JPH09162459A - Differential semiconductor thin film magnetoresistive device - Google Patents

Differential semiconductor thin film magnetoresistive device

Info

Publication number
JPH09162459A
JPH09162459A JP7317762A JP31776295A JPH09162459A JP H09162459 A JPH09162459 A JP H09162459A JP 7317762 A JP7317762 A JP 7317762A JP 31776295 A JP31776295 A JP 31776295A JP H09162459 A JPH09162459 A JP H09162459A
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
substrate
magnetoresistive element
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7317762A
Other languages
Japanese (ja)
Other versions
JP3453968B2 (en
Inventor
Akihiro Korechika
哲広 是近
Takamichi Hattori
孝道 服部
Tetsuo Kawasaki
哲生 川崎
Hideyuki Tanigawa
秀之 谷川
Akira Matsuura
昭 松浦
Satoshi Ouchi
智 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31776295A priority Critical patent/JP3453968B2/en
Publication of JPH09162459A publication Critical patent/JPH09162459A/en
Application granted granted Critical
Publication of JP3453968B2 publication Critical patent/JP3453968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Brushless Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent electric crosstalk between rows of elements by defining the specific resistance and thickness of the Si substrate of a differential semiconductor thin film magnetoresistive device comprising two rows of semiconductor thin film magnetoresistive elements obtained by forming a large number of short-circuit electrodes on a semiconductor thin film of high electron mobility, formed directly on the same Si substrate. SOLUTION: A differential semiconductor thin film magnetoresistive device 6 is composed of two rows of semiconductor thin film magnetoresistive element 4, 5 wherein a large number of short-circuit electrodes 3 are formed on an InSb thin film 2. The specific resistance and thickness of Si substrate 1 are controlled to 1kΩ.cm or above and 100μm or below, respectively. The sheet resistance of the Si substrate 1 is 100 kΩ/square or above at room temperature. If a highly oriented and epitaxially grown material excellent in crystallinity is used on the Si substrate, it is required that the specific resistance at room temperature should be 6mΘ.cm and the film thickness be 3μm at which the electron mobility having influence on magnetic characteristics is saturated. Thus the sheet resistance is 20kΩ/square. This prevents electric crosstalk between rows of elements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、回転、変位などの
検出に用いられる半導体薄膜磁気抵抗素子、特に同一S
i基板上に直接形成された高電子移動度を有する半導体
薄膜上に多数の短絡電極を形成した二つの半導体薄膜磁
気抵抗素子列で構成される差動型半導体薄膜磁気抵抗素
子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor thin film magnetoresistive element used for detecting rotation, displacement, etc.
The present invention relates to a differential semiconductor thin film magnetoresistive element including two semiconductor thin film magnetoresistive element arrays in which a large number of short-circuit electrodes are formed on a semiconductor thin film having a high electron mobility formed directly on an i substrate.

【0002】[0002]

【従来の技術】一般に、回転センサとしては、光学式、
磁気式を初め、種々の方式がある。この中で、特に汚
れ、塵埃など雰囲気の影響を受ける用途においては、そ
うした影響を比較的受けにくい磁気方式が最も有利であ
る。
2. Description of the Related Art Generally, an optical sensor is used as a rotation sensor.
There are various types including a magnetic type. Among them, a magnetic method which is relatively insensitive to the influence of the atmosphere, such as dirt and dust, is most advantageous.

【0003】一方、この磁気方式においても、電磁ピッ
クアップ、ホール素子、磁気抵抗素子など、種々の方式
がある。
On the other hand, there are various types of magnetic systems, such as an electromagnetic pickup, a Hall element, and a magnetoresistive element.

【0004】近年、自動車の電子制御化に伴い、各種セ
ンサ素子が装着される中で、回転センサ、特にギヤセン
サとしてホール素子(ホールIC)、強磁性薄膜磁気抵
抗素子、半導体磁気抵抗素子を用いた回転センサが零速
度検知の点から各所で検討されているが、自動車用回転
センサとして用いる際、素子の動作温度範囲が−40〜
+150℃を満足しなければならない。
[0004] In recent years, as various types of sensor elements are mounted with the electronic control of automobiles, Hall elements (Hall ICs), ferromagnetic thin-film magnetoresistive elements, and semiconductor magnetoresistive elements are used as rotation sensors, particularly gear sensors. Rotation sensors have been studied in various places from the point of zero speed detection, but when used as automobile rotation sensors, the operating temperature range of the element is -40 to 40.
Must meet + 150 ° C.

【0005】ところが、そうした温度耐久性を有するホ
ール素子、ホールIC、強磁性薄膜磁気抵抗素子は、い
ずれも検知素子自体の検出出力が小さく、被検出体との
間に十分なエアギャップを確保することが難しく、ギヤ
センサとして使いにくいという問題があった。
However, the Hall element, Hall IC, and ferromagnetic thin film magnetoresistive element having such temperature durability all have a small detection output of the detecting element itself, and secure a sufficient air gap with the object to be detected. And it is difficult to use it as a gear sensor.

【0006】一方、半導体磁気抵抗素子は、元々検出出
力が大きく被検出体とのエアギャップを広く取れるた
め、最もギヤセンサとして適しているものと考えられる
が、現状で最も特性の優れた半導体磁気抵抗素子である
InSb磁気抵抗素子では、その動作温度範囲は、−4
0〜+120℃程度で、上記の自動車用回転センサとし
て必ずしも温度耐久性面で十分なものではなかった。
On the other hand, a semiconductor magnetoresistive element is originally considered to be most suitable as a gear sensor because it has a large detection output and a wide air gap with the object to be detected. The operating temperature range of the InSb magnetoresistive element, which is an element, is −4.
The temperature of 0 to + 120 ° C. is not always sufficient in terms of temperature durability as the above-mentioned automobile rotation sensor.

【0007】この現状多用されているInSb磁気抵抗
素子は、InSbバルク単結晶薄片化型のものが多い。
なぜなら、この素子の検出出力が、素体であるInSb
の電子移動度に比例するため、従って、その結晶性に大
きく影響されるためである。一方、この型の素子は、単
結晶ウエハを接着層を介して基板上に接着し、次いで無
歪み研磨にて十μm内外の厚みにまで研磨したものを用
いるため、結果的に接着層〜InSb層間の膨張係数差
により、低温〜高温のヒートショックに弱いという欠点
を有していた。
[0007] Many of the InSb magnetoresistive elements widely used at present are of the InSb bulk single crystal flake type.
This is because the detection output of this element is InSb
This is because it is proportional to the electron mobility of, and is therefore greatly affected by its crystallinity. On the other hand, in this type of device, since a single crystal wafer is bonded onto a substrate via an adhesive layer and then polished to a thickness of 10 μm or less by non-strain polishing, as a result, the adhesive layer to InSb Due to the difference in expansion coefficient between layers, it has a drawback that it is weak against heat shock at low temperature to high temperature.

【0008】これに対して、特開平5−147422号
公報などに述べられているようにSiウエハ基板上に直
接これを種基板としてヘテロエピタキシャル成長させた
InSb薄膜を有する半導体薄膜磁気抵抗素子は上記温
度耐久性に優れると共に、単結晶型に比肩する感度を有
するという点で有用である。
On the other hand, a semiconductor thin film magnetoresistive element having an InSb thin film heteroepitaxially grown on a Si wafer substrate directly as a seed substrate as described in JP-A-5-147422 and the like has the above temperature. It is useful because it has excellent durability and sensitivity comparable to that of a single crystal type.

【0009】[0009]

【発明が解決しようとする課題】このように上記InS
bエピタキシャル成長薄膜をSiウエハ構成を用いるこ
とで優れた特性を有する半導体薄膜磁気抵抗素子を実現
することができるのであるが、ここで、一つの大きな課
題を有する。それは、Siウエハが半導体であり、基板
として絶縁性ではないことであり、これにより、具体的
には、実用的に用いる同一構造を有する左右の半導体薄
膜磁気抵抗素子列を中点を介して接続した差動型素子を
同一基板上に形成したものにおいて、二つの素子列間の
電気的なクロストーク(基板に電流が流れること)によ
り、中点電位の温度特性が必ずしも良好でないことであ
り、特に零速度検知に対して大きな課題を有していた。
As described above, the above InS
A semiconductor thin film magnetoresistive element having excellent characteristics can be realized by using a Si wafer structure for the b epitaxially grown thin film, but there is one major problem here. This is because the Si wafer is a semiconductor and is not insulating as a substrate. Specifically, the left and right semiconductor thin-film magnetoresistive element arrays having the same structure that are practically used are connected via a midpoint. In the case where the differential type element is formed on the same substrate, the temperature characteristic of the midpoint potential is not always good due to electrical crosstalk between the two element rows (current flows to the substrate). In particular, there was a big problem for zero speed detection.

