解用
のフィルタを設けたりする必要がないので、製造コスト
を増加させることもない。Moreover, since it is not necessary to provide a plurality of light sources or filters for color separation, the manufacturing cost is not increased.
【0018】なお、上記実施形態では、Rの受光素子3
R に入射する光5R の光路長LR が最長になるようにし
たが、Rの受光素子3R とGの受光素子3G との感度の
差はそれほど大きくないので、Gの受光素子3G に入射
する光5G の光路長LG が最長になるようにしてもよ
い。In the above embodiment, the R light receiving element 3 is used.
Although the optical path length L R of the light 5 R incident on R is set to be the longest, the difference in sensitivity between the R light receiving element 3 R and the G light receiving element 3 G is not so large. optical path length L G of the light 5 G incident on G may be is the longest.
【0019】また、上記実施形態では、Bの受光素子3
B に入射する光5B の光路長LB が最短になるようにし
たが、将来、他の受光素子3R ,3G の感度が現状のま
まで、Bの受光素子3B の感度がそれらを上回ったよう
な場合には、Bの受光素子3 B に入射する光5B の光路
長LB が最長になるようにすればよい。In the above embodiment, the B light receiving element 3
BLight 5 incident onBOptical path length LBTo be the shortest
However, in the future, other light receiving elements 3R, 3GThe sensitivity of
Up to B light receiving element 3BAs the sensitivity of them exceeded those
In this case, the B light receiving element 3 BLight 5 incident onBOptical path
Long LBShould be the longest.
【0020】[0020]
【発明の効果】以上説明したように請求項1に記載した
発明のカラー画像読取装置によれば、R,G,Bの各受
光素子のうち最も感度の低い受光素子と白色光源との間
の光路長が、他のいずれの受光素子と白色光源との間の
光路長よりも短くなるように、R,G,Bの各受光素子
を配置したので、受光素子の感度の低さを入射光の強さ
で補えることから、各受光素子の出力レベルの差を小さ
くできると共に、白色光源の消費電力を低減できる。し
かも、複数の光源や色分解用のフィルタを設ける必要が
ないので、製造コストを増加させることがない。As described above, according to the color image reading apparatus of the present invention as set forth in claim 1, between the light receiving element having the lowest sensitivity among the R, G and B light receiving elements and the white light source. Since the R, G, and B light receiving elements are arranged so that the light path length is shorter than the light path length between any other light receiving element and the white light source, the low sensitivity of the light receiving element causes the incident light to fall. Since it can be compensated for by the strength of, the difference in the output level of each light receiving element can be reduced and the power consumption of the white light source can be reduced. Moreover, since it is not necessary to provide a plurality of light sources and filters for color separation, the manufacturing cost is not increased.
【0021】また、請求項2に記載した発明のカラー画
像読取装置によれば、R,G,Bの各受光素子のうち最
も感度の高い受光素子と白色光源との間の光路長が、他
のいずれの受光素子と白色光源との間の光路長よりも長
くなるように、R,G,Bの各受光素子を配置したの
で、受光素子の感度の高さを入射光の弱さで適切に抑え
られることから、各受光素子の出力レベルの差を小さく
できる。したがって、出力レベルを揃えるための増幅に
際して、各色の増幅率を比較的均一にでき、増幅による
ノイズレベルの差を小さくできる。しかも、複数の光源
や色分解用のフィルタを設ける必要がないので、製造コ
ストを増加させることがない。According to the color image reading apparatus of the invention described in claim 2, the optical path length between the white light source and the light receiving element having the highest sensitivity among the R, G and B light receiving elements is different. Since each of the R, G, and B light receiving elements is arranged so as to be longer than the optical path length between any of the light receiving elements and the white light source, the sensitivity of the light receiving element is appropriate depending on the weakness of the incident light. Therefore, the difference between the output levels of the light receiving elements can be reduced. Therefore, at the time of amplification for equalizing the output levels, the amplification factor of each color can be made relatively uniform, and the difference in noise level due to amplification can be reduced. Moreover, since it is not necessary to provide a plurality of light sources and filters for color separation, the manufacturing cost is not increased.