【0010】本発明は、こうした優れた出力感度特性と
高温耐久性を有するInSbエピタキシャル成長薄膜を
Siウエハ基板上に直接形成した構成を有する差動型半
導体薄膜磁気抵抗素子において、左右の磁気抵抗素子列
間の電気的クロストークを低減し、良好な中点電圧の温
度特性を実現する差動型半導体薄膜磁気抵抗素子を提供
することを主たる目的とする。
According to the present invention, in a differential type semiconductor thin film magnetoresistive element having a structure in which an InSb epitaxially grown thin film having such excellent output sensitivity characteristics and high temperature durability is directly formed on a Si wafer substrate, left and right magnetoresistive element arrays are provided. A main object of the present invention is to provide a differential semiconductor thin film magnetoresistive element that reduces electrical crosstalk between them and realizes excellent temperature characteristics of a midpoint voltage.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明の差動型半導体薄膜磁気抵抗素子は、同一S
i基板上に直接エピタキシャル成長させた高電子移動度
を有する半導体薄膜、具体的には、InSb薄膜上に多
数の短絡電極を形成した二つの半導体薄膜磁気抵抗素子
列で構成される差動型半導体薄膜磁気抵抗素子におい
て、当該Si基板について次のものを用いることを特徴
とするものである。
In order to achieve the above object, the differential semiconductor thin film magnetoresistive element of the present invention has the same S
A semiconductor thin film having a high electron mobility, which is directly epitaxially grown on an i substrate, specifically, a differential semiconductor thin film composed of two semiconductor thin film magnetoresistive element arrays in which a large number of short-circuit electrodes are formed on an InSb thin film. In the magnetoresistive element, the following is used for the Si substrate.

【0012】(1)該Si基板の比抵抗が1kΩ・cm
以上であり、且つ厚さが100μm以下のものを用い
る。
(1) The specific resistance of the Si substrate is 1 kΩ · cm
The above is used and the thickness is 100 μm or less.

【0013】(2)該Si基板が、その基板内部に埋め
込まれた基板面に平行なSi酸化物層を有するものを用
いる。
(2) The Si substrate having a Si oxide layer parallel to the surface of the substrate embedded in the substrate is used.

【0014】(3)該Si基板が、その基板内部に基板
面と平行にPN接合部を有するものを用いる。
(3) The Si substrate has a PN junction in the substrate in parallel with the substrate surface.

【0015】(4)該Si基板が、その基板内部に基板
面と平行にPN接合部を有すると共に、半導体薄膜が直
接接するSi基板部の伝導型と異なる極性の埋め込み層
を該二つの半導体薄膜磁気抵抗素子列間を分離するよう
に基板面と垂直方向に形成されたものを用いる。
(4) The Si substrate has a PN junction inside the substrate in parallel with the substrate surface, and an embedded layer having a polarity different from the conductivity type of the Si substrate directly contacting the semiconductor thin film is provided between the two semiconductor thin films. What is formed in the direction perpendicular to the substrate surface so as to separate the magnetoresistive element rows is used.

【0016】(5)該Si基板の該半導体薄膜磁気抵抗
素子を形成していない領域に酸素もしくは窒素をドーピ
ングしたものを用いる。
(5) A region of the Si substrate where the semiconductor thin film magnetoresistive element is not formed is doped with oxygen or nitrogen.

【0017】(6)該Si基板の該半導体薄膜磁気抵抗
素子を形成していない領域を陽極酸化したものを用い
る。
(6) A region of the Si substrate on which the semiconductor thin film magnetoresistive element is not formed is anodized.

【0018】(7)該Si基板の該半導体薄膜磁気抵抗
素子を形成していない領域をプラズマ処理により、その
表面を酸化もしくは窒化させたものを用いる。
(7) A region of the Si substrate on which the semiconductor thin film magnetoresistive element is not formed is subjected to plasma treatment so that its surface is oxidized or nitrided.

【0019】(8)該Si基板が該二つの半導体薄膜磁
気抵抗素子列間を分離するように基板の厚み方向に形成
された溝を有するものを用いる。
(8) An Si substrate having a groove formed in the thickness direction of the substrate so as to separate the two semiconductor thin film magnetoresistive element arrays is used.

【0020】(9)該二つの半導体薄膜磁気抵抗素子列
を形成した各々のSi基板を分割した構成を有するもの
を用いる。
(9) Use is made of a structure in which each of the Si substrates on which the two semiconductor thin film magnetoresistive element arrays are formed is divided.

【0021】[0021]

【発明の実施の形態】本発明の請求項1に記載の発明
は、同一Si基板の上に直接形成された高電子移動度を
有する半導体薄膜上に多数の短絡電極を形成した二つの
半導体薄膜磁気抵抗素子列で構成される差動型半導体薄
膜磁気抵抗素子であって、当該Si基板の比抵抗が1k
Ω・cm以上であり、且つ厚さが100μm以下である
ことを特徴とする差動型半導体薄膜磁気抵抗素子であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is two semiconductor thin films in which a large number of short-circuit electrodes are formed on a semiconductor thin film having high electron mobility formed directly on the same Si substrate. A differential semiconductor thin film magnetoresistive element composed of a magnetoresistive element array, wherein the Si substrate has a specific resistance of 1 k.
It is a differential semiconductor thin film magnetoresistive element characterized by having an Ω · cm or more and a thickness of 100 μm or less.

【0022】本発明の請求項2に記載の発明は、同一S
i基板の上に直接形成された高電子移動度を有する半導
体薄膜上に多数の短絡電極を形成した二つの半導体薄膜
磁気抵抗素子列で構成される差動型半導体薄膜磁気抵抗
素子であって、当該Si基板が、基板内部に埋め込まれ
た基板面に平行なSi酸化物層を有することを特徴とす
る差動型半導体薄膜磁気抵抗素子である。
The invention according to claim 2 of the present invention is the same S
A differential type semiconductor thin film magnetoresistive element composed of two semiconductor thin film magnetoresistive element rows in which a large number of short-circuit electrodes are formed on a semiconductor thin film having a high electron mobility formed directly on an i substrate, A differential semiconductor thin film magnetoresistive element characterized in that the Si substrate has a Si oxide layer embedded in the substrate and parallel to the surface of the substrate.

【0023】本発明の請求項3に記載の発明は、同一S
i基板の上に直接形成された高電子移動度を有する半導
体薄膜上に多数の短絡電極を形成した二つの半導体薄膜
磁気抵抗素子列で構成される差動型半導体薄膜磁気抵抗
素子であって、当該Si基板がその基板内部に基板面と
平行にPN接合部を有することを特徴とする差動型半導
体薄膜磁気抵抗素子である。
The invention according to claim 3 of the present invention is the same S
A differential type semiconductor thin film magnetoresistive element composed of two semiconductor thin film magnetoresistive element rows in which a large number of short-circuit electrodes are formed on a semiconductor thin film having a high electron mobility formed directly on an i substrate, This is a differential semiconductor thin film magnetoresistive element characterized in that the Si substrate has a PN junction in parallel with the substrate surface inside the substrate.

【0024】本発明の請求項4に記載の発明は、同一S
i基板の上に直接形成された高電子移動度を有する半導
体薄膜上に多数の短絡電極を形成した二つの半導体薄膜
磁気抵抗素子列で構成される差動型半導体薄膜磁気抵抗
素子であって、当該Si基板がその基板内部に基板面と
平行にPN接合部を有すると共に、当該半導体薄膜が直
接接するSi基板部の伝導型と異なる極性の埋め込み層
を前記二つの半導体薄膜磁気抵抗素子列間を分離するよ
うに基板面と垂直方向に形成したことを特徴とする差動
型半導体薄膜磁気抵抗素子である。
The invention according to claim 4 of the present invention is the same S
A differential type semiconductor thin film magnetoresistive element composed of two semiconductor thin film magnetoresistive element rows in which a large number of short-circuit electrodes are formed on a semiconductor thin film having a high electron mobility formed directly on an i substrate, The Si substrate has a PN junction in parallel with the substrate surface inside the substrate, and a buried layer having a polarity different from the conductivity type of the Si substrate directly contacting the semiconductor thin film is provided between the two semiconductor thin film magnetoresistive element arrays. A differential type semiconductor thin film magnetoresistive element characterized by being formed in a direction perpendicular to a substrate surface so as to be separated.

【0025】本発明の請求項5に記載の発明は、同一S
i基板の上に直接形成された高電子移動度を有する半導
体薄膜上に多数の短絡電極を形成した二つの半導体薄膜
磁気抵抗素子列で構成される差動型半導体薄膜磁気抵抗
素子であって、当該Si基板の半導体薄膜を形成してい
ない領域に酸素もしくは窒素をドーピングしたことを特
徴とする差動型半導体薄膜磁気抵抗素子である。
The invention according to claim 5 of the present invention is the same S
A differential type semiconductor thin film magnetoresistive element composed of two semiconductor thin film magnetoresistive element rows in which a large number of short-circuit electrodes are formed on a semiconductor thin film having a high electron mobility formed directly on an i substrate, The differential semiconductor thin film magnetoresistive element is characterized in that a region of the Si substrate on which a semiconductor thin film is not formed is doped with oxygen or nitrogen.

【0026】本発明の請求項6に記載の発明は、同一S
i基板の上に直接形成された高電子移動度を有する半導
体薄膜上に多数の短絡電極を形成した二つの半導体薄膜
磁気抵抗素子列で構成される差動型半導体薄膜磁気抵抗
素子であって、当該Si基板の半導体薄膜を形成してい
ない領域を陽極酸化したことを特徴とする差動型半導体
薄膜磁気抵抗素子である。
The invention according to claim 6 of the present invention is the same S
A differential type semiconductor thin film magnetoresistive element composed of two semiconductor thin film magnetoresistive element rows in which a large number of short-circuit electrodes are formed on a semiconductor thin film having a high electron mobility formed directly on an i substrate, The differential semiconductor thin film magnetoresistive element is characterized in that a region of the Si substrate on which the semiconductor thin film is not formed is anodized.

【0027】本発明の請求項7に記載の発明は、同一S
i基板の上に直接形成された高電子移動度を有する半導
体薄膜上に多数の短絡電極を形成した二つの半導体薄膜
磁気抵抗素子列で構成される差動型半導体薄膜磁気抵抗
素子であって、当該Si基板の半導体薄膜を形成してい
ない領域をプラズマ処理により、その表面を酸化もしく
は窒化させたことを特徴とする差動型半導体薄膜磁気抵
抗素子である。
The invention according to claim 7 of the present invention is the same S
A differential type semiconductor thin film magnetoresistive element composed of two semiconductor thin film magnetoresistive element rows in which a large number of short-circuit electrodes are formed on a semiconductor thin film having a high electron mobility formed directly on an i substrate, A differential semiconductor thin film magnetoresistive element characterized by oxidizing or nitriding the surface of a region of the Si substrate on which a semiconductor thin film is not formed by plasma treatment.

【0028】本発明の請求項8に記載の発明は、同一S
i基板の上に直接形成された高電子移動度を有する半導
体薄膜上に多数の短絡電極を形成した二つの半導体薄膜
磁気抵抗素子列で構成される差動型半導体薄膜磁気抵抗
素子であって、当該Si基板が該二つの半導体薄膜磁気
抵抗素子列間を分離するように基板の厚み方向に形成さ
れた溝を有することを特徴とする差動型半導体薄膜磁気
抵抗素子である。
The invention according to claim 8 of the present invention is the same S
A differential type semiconductor thin film magnetoresistive element composed of two semiconductor thin film magnetoresistive element rows in which a large number of short-circuit electrodes are formed on a semiconductor thin film having a high electron mobility formed directly on an i substrate, The differential type semiconductor thin film magnetoresistive element is characterized in that the Si substrate has a groove formed in the thickness direction of the substrate so as to separate the two semiconductor thin film magnetoresistive element rows.

【0029】本発明の請求項9に記載の発明は、同一S
i基板の上に直接形成された高電子移動度を有する半導
体薄膜上に多数の短絡電極を形成した二つの半導体薄膜
磁気抵抗素子列で構成される差動型半導体薄膜磁気抵抗
素子であって、当該二つの半導体薄膜磁気抵抗素子列を
形成した各々のSi基板を分割した構成を有する差動型
半導体薄膜磁気抵抗素子である。
The invention according to claim 9 of the present invention is the same S
A differential type semiconductor thin film magnetoresistive element composed of two semiconductor thin film magnetoresistive element rows in which a large number of short-circuit electrodes are formed on a semiconductor thin film having a high electron mobility formed directly on an i substrate, The differential semiconductor thin film magnetoresistive element has a structure in which each Si substrate on which the two semiconductor thin film magnetoresistive element arrays are formed is divided.

【0030】請求項1,2,5〜8に記載の発明のいず
れにおいても、寄生するSi基板のシート抵抗を等価的
に大きくすることができ、これにより、基板に流れる電
流を抑えることができる。また、請求項3,4に記載の
発明では、接合の逆バイアス効果によって、左右の半導
体薄膜磁気抵抗素子列の間に流れる電流を抑えることが
できる。更に、請求項9に記載の発明では、左右の半導
体薄膜磁気抵抗素子列の間に全く基板を通して電流が流
れることはない。
In any of the first, second, fifth, and eighth aspects of the present invention, the parasitic sheet resistance of the Si substrate can be equivalently increased, whereby the current flowing through the substrate can be suppressed. . Further, in the inventions according to claims 3 and 4, the current flowing between the left and right semiconductor thin film magnetoresistive element rows can be suppressed by the reverse bias effect of the junction. Furthermore, in the invention described in claim 9, no current flows through the substrate between the left and right semiconductor thin film magnetoresistive element arrays.

【0031】これら、いずれにおいても、Si基板に存
在する寄生抵抗、言い換えれば、導電性を抑え、これに
より、左右の半導体薄膜磁気抵抗素子列間に流れる電流
を抑えることができ、従って、電気的なクロストークを
低減し、良好な中点電圧の温度特性を有し、優れた出力
感度特性と高温耐久性を有する差動型半導体薄膜磁気抵
抗素子を実現することができる。
In any of these, the parasitic resistance existing in the Si substrate, in other words, the conductivity is suppressed, so that the current flowing between the left and right semiconductor thin film magnetoresistive element rows can be suppressed, and therefore the electrical resistance can be reduced. It is possible to realize a differential type semiconductor thin film magnetoresistive element which has excellent cross-talk, excellent temperature characteristics of the midpoint voltage, excellent output sensitivity characteristics and high temperature durability.

【0032】(実施の形態1)図1は、本発明の第1の
実施形態の差動型半導体薄膜磁気抵抗素子の斜視図を示
す。
(First Embodiment) FIG. 1 is a perspective view of a differential type semiconductor thin film magnetoresistive element according to a first embodiment of the present invention.

【0033】同図は、同一単結晶Si基板1の上に直接
形成された高電子移動度を有する半導体薄膜、具体的に
は、InSb薄膜2の上に多数の短絡電極3を形成した
二つの半導体薄膜磁気抵抗素子列4,5で構成される差
動型半導体薄膜磁気抵抗素子6を示す。この素子の基本
的構成としては、取り出し電極7〜10において、取り
出し電極7,10が入力電圧端子であり、7がグランド
端子、10がVin端子である。取り出し電極8,9は共
通中点端子であり、外部で共通接続し、出力端子(中点
端子)とする。ここでは、この際の出力端子(中点端
子)の挙動、即ち、中点電圧の温度特性を考慮の対象と
している。
The figure shows a semiconductor thin film having a high electron mobility formed directly on the same single crystal Si substrate 1, specifically, two InSb thin films 2 on which a plurality of short-circuit electrodes 3 are formed. A differential semiconductor thin film magnetoresistive element 6 composed of semiconductor thin film magnetoresistive element rows 4 and 5 is shown. As a basic configuration of this element, in the extraction electrodes 7 to 10, the extraction electrodes 7 and 10 are input voltage terminals, 7 is a ground terminal, and 10 is a Vin terminal. The extraction electrodes 8 and 9 are common midpoint terminals and are commonly connected externally to serve as output terminals (midpoint terminals). Here, the behavior of the output terminal (midpoint terminal) at this time, that is, the temperature characteristic of the midpoint voltage is taken into consideration.