【0022】更に、請求項3に記載した発明のカラー画
像読取装置によれば、R,G,Bの各受光素子のうち最
も感度の低い受光素子と白色光源との間の光路長が、他
のいずれの受光素子と白色光源との間の光路長よりも短
くなり、かつ、R,G,Bの各受光素子のうち最も感度
の高い受光素子と白色光源との間の光路長が、他のいず
れの受光素子と白色光源との間の光路長よりも長くなる
ように、R,G,Bの各受光素子を配置したので、各受
光素子の感度の差を入射光の強弱で適切に補正できるこ
とから、各受光素子の出力レベルの差を最も適切に小さ
くできると共に、白色光源の消費電力を低減できる。し
かも、複数の光源や色分解用のフィルタを設ける必要が
ないので、製造コストを増加させることがない。Further, according to the color image reading apparatus of the invention described in claim 3, the light path length between the light receiving element having the lowest sensitivity among the R, G and B light receiving elements and the white light source is different. Which is shorter than the optical path length between any of the light receiving elements and the white light source, and the optical path length between the light receiving element having the highest sensitivity among the R, G and B light receiving elements and the white light source is Since each of the R, G, and B light receiving elements is arranged so as to be longer than the optical path length between any of the light receiving elements and the white light source, the difference in sensitivity between the light receiving elements is properly adjusted depending on the intensity of the incident light. Since the correction can be performed, the difference between the output levels of the light receiving elements can be reduced most appropriately, and the power consumption of the white light source can be reduced. Moreover, since it is not necessary to provide a plurality of light sources and filters for color separation, the manufacturing cost is not increased.
【図1】本発明に係るカラー画像読取装置の概略構成図
である。FIG. 1 is a schematic configuration diagram of a color image reading apparatus according to the present invention.
【図2】本発明に係るカラー画像読取装置に備えられた
各受光素子への入射光の光路長の説明図である。FIG. 2 is an explanatory diagram of an optical path length of incident light to each light receiving element included in the color image reading device according to the present invention.
【図3】従来のカラー画像読取装置の概略構成図であ
る。FIG. 3 is a schematic configuration diagram of a conventional color image reading device.
【図4】各受光素子の色に対する感度の説明図である。FIG. 4 is an explanatory diagram of sensitivities of respective light receiving elements to colors.
【図5】従来のカラー画像読取装置の概略構成図であ
る。FIG. 5 is a schematic configuration diagram of a conventional color image reading device.
【図6】従来のカラー画像読取装置の概略構成図であ
る。FIG. 6 is a schematic configuration diagram of a conventional color image reading device.
【図7】従来のカラー画像読取装置の概略構成図であ
る。FIG. 7 is a schematic configuration diagram of a conventional color image reading device.
1 白色光源 2 レンズ 3 カラーCCDセンサ 3R ,3G ,3B 受光素子 4 原稿 5R ,5G ,5B 光 LR ,LG ,LB 光路長1 white light source 2 Lens 3 color CCD sensor 3 R, 3 G, 3 B light-receiving element 4 document 5 R, 5 G, 5 B light L R, L G, L B pathlength
Claims (3)
されて読取対象体の表面で反射した光を受光する光電変
換手段とを備えたカラー画像読取装置であって、 前記R,G,Bの各受光素子のうち最も感度の低い受光
素子と前記白色光源との間の光路長が、他のいずれの受
光素子と前記白色光源との間の光路長よりも短くなるよ
うに、前記R,G,Bの各受光素子を配置したことを特
徴とするカラー画像読取装置。1. A photoelectric conversion means for receiving light emitted from the white light source and reflected by a surface of a reading object, the photoelectric conversion means having one white light source and R, G, B light receiving elements. In the color image reading apparatus, the optical path length between the light receiving element having the lowest sensitivity among the R, G, B light receiving elements and the white light source is equal to that of any other light receiving element and the white light source. A color image reading device, wherein each of the R, G, and B light receiving elements is arranged so as to be shorter than the optical path length between them.