【0034】上述した構成において、Si基板1の比抵
抗を100Ω・cm、基板厚を500μmとした際、室
温において、シート抵抗として見積もると、2kΩ/□
程度である。一方、InSb薄膜2については、Si基
板1上に高配向でエピタキシャル成長した良好な結晶性
を有するものを用いると、室温での比抵抗は約6mΩ・
cm、膜厚は磁気特性に影響を与える電子移動度が飽和
する3μmは必要であり、その程度とすると、そのシー
ト抵抗は、20Ω/□程度である。従って、室温におけ
るSi基板1とInSb薄膜2のシート抵抗の比は、1
00倍程度である。図2にSi基板1のシート抵抗と、
InSb薄膜2のそれの温度依存性を示すが、同図で明
らかなように、InSb薄膜とSi基板のシート抵抗の
温度依存性は、異なった傾向を示し、−20℃におい
て、最も、シート抵抗の比が接近し、上記の例の場合で
は、50倍程度にまで接近する。この程度になってくる
と、InSb薄膜磁気抵抗素子の抵抗値に対して、Si
基板の寄生抵抗が無視できなくなる。これにより、半導
体薄膜磁気抵抗素子列4,5の間でクロストークが生
じ、結果的に、図3に示すように中点電圧の温度特性が
−20℃付近で大きくずれる現象を招く。
In the above structure, when the Si substrate 1 has a specific resistance of 100 Ω · cm and a substrate thickness of 500 μm, the sheet resistance is estimated to be 2 kΩ / □ at room temperature.
It is about. On the other hand, if the InSb thin film 2 used has a good crystallinity and is epitaxially grown on the Si substrate 1 with high orientation, the specific resistance at room temperature is about 6 mΩ.
cm and the film thickness are required to be 3 μm at which the electron mobility affecting the magnetic properties is saturated, and the sheet resistance is about 20 Ω / □. Therefore, the sheet resistance ratio of the Si substrate 1 and the InSb thin film 2 at room temperature is 1
It is about 00 times. The sheet resistance of the Si substrate 1 is shown in FIG.
The temperature dependence of the InSb thin film 2 is shown. As is clear from the figure, the temperature dependences of the sheet resistances of the InSb thin film and the Si substrate show different tendencies, and the sheet resistance is the most at -20 ° C. Ratio approaches, and approaches 50 times in the above example. At this level, the resistance of the InSb thin film magnetoresistive element is
The parasitic resistance of the board cannot be ignored. As a result, crosstalk occurs between the semiconductor thin film magnetoresistive element arrays 4 and 5, resulting in a phenomenon that the temperature characteristic of the midpoint voltage is largely deviated in the vicinity of −20 ° C. as shown in FIG.

【0035】これに対して、Si基板1の比抵抗を1k
Ω・cm以上とし、さらにその厚さを100μm以下に
することで、室温におけるSi基板1のシート抵抗は1
00kΩ/□以上となる。この場合、InSb薄膜2と
の比は、室温で5000倍以上とれ、−20℃付近で
も、2500倍程度で、クロストークを回避するに十分
なシート抵抗比と言える。この様子を前述した図3に示
している。−20℃におけるずれが、小さく収まってい
る。同図で明らかなように、Si基板の比抵抗が大きい
程、厚さが薄い程、この現象は、小さくなる。実用上、
この中点電圧の温度変動は、出力電圧の1割以下である
ことが、この半導体薄膜磁気抵抗素子を回路駆動する
際、回路処理の簡略化の点で望まれる。このため、例え
ば、5V電圧印加時、出力電圧が実用的には、200m
P-P程度とれるが、この際、20mV以下の中点電圧
の温度変動に納めることが必要であり、図3より、本実
施形態のSi基板、即ち比抵抗1kΩ・cm以上、厚さ
100μm以下のものを用いることで、中点電圧の温度
変動を小さくすることができる。尚、この際、Si基板
1の伝導型は不問である。
On the other hand, the Si substrate 1 has a specific resistance of 1 k
The sheet resistance of the Si substrate 1 at room temperature is 1 by setting the Ω · cm or more and the thickness to 100 μm or less.
It becomes more than 00kΩ / □. In this case, the ratio with the InSb thin film 2 is 5000 times or more at room temperature and about 2500 times even at around −20 ° C., which is a sheet resistance ratio sufficient to avoid crosstalk. This state is shown in FIG. 3 described above. The deviation at -20 ° C is small. As is clear from the figure, the higher the specific resistance of the Si substrate and the thinner the Si substrate, the smaller this phenomenon becomes. In practice,
It is desired that the temperature fluctuation of the midpoint voltage is 10% or less of the output voltage in order to simplify the circuit processing when driving the semiconductor thin film magnetoresistive element in the circuit. Therefore, for example, when a voltage of 5 V is applied, the output voltage is practically 200 m
Although it can be about V PP , in this case, it is necessary to accommodate the temperature fluctuation of the midpoint voltage of 20 mV or less. From FIG. 3, the Si substrate of the present embodiment, that is, the specific resistance of 1 kΩ · cm or more and the thickness of 100 μm or less By using the one, the temperature fluctuation of the midpoint voltage can be reduced. At this time, the conductivity type of the Si substrate 1 does not matter.

【0036】(実施の形態2)図4は、本発明の第2の
実施形態の差動型半導体薄膜磁気抵抗素子の斜視図を示
す。
(Second Embodiment) FIG. 4 is a perspective view of a differential type semiconductor thin film magnetoresistive element according to a second embodiment of the present invention.

【0037】差動型半導体薄膜磁気抵抗素子6自体の構
成は、実施の形態1の場合と同一であるため、ここで
は、Si基板1の構成のみに言及するものとする。同図
に示すようにSi基板1は、基板面11に平行にSi基
板内に埋め込まれた酸化物層12を有する。この酸化物
層12についてはよく知られているように、Si基板へ
の酸素の高濃度ドーピング技術等によって形成される。
Si基板表面13から、数μm程度の部分に酸化物層1
2を形成するため、例えば、元々のSi基板1の比抵抗
を実施の形態1と同様に1kΩ・cm以上とすれば、室
温におけるシート抵抗は少なくとも106〜107Ω/□
はあり、InSb薄膜2の比抵抗との比は4桁〜5桁あ
り、ほぼ完全に、中点電圧の温度変動ばらつきを回避で
きる。この構成の場合は、Si基板1の元々の比抵抗が
100Ω・cm程度であっても、中点電圧の温度変動ば
らつきを抑えるに十分である。さらに、上記酸化物層1
2は可能な限りSi基板表面13から浅い所に設けられ
た方が好ましく、またSi基板1の比抵抗も大きい程好
ましい。酸化物層12を浅い位置に設けられる程、Si
基板1の比抵抗は小さくしても良い。尚、この場合もS
i基板1の伝導型は不問である。
Since the structure of the differential type semiconductor thin film magnetoresistive element 6 itself is the same as that of the first embodiment, only the structure of the Si substrate 1 will be referred to here. As shown in the figure, the Si substrate 1 has an oxide layer 12 embedded in the Si substrate parallel to the substrate surface 11. As is well known, the oxide layer 12 is formed by a technique such as high-concentration oxygen doping of a Si substrate.
The oxide layer 1 is formed in a portion of several μm from the Si substrate surface 13.
2 is formed, if the specific resistance of the original Si substrate 1 is set to 1 kΩ · cm or more as in the first embodiment, the sheet resistance at room temperature is at least 10 6 to 10 7 Ω / □.
Therefore, the ratio with the specific resistance of the InSb thin film 2 is 4 to 5 digits, and it is possible to almost completely avoid the temperature fluctuation variation of the midpoint voltage. In the case of this configuration, even if the original specific resistance of the Si substrate 1 is about 100 Ω · cm, it is sufficient to suppress the variation in temperature fluctuation of the midpoint voltage. Further, the above oxide layer 1
2 is preferably provided as shallow as possible from the surface 13 of the Si substrate, and the larger the specific resistance of the Si substrate 1, the more preferable. The shallower the oxide layer 12 is, the more Si
The specific resistance of the substrate 1 may be small. In this case, S
The conductivity type of the i-substrate 1 does not matter.

【0038】(実施の形態3)図5は、本発明の第3の
実施形態の差動型薄膜磁気抵抗素子の斜視図を示す。
(Third Embodiment) FIG. 5 is a perspective view of a differential type thin film magnetoresistive element according to a third embodiment of the present invention.

【0039】ここでは、上記と同様、Si基板1の構成
のみに言及するものとする。同図に示すように、Si基
板1は、基板面に平行な上層14がP型、下層15がN
型のPN接合部16を基板内に有する。上層14がN
型、下層15がP型であっても良い。更に、上層14
は、この領域から、下層15にキャリアがトンネル伝導
を起こさない範囲において、できるだけ薄い方が好まし
い。
Here, like the above, only the structure of the Si substrate 1 will be referred to. As shown in the figure, in the Si substrate 1, the upper layer 14 parallel to the substrate surface is P type and the lower layer 15 is N type.
Type PN junction 16 in the substrate. Upper layer 14 is N
The lower layer 15 may be a P type. Further, the upper layer 14
Is preferably as thin as possible from this region within the range where carriers do not cause tunnel conduction to the lower layer 15.

【0040】このSi基板1の構成を有する差動型半導
体薄膜磁気抵抗素子6を用いると、例えば、電子がSi
基板面を流れる場合、上層14がP型、下層15がN型
の場合、上層14のP型領域を電子が流れ、PN接合部
16を通し下層15のN型領域に流れ込むことは順方向
特性であるため容易であるが、この後、下層15のN型
領域から、PN接合部16を通し上層14のP型領域に
流れ込むことは、逆方向特性のため困難であり、結果的
に、電流は、上層14にしか流れないこととなる。上層
14がN型、下層15がP型の場合でも、PN接合部1
6での電流の流れは、基本的に必ず、逆接合の部分を通
ることとなり、結果的に、上層14にしか電流は流れな
い。従って、InSb薄膜2が接するSi基板1の上層
14のシート抵抗が問題となる。この上層14のシート
抵抗とInSb薄膜2のシート抵抗の比が実施形態1と
同様、室温で5000倍以上となり、実用上十分な中点
電圧の温度特性となる。
When the differential semiconductor thin film magnetoresistive element 6 having the structure of the Si substrate 1 is used, for example, electrons are converted into Si.
In the case where the upper layer 14 is P-type and the lower layer 15 is N-type when flowing on the substrate surface, electrons flow in the P-type region of the upper layer 14 and flow into the N-type region of the lower layer 15 through the PN junction 16 as a forward characteristic. However, it is difficult to flow from the N-type region of the lower layer 15 through the PN junction 16 into the P-type region of the upper layer 14 after that due to the reverse direction characteristic. Will flow only to the upper layer 14. Even if the upper layer 14 is N-type and the lower layer 15 is P-type, the PN junction 1
The current flow in 6 basically always passes through the reverse junction portion, and as a result, the current flows only in the upper layer 14. Therefore, the sheet resistance of the upper layer 14 of the Si substrate 1 in contact with the InSb thin film 2 becomes a problem. The ratio of the sheet resistance of the upper layer 14 to the sheet resistance of the InSb thin film 2 is 5000 times or more at room temperature, which is a temperature characteristic of a midpoint voltage which is practically sufficient, as in the first embodiment.

【0041】(実施の形態4)図6は、本発明の第4の
実施形態の差動型半導体薄膜磁気抵抗素子の斜視図を示
す。
(Fourth Embodiment) FIG. 6 is a perspective view of a differential type semiconductor thin film magnetoresistive element according to a fourth embodiment of the present invention.

【0042】同図に示すように、Si基板1は、その基
板内部に基板面と平行な上層17がP型、下層18がN
型のPN接合部19を有する。上層17がN型、下層1
8がP型であっても良い。更に、二つの半導体薄膜磁気
抵抗素子列4,5で構成される差動型半導体薄膜磁気抵
抗素子6が直接接触するSi基板1の上層17の伝導型
と異なる伝導型、即ち本実施形態では、上層17がP型
であるため、N型の埋め込み層20を該二つの半導体薄
膜磁気抵抗素子列4,5間を分離するように基板面と垂
直な方向に形成している。上層17がN型の場合には、
埋め込み層20がP型となる。この際、埋め込み層20
は、下層18に貫通している方が好ましく、上層17
は、この領域からキャリアがトンネル伝導を起こさない
範囲で、できるだけ薄い方が好ましい。
As shown in the figure, in the Si substrate 1, the upper layer 17 parallel to the substrate surface is P type and the lower layer 18 is N type inside the substrate.
Type PN junction 19. Upper layer 17 is N type, lower layer 1
8 may be a P type. Further, a conduction type different from the conduction type of the upper layer 17 of the Si substrate 1 in which the differential type semiconductor thin film magnetoresistive element 6 composed of the two semiconductor thin film magnetoresistive element rows 4 and 5 is in direct contact, that is, in the present embodiment, Since the upper layer 17 is the P type, the N type buried layer 20 is formed in the direction perpendicular to the substrate surface so as to separate the two semiconductor thin film magnetoresistive element arrays 4 and 5. When the upper layer 17 is N-type,
The buried layer 20 becomes P-type. At this time, the buried layer 20
Preferably penetrates the lower layer 18, and the upper layer 17
Is preferably as thin as possible within the range where carriers do not cause tunnel conduction from this region.

【0043】このSi基板1の構成を有する差動型半導
体薄膜磁気抵抗素子6を用いると、半導体薄膜磁気抵抗
素子列4から5へのキャリアの流れに対して、埋め込み
層20及びPN接合部19により、必ず、逆接合状態が
生じ、キャリアの流れを遮断する。従って、半導体薄膜
磁気抵抗素子列4,5間に電流は流れず、これにより、
良好な中点電圧の温度特性を得ることができる。
When the differential type semiconductor thin film magnetoresistive element 6 having the structure of the Si substrate 1 is used, the buried layer 20 and the PN junction portion 19 against the flow of carriers from the semiconductor thin film magnetoresistive element array 4 to 5. As a result, a reverse-bonded state is always generated and the flow of carriers is blocked. Therefore, no current flows between the semiconductor thin film magnetoresistive element rows 4 and 5, and
Good temperature characteristics of the midpoint voltage can be obtained.

【0044】(実施の形態5)図7は、本発明の第5の
実施形態の差動型半導体薄膜磁気抵抗素子の斜視図を示
す。
(Fifth Embodiment) FIG. 7 is a perspective view of a differential type semiconductor thin film magnetoresistive element according to a fifth embodiment of the present invention.

【0045】同図に示すように、Si基板1の、半導体
薄膜磁気抵抗素子列4,5部分をレジストマスクで覆
い、例えば、イオン注入法を用いて、酸素もしくは、窒
素をドーピングし、半導体薄膜磁気抵抗素子列4,5を
形成していない領域21を酸化もしくは窒化して、高抵
抗化する。半導体薄膜磁気抵抗素子列4,5形成前の生
のSi基板の半導体薄膜磁気抵抗素子列4,5を形成し
ない領域にイオン注入法などを用いて、酸素もしくは、
窒素をドーピングしても良い。この際、この酸化もしく
は窒化した領域21は、基板深くまで酸化もしくは窒化
された方が好ましい。更に、元々のSi基板1の比抵抗
ができるだけ高いもの、基板厚ができるだけ薄いものを
用いる。このようなSi基板1を用いると、電流の流れ
る基板領域22が狭くなり、結果的に半導体薄膜磁気抵
抗素子列4,5間に電流が流れにくくなり、クロストー
クを低減することができ、中点電圧の温度特性を改善す
ることができる。
As shown in the figure, the semiconductor thin film magnetoresistive element arrays 4 and 5 of the Si substrate 1 are covered with a resist mask, and oxygen or nitrogen is doped by using, for example, an ion implantation method to form a semiconductor thin film. The regions 21 where the magnetoresistive element arrays 4 and 5 are not formed are oxidized or nitrided to increase the resistance. By using an ion implantation method or the like in regions where the semiconductor thin film magnetoresistive element arrays 4 and 5 are not formed on the raw Si substrate before forming the semiconductor thin film magnetoresistive element arrays 4 and 5, oxygen or
It may be doped with nitrogen. At this time, the oxidized or nitrided region 21 is preferably oxidized or nitrided deeply in the substrate. Further, the original Si substrate 1 having the highest specific resistance and the substrate thickness as thin as possible are used. When such a Si substrate 1 is used, the substrate region 22 through which a current flows becomes narrower, and as a result, it becomes difficult for a current to flow between the semiconductor thin film magnetoresistive element arrays 4 and 5, and crosstalk can be reduced. The temperature characteristic of the point voltage can be improved.