されて読取対象体の表面で反射した光を受光する光電変
換手段とを備えたカラー画像読取装置であって、 前記R,G,Bの各受光素子のうち最も感度の高い受光
素子と前記白色光源との間の光路長が、他のいずれの受
光素子と前記白色光源との間の光路長よりも長くなるよ
うに、前記R,G,Bの各受光素子を配置したことを特
徴とするカラー画像読取装置。2. A photoelectric conversion means having one white light source and R, G, and B light receiving elements, and receiving the light emitted from the white light source and reflected on the surface of the object to be read. In the color image reading device, the optical path length between the light receiving element having the highest sensitivity among the R, G, B light receiving elements and the white light source is equal to that of any other light receiving element and the white light source. A color image reading device, wherein each of the R, G, and B light receiving elements is arranged so as to be longer than the optical path length between them.
されて読取対象体の表面で反射した光を受光する光電変
換手段とを備えたカラー画像読取装置であって、 前記R,G,Bの各受光素子のうち最も感度の低い受光
素子と前記白色光源との間の光路長が、他のいずれの受
光素子と前記白色光源との間の光路長よりも短くなり、
かつ、前記R,G,Bの各受光素子のうち最も感度の高
い受光素子と前記白色光源との間の光路長が、他のいず
れの受光素子と前記白色光源との間の光路長よりも長く
なるように、前記R,G,Bの各受光素子を配置したこ
とを特徴とするカラー画像読取装置。3. A photoelectric conversion means having one white light source and R, G, B light receiving elements, and receiving the light emitted from the white light source and reflected on the surface of the object to be read. In the color image reading apparatus, the optical path length between the light receiving element having the lowest sensitivity among the R, G, B light receiving elements and the white light source is equal to that of any other light receiving element and the white light source. Shorter than the optical path length between
In addition, the optical path length between the light receiving element having the highest sensitivity among the R, G, and B light receiving elements and the white light source is longer than the optical path length between any other light receiving element and the white light source. A color image reading device in which the R, G, and B light receiving elements are arranged so as to be long.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7318883A JPH09163072A (en) | 1995-12-07 | 1995-12-07 | Color image reader |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7318883A JPH09163072A (en) | 1995-12-07 | 1995-12-07 | Color image reader |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09163072A true JPH09163072A (en) | 1997-06-20 |
Family
ID=18104034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7318883A Pending JPH09163072A (en) | 1995-12-07 | 1995-12-07 | Color image reader |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09163072A (en) |
-
1995
- 1995-12-07 JP JP7318883A patent/JPH09163072A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1185603C (en) | Image readout equipment possessing multi wave length illuminating source and control method of said equipment | |
US7566857B2 (en) | Image sensor, multi-chip module type image sensor and contact image sensor | |
US7349129B2 (en) | Controller for photosensor array with multiple different sensor areas | |
US6195183B1 (en) | Image reading apparatus and image sensor chip thererfor | |
JPWO2014178129A1 (en) | Image acquisition apparatus and image acquisition method | |
US8107137B2 (en) | 4-line CCD sensor and image input apparatus using the same | |
EP0696869B1 (en) | Image sensing device and image reading apparatus using the same | |
JPH09163072A (en) | Color image reader | |
JPS6128260B2 (en) | ||
US20070045510A1 (en) | Contact image sensor | |
JP2000032214A (en) | Color image sensor | |
US8324551B2 (en) | Image reader performing image correction at the pixel level | |
JPH04365257A (en) | Image reader | |
JPH08251347A (en) | Color linear image sensor of synchronization addition type | |
JPH11298670A (en) | Contact color image sensor and original reading method using the same | |
JPS61123262A (en) | Original reader | |
JPH07177303A (en) | Contact image sensor and its production | |
JPS60137166A (en) | Color image reader | |
JPH08237431A (en) | Image reader and light source unit | |
JP2002185700A (en) | Color image reader and color image forming device | |
JPH03172066A (en) | Color picture reader | |
JPH11146158A (en) | Image reader | |
JPH05328023A (en) | Color picture reader | |
JPH0630188A (en) | Image sensor and perfect contact type image sensor unit using the same | |
JPS63309058A (en) | Color information reader |