【0046】(実施の形態6)図8は、本発明の第6の
実施形態の差動型半導体薄膜磁気抵抗素子の斜視図を示
す。
(Sixth Embodiment) FIG. 8 is a perspective view of a differential type semiconductor thin film magnetoresistive element according to a sixth embodiment of the present invention.

【0047】同図に示すように、Si基板1の半導体薄
膜磁気抵抗素子列4,5部分をレジストマスクで覆い、
化成液に浸漬し、化成電流を流すことで、半導体薄膜磁
気抵抗素子列4,5を形成していないSi基板1の領域
23を陽極酸化する。この際レジストマスクを少なくと
も半導体薄膜磁気抵抗素子列4,5の形成幅よりやや広
めに覆う必要がある。こうしない場合は、半導体薄膜磁
気抵抗素子列4,5の側壁が露出するため、陽極酸化時
に酸化腐食が生じる。この場合も、実施の形態5の場合
と同様、陽極酸化膜厚が厚い程好ましく、Si基板1の
比抵抗ができるだけ大きく、基板厚ができるだけ薄い方
が好ましい。このようなSi基板1を用いると、実施の
形態5と同じ理由により、クロストークを低減すること
ができ、中点電圧の温度特性を改善することができる。
As shown in the figure, the semiconductor thin film magnetoresistive element arrays 4 and 5 of the Si substrate 1 are covered with a resist mask,
The region 23 of the Si substrate 1 in which the semiconductor thin film magnetoresistive element arrays 4 and 5 are not formed is anodized by immersing in a chemical solution and passing a chemical current. At this time, it is necessary to cover the resist mask at least slightly wider than the formation width of the semiconductor thin film magnetoresistive element arrays 4 and 5. If this is not done, the sidewalls of the semiconductor thin film magnetoresistive element arrays 4 and 5 are exposed, so that oxidative corrosion occurs during anodization. Also in this case, as in the case of the fifth embodiment, the thicker the anodic oxide film is, the more preferable it is, and the resistivity of the Si substrate 1 is preferably as large as possible and the substrate thickness is preferably as thin as possible. By using such a Si substrate 1, crosstalk can be reduced and the temperature characteristic of the midpoint voltage can be improved for the same reason as in the fifth embodiment.

【0048】(実施の形態7)図9は、本発明の第7の
実施形態の差動型半導体薄膜磁気抵抗素子の斜視図を示
す。
(Embodiment 7) FIG. 9 is a perspective view of a differential type semiconductor thin film magnetoresistive element according to a seventh embodiment of the present invention.

【0049】同図に示すように、Si基板1の、半導体
薄膜磁気抵抗素子列4,5部分をレジストマスクで覆
い、酸素プラズマもしくは窒素プラズマを用いて、半導
体薄膜磁気抵抗素子列4,5を形成していない領域24
の表面を酸化もしくは窒化して高抵抗化する。この際、
この酸化もしくは窒化した領域24は、基板深くまで酸
化もしくは窒化された方が好ましい。更に、元々のSi
基板1の比抵抗ができるだけ高いもの、基板厚ができる
だけ薄いものを用いる。このようなSi基板1を用いる
と、電流の流れる基板領域22が狭くなり、結果的に半
導体薄膜磁気抵抗素子列4,5間に電流が流れにくくな
り、クロストークを低減することができ、中点電圧の温
度特性を改善することができる。
As shown in the figure, the semiconductor thin film magnetoresistive element arrays 4 and 5 of the Si substrate 1 are covered with a resist mask and the semiconductor thin film magnetoresistive element arrays 4 and 5 are formed by using oxygen plasma or nitrogen plasma. Area 24 not formed
The surface of is oxidized or nitrided to increase the resistance. On this occasion,
The oxidized or nitrided region 24 is preferably oxidized or nitrided deeply in the substrate. In addition, the original Si
A substrate having a resistivity as high as possible and a substrate having a thickness as thin as possible are used. When such a Si substrate 1 is used, the substrate region 22 through which a current flows becomes narrower, and as a result, it becomes difficult for a current to flow between the semiconductor thin film magnetoresistive element arrays 4 and 5, and crosstalk can be reduced. The temperature characteristic of the point voltage can be improved.

【0050】(実施の形態8)図10は、本発明の第8
の実施形態の差動型半導体薄膜磁気抵抗素子の斜視図を
示す。
(Embodiment 8) FIG. 10 shows the eighth embodiment of the present invention.
3 is a perspective view of the differential semiconductor thin film magnetoresistive element of the embodiment of FIG.

【0051】同図に示すように、Si基板1の半導体薄
膜磁気抵抗素子列4,5を分離するように基板の厚み方
向に形成された溝25を有するものを用いる。この分離
溝25は、ダイシングブレードでハーフカットするなど
して容易に形成することができる。この溝25は、もち
ろん半導体薄膜磁気抵抗素子4,5の間に複数個設けて
も良い。更に、彫り込み深さが深い程、また、Si基板
1の比抵抗が大きい程、基板厚が薄い程、好ましい。こ
のようにすることで、半導体薄膜磁気抵抗素子4,5の
間をSi基板1の内部を通して流れる電流を抑え込むこ
とができる。これは、無論、等価的にSi基板の抵抗を
上げることになるからである。これによっても、中点電
圧の温度特性を改善することが可能である。
As shown in the figure, an Si substrate 1 having a groove 25 formed in the thickness direction of the substrate so as to separate the semiconductor thin film magnetoresistive element arrays 4 and 5 is used. The separation groove 25 can be easily formed by half-cutting with a dicing blade. Of course, a plurality of the grooves 25 may be provided between the semiconductor thin film magnetoresistive elements 4 and 5. Furthermore, the deeper the engraving depth, the larger the specific resistance of the Si substrate 1, and the thinner the substrate thickness, the more preferable. By doing so, the current flowing through the inside of the Si substrate 1 between the semiconductor thin film magnetoresistive elements 4 and 5 can be suppressed. This is of course because the resistance of the Si substrate is equivalently increased. This also makes it possible to improve the temperature characteristics of the midpoint voltage.

【0052】(実施の形態9)図11は、本発明の第9
の実施形態の差動型半導体薄膜磁気抵抗素子の斜視図を
示す。
(Embodiment 9) FIG. 11 shows a ninth embodiment of the present invention.
3 is a perspective view of the differential semiconductor thin film magnetoresistive element of the embodiment of FIG.

【0053】同図に示すように、同一Si基板1の上に
形成した半導体薄膜磁気抵抗素子列4,5を形成した
後、該半導体薄膜磁気抵抗素子列4,5をその間をダイ
シングなどの方法で分割し隙間26を隔てて両者を外部
端子で接続した構成を有する差動型半導体薄膜磁気抵抗
素子6である。この構成では、当然であるが、半導体薄
膜磁気抵抗素子列4,5でのSi基板を介しての電流の
流れを完全に絶つことができ、更に、Si基板1の比抵
抗、厚さに対しても、個々の半導体薄膜磁気抵抗素子列
4,5の抵抗に影響を与えない程度に比抵抗を前述した
実施形態などより小さくすることもでき、また、基板厚
も厚くすることができる。更にこの構成の場合、半導体
薄膜磁気抵抗素子列4,5の間の中心間距離27を任意
に設定でき、回転センサとして用いる場合など、被検知
ギヤロータの山谷ピッチに任意に低コストで合わせるこ
とができる。
As shown in the figure, after the semiconductor thin film magnetoresistive element arrays 4 and 5 are formed on the same Si substrate 1, the semiconductor thin film magnetoresistive element arrays 4 and 5 are diced between them. The differential type semiconductor thin film magnetoresistive element 6 has a structure in which the both are connected by an external terminal with a gap 26 therebetween. In this configuration, as a matter of course, the current flow through the Si substrate in the semiconductor thin film magnetoresistive element arrays 4 and 5 can be completely cut off, and further, with respect to the specific resistance and the thickness of the Si substrate 1, However, the specific resistance can be made smaller than that in the above-described embodiments and the like, and the substrate thickness can be made thick so that the resistances of the individual semiconductor thin film magnetoresistive element arrays 4 and 5 are not affected. Further, in the case of this configuration, the center-to-center distance 27 between the semiconductor thin film magnetoresistive element rows 4 and 5 can be arbitrarily set, and when used as a rotation sensor, it can be arbitrarily adjusted to the pitch of the detected gear rotor at low cost. it can.

【0054】[0054]

【発明の効果】以上のように本発明によれば、優れた出
力感度特性と高温耐久性を有するInSbエピタキシャ
ル成長薄膜をSiウエハ基板上に直接形成した構成を有
する差動型半導体薄膜磁気抵抗素子において、Si基板
の導電性に起因し基板に電流が流れることにより生じる
左右の半導体薄膜磁気抵抗素子列間の電気的クロストー
クを低減し、良好な中点電圧の温度特性を実現すること
ができ、産業上の利用価値は極めて大きい。
As described above, according to the present invention, a differential semiconductor thin film magnetoresistive element having a structure in which an InSb epitaxially grown thin film having excellent output sensitivity characteristics and high temperature durability is directly formed on a Si wafer substrate. , It is possible to reduce the electrical crosstalk between the left and right semiconductor thin film magnetoresistive element arrays caused by the current flowing through the substrate due to the conductivity of the Si substrate, and to realize good temperature characteristics of the midpoint voltage, Its industrial utility value is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の差動型半導体薄膜磁
気抵抗素子を示す斜視図
FIG. 1 is a perspective view showing a differential semiconductor thin film magnetoresistive element according to a first embodiment of the present invention.

【図2】Si基板およびInSb薄膜のシート抵抗の温
度依存性を示す図
FIG. 2 is a diagram showing temperature dependence of sheet resistance of a Si substrate and an InSb thin film.

【図3】中点電圧の温度特性を説明するための図FIG. 3 is a diagram for explaining a temperature characteristic of a midpoint voltage.

【図4】本発明の第2の実施形態の差動型半導体薄膜磁
気抵抗素子を示す斜視図
FIG. 4 is a perspective view showing a differential type semiconductor thin film magnetoresistive element according to a second embodiment of the present invention.

【図5】本発明の第3の実施形態の差動型半導体薄膜磁
気抵抗素子を示す斜視図
FIG. 5 is a perspective view showing a differential semiconductor thin film magnetoresistive element according to a third embodiment of the present invention.

【図6】本発明の第4の実施形態の差動型半導体薄膜磁
気抵抗素子を示す斜視図
FIG. 6 is a perspective view showing a differential semiconductor thin film magnetoresistive element according to a fourth embodiment of the present invention.

【図7】本発明の第5の実施形態の差動型半導体薄膜磁
気抵抗素子を示す斜視図
FIG. 7 is a perspective view showing a differential semiconductor thin film magnetoresistive element according to a fifth embodiment of the present invention.

【図8】本発明の第6の実施形態の差動型半導体薄膜磁
気抵抗素子を示す斜視図
FIG. 8 is a perspective view showing a differential semiconductor thin film magnetoresistive element according to a sixth embodiment of the present invention.

【図9】本発明の第7の実施形態の差動型半導体薄膜磁
気抵抗素子を示す斜視図
FIG. 9 is a perspective view showing a differential type semiconductor thin film magnetoresistive element according to a seventh embodiment of the present invention.

【図10】本発明の第8の実施形態の差動型半導体薄膜
磁気抵抗素子を示す斜視図
FIG. 10 is a perspective view showing a differential semiconductor thin film magnetoresistive element according to an eighth embodiment of the present invention.

【図11】本発明の第9の実施形態の差動型半導体薄膜
磁気抵抗素子を示す斜視図
FIG. 11 is a perspective view showing a differential type semiconductor thin film magnetoresistive element according to a ninth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 Si基板 2 InSb薄膜 3 短絡電極 4,5 半導体薄膜磁気抵抗素子列 6 差動型半導体薄膜磁気抵抗素子 7〜10 取り出し電極 12 酸化物層 14,17 上層 15,18 下層 16,19 PN接合部 20 埋め込み層 21 酸素もしくは窒素をドーピングした層 22 電流の流れる基板領域 23 陽極酸化領域 24 プラズマ酸化もしくは窒化領域 25 分離溝 26 分割隙間 27 中心間距離 DESCRIPTION OF SYMBOLS 1 Si substrate 2 InSb thin film 3 Short circuit electrode 4, 5 Semiconductor thin film magnetoresistive element array 6 Differential type semiconductor thin film magnetoresistive element 7-10 Extraction electrode 12 Oxide layer 14, 17 Upper layer 15, 18 Lower layer 16, 19 PN junction part 20 Buried layer 21 Oxygen or nitrogen doped layer 22 Current flowing substrate region 23 Anodizing region 24 Plasma oxidation or nitriding region 25 Separation groove 26 Dividing gap 27 Center distance

フロントページの続き (72)発明者 谷川 秀之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松浦 昭 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 大内 智 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Hideyuki Tanigawa, 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Akira Matsuura, 1006, Kadoma, Kadoma City, Osaka (72) Invention Satoshi Ouchi 1006, Kadoma, Kadoma-shi, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 同一Si基板の上に直接形成された高電
子移動度を有する半導体薄膜上に多数の短絡電極を形成
した二つの半導体薄膜磁気抵抗素子列で構成される差動
型半導体薄膜磁気抵抗素子であって、当該Si基板の比
抵抗が1kΩ・cm以上であり、且つ厚さが100μm
以下であることを特徴とする差動型半導体薄膜磁気抵抗
素子。
1. A differential type semiconductor thin film magnetic composed of two semiconductor thin film magnetoresistive element arrays in which a large number of short-circuit electrodes are formed on a semiconductor thin film having a high electron mobility formed directly on the same Si substrate. A resistance element, the Si substrate having a specific resistance of 1 kΩ · cm or more and a thickness of 100 μm
A differential semiconductor thin film magnetoresistive element characterized by the following.
【請求項2】 同一Si基板の上に直接形成された高電
子移動度を有する半導体薄膜上に多数の短絡電極を形成
した二つの半導体薄膜磁気抵抗素子列で構成される差動
型半導体薄膜磁気抵抗素子であって、当該Si基板が、
基板内部に埋め込まれた基板面に平行なSi酸化物層を
有することを特徴とする差動型半導体薄膜磁気抵抗素
子。
2. A differential semiconductor thin film magnetic composed of two semiconductor thin film magnetoresistive element arrays in which a large number of short-circuit electrodes are formed on a semiconductor thin film having a high electron mobility formed directly on the same Si substrate. It is a resistance element, and the Si substrate is
A differential semiconductor thin film magnetoresistive element having a Si oxide layer embedded in the substrate and parallel to the surface of the substrate.
【請求項3】 同一Si基板の上に直接形成された高電
子移動度を有する半導体薄膜上に多数の短絡電極を形成
した二つの半導体薄膜磁気抵抗素子列で構成される差動
型半導体薄膜磁気抵抗素子であって、当該Si基板がそ
の基板内部に基板面と平行にPN接合部を有することを
特徴とする差動型半導体薄膜磁気抵抗素子。
3. A differential semiconductor thin film magnetic composed of two semiconductor thin film magnetoresistive element arrays in which a large number of short-circuit electrodes are formed on a semiconductor thin film having a high electron mobility formed directly on the same Si substrate. A differential semiconductor thin film magnetoresistive element, wherein the Si substrate has a PN junction in parallel with the substrate surface inside the substrate.
【請求項4】 同一Si基板の上に直接形成された高電
子移動度を有する半導体薄膜上に多数の短絡電極を形成
した二つの半導体薄膜磁気抵抗素子列で構成される差動
型半導体薄膜磁気抵抗素子であって、当該Si基板がそ
の基板内部に基板面と平行にPN接合部を有すると共
に、当該半導体薄膜が直接接するSi基板部の伝導型と
異なる極性の埋め込み層を前記二つの半導体薄膜磁気抵
抗素子列間を分離するように基板面と垂直方向に形成し
たことを特徴とする差動型半導体薄膜磁気抵抗素子。
4. A differential semiconductor thin film magnetic composed of two semiconductor thin film magnetoresistive element arrays in which a large number of short-circuit electrodes are formed on a semiconductor thin film having high electron mobility formed directly on the same Si substrate. In the resistance element, the Si substrate has a PN junction portion in parallel with the substrate surface inside the substrate, and an embedded layer having a polarity different from the conductivity type of the Si substrate portion in direct contact with the semiconductor thin film is used for the two semiconductor thin films. A differential semiconductor thin film magnetoresistive element, characterized in that it is formed in a direction perpendicular to a substrate surface so as to separate the magnetoresistive element rows.
【請求項5】 同一Si基板の上に直接形成された高電
子移動度を有する半導体薄膜上に多数の短絡電極を形成
した二つの半導体薄膜磁気抵抗素子列で構成される差動
型半導体薄膜磁気抵抗素子であって、当該Si基板の半
導体薄膜を形成していない領域に酸素もしくは窒素をド
ーピングしたことを特徴とする差動型半導体薄膜磁気抵
抗素子。
5. A differential semiconductor thin film magnetic composed of two semiconductor thin film magnetoresistive element arrays in which a large number of short-circuit electrodes are formed on a semiconductor thin film having high electron mobility formed directly on the same Si substrate. A differential semiconductor thin film magnetoresistive element, which is a resistive element, wherein a region of the Si substrate on which a semiconductor thin film is not formed is doped with oxygen or nitrogen.
【請求項6】 同一Si基板の上に直接形成された高電
子移動度を有する半導体薄膜上に多数の短絡電極を形成
した二つの半導体薄膜磁気抵抗素子列で構成される差動
型半導体薄膜磁気抵抗素子であって、当該Si基板の半
導体薄膜を形成していない領域を陽極酸化したことを特
徴とする差動型半導体薄膜磁気抵抗素子。
6. A differential type semiconductor thin film magnetic composed of two semiconductor thin film magnetoresistive element arrays in which a large number of short-circuit electrodes are formed on a semiconductor thin film having a high electron mobility formed directly on the same Si substrate. A differential semiconductor thin-film magnetoresistive element, which is a resistive element, wherein a region of the Si substrate on which a semiconductor thin film is not formed is anodized.
【請求項7】 同一Si基板の上に直接形成された高電
子移動度を有する半導体薄膜上に多数の短絡電極を形成
した二つの半導体薄膜磁気抵抗素子列で構成される差動
型半導体薄膜磁気抵抗素子であって、当該Si基板の半
導体薄膜を形成していない領域をプラズマ処理により、
その表面を酸化もしくは窒化させたことを特徴とする差
動型半導体薄膜磁気抵抗素子。
7. A differential semiconductor thin film magnetic composed of two semiconductor thin film magnetoresistive element arrays in which a large number of short-circuit electrodes are formed on a semiconductor thin film having high electron mobility formed directly on the same Si substrate. A region which is a resistance element and in which the semiconductor thin film is not formed on the Si substrate is subjected to plasma treatment,
A differential type semiconductor thin film magnetoresistive element characterized in that its surface is oxidized or nitrided.
【請求項8】 同一Si基板の上に直接形成された高電
子移動度を有する半導体薄膜上に多数の短絡電極を形成
した二つの半導体薄膜磁気抵抗素子列で構成される差動
型半導体薄膜磁気抵抗素子であって、当該Si基板が該
二つの半導体薄膜磁気抵抗素子列間を分離するように基
板の厚み方向に形成された溝を有することを特徴とする
差動型半導体薄膜磁気抵抗素子。
8. A differential type semiconductor thin film magnetic composed of two semiconductor thin film magnetoresistive element arrays in which a large number of short-circuit electrodes are formed on a semiconductor thin film having a high electron mobility formed directly on the same Si substrate. A differential semiconductor thin film magnetoresistive element, wherein the Si substrate has a groove formed in the thickness direction of the substrate so as to separate the two semiconductor thin film magnetoresistive element rows.
【請求項9】 同一Si基板の上に直接形成された高電
子移動度を有する半導体薄膜上に多数の短絡電極を形成
した二つの半導体薄膜磁気抵抗素子列で構成される差動
型半導体薄膜磁気抵抗素子であって、当該二つの半導体
薄膜磁気抵抗素子列を形成した各々のSi基板を分割し
た構成を有する差動型半導体薄膜磁気抵抗素子。
9. A differential type semiconductor thin film magnetic composed of two semiconductor thin film magnetoresistive element arrays in which a large number of short-circuit electrodes are formed on a semiconductor thin film having high electron mobility formed directly on the same Si substrate. A differential semiconductor thin film magnetoresistive element, which is a resistive element and has a configuration in which each Si substrate on which the two semiconductor thin film magnetoresistive element rows are formed is divided.
JP31776295A 1995-12-06 1995-12-06 Differential semiconductor thin film magnetoresistive element Expired - Fee Related JP3453968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31776295A JP3453968B2 (en) 1995-12-06 1995-12-06 Differential semiconductor thin film magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31776295A JP3453968B2 (en) 1995-12-06 1995-12-06 Differential semiconductor thin film magnetoresistive element

Publications (2)

Publication Number Publication Date
JPH09162459A true JPH09162459A (en) 1997-06-20
JP3453968B2 JP3453968B2 (en) 2003-10-06

Family

ID=18091766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31776295A Expired - Fee Related JP3453968B2 (en) 1995-12-06 1995-12-06 Differential semiconductor thin film magnetoresistive element

Country Status (1)

Country Link
JP (1) JP3453968B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088868A (en) * 1998-09-09 2000-03-31 Matsushita Electric Ind Co Ltd Revolution number sensor
JP2007127673A (en) * 2007-02-22 2007-05-24 Matsushita Electric Ind Co Ltd Rotation speed sensor
JP2018060933A (en) * 2016-10-06 2018-04-12 三菱電機株式会社 Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088868A (en) * 1998-09-09 2000-03-31 Matsushita Electric Ind Co Ltd Revolution number sensor
JP2007127673A (en) * 2007-02-22 2007-05-24 Matsushita Electric Ind Co Ltd Rotation speed sensor
JP2018060933A (en) * 2016-10-06 2018-04-12 三菱電機株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP3453968B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
KR101016836B1 (en) Magnetic field sensor comprising a hall element
GB2126009A (en) Magnetic field sensors
US4263518A (en) Arrangement for correcting the voltage coefficient of resistance of resistors integral with a semiconductor body
KR20030034075A (en) Magnetic field sensor
EP0671629A3 (en) Semiconductor acceleration sensor and manufacturing method thereof
EP1738191A1 (en) Hall element with segmented field effect plate
US5502325A (en) Integrated magnetoresistive sensor
JPH1117179A (en) Semiconductor device
US4660065A (en) Hall effect device with surface potential shielding layer
US4309626A (en) Diffused resistor
JP3453968B2 (en) Differential semiconductor thin film magnetoresistive element
KR960000763Y1 (en) Magnetic detection device
US3811075A (en) Magneto-sensitive device having pn junction
CA1048125A (en) Sensing circuit with a four terminal insulated gate semi-conductor device
US4063278A (en) Semiconductor switch having sensitive gate characteristics at high temperatures
JPH058597B2 (en)
US5065204A (en) Magnetoelectric element and magnetoelectric apparatus
JPH10326921A (en) Production of semiconductor thin-film magnetoresistive element
JP3452233B2 (en) Semiconductor magnetoresistive element
JPH02268462A (en) Semiconductor device
JPH07297412A (en) Piezoelectric resistance element
JP2002176165A (en) Semiconductor magnetic sensor
KR940008231B1 (en) Divided drain type magnetic sensor
US3916428A (en) Semiconductor magneto-resistance element
US3729661A (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees