JPH09161761A - Manufacture of alkaline storage battery - Google Patents
Manufacture of alkaline storage batteryInfo
- Publication number
- JPH09161761A JPH09161761A JP7325458A JP32545895A JPH09161761A JP H09161761 A JPH09161761 A JP H09161761A JP 7325458 A JP7325458 A JP 7325458A JP 32545895 A JP32545895 A JP 32545895A JP H09161761 A JPH09161761 A JP H09161761A
- Authority
- JP
- Japan
- Prior art keywords
- alkaline storage
- storage battery
- pole
- electrode plate
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はアルカリ蓄電池の、
特に産業用分野に利用される大型のアルカリ蓄電池の製
造方法に関するものである。TECHNICAL FIELD The present invention relates to an alkaline storage battery,
In particular, the present invention relates to a method for manufacturing a large alkaline storage battery used in the industrial field.
【0002】[0002]
【従来の技術】種々のアルカリ蓄電池の内、大型のもの
は鉄道車載用やビル等の非常電源として産業用分野に用
いられている。図5に従来技術による大型のアルカリ蓄
電池の一例を示す。2. Description of the Related Art Of the various alkaline storage batteries, the large ones are used in the industrial field as an emergency power source for railway vehicles and buildings. FIG. 5 shows an example of a large-sized alkaline storage battery according to the related art.
【0003】正負の極柱1の下部接続部に陽極板2の群
と陰極板3の群をそれぞれ溶接し、極柱上部にパッキン
グ4と電槽カバー5を取付け、陽陰極板間にセパレータ
6を介在させたものを電槽7に挿入し且つ電槽カバー5
と電槽7を接着した後、液栓8を電槽カバー中央のネジ
部に取付けこの液栓口より電解液を注入する。A group of anode plates 2 and a group of cathode plates 3 are respectively welded to the lower connecting portions of the positive and negative pole columns 1, a packing 4 and a battery case cover 5 are attached to the upper portions of the pole columns, and a separator 6 is provided between the positive and negative pole plates. The one with the interposition of is inserted into the battery case 7 and the battery cover 5 is inserted.
After adhering the battery case 7 and the battery case 7, the liquid stopper 8 is attached to the screw portion at the center of the battery case cover, and the electrolytic solution is injected from the liquid stopper port.
【0004】上記のように、これらのアルカリ蓄電池に
は構成部品の1つとして極板群から外部に電気エネルギ
ーを取出し、且つ極板群を保持するための極柱が設けら
れている。これらの極柱には一定寸法の円柱状の材料に
極板接続部を溶接した複雑な形状のいわゆるスリット式
のものが使用されてきたが、最近では形状も簡素化して
円柱状の丸棒状に近い切削研磨式ものが使用されるよう
になってきた。As described above, these alkaline storage batteries are provided with pole columns for taking out electric energy from the electrode plate group to the outside and holding the electrode plate group as one of the components. For these poles, so-called slit-type ones with a complicated shape in which a pole plate connection part was welded to a cylindrical material of a certain size have been used, but recently, the shape has been simplified to a cylindrical round bar shape. Nearly cutting and polishing type has come to be used.
【0005】以下にこのような極柱の例について図面を
用いて説明する。図2(A)は従来の切削研磨式極柱の
正面図を示すものである。9はネジ部、10は横切削
部、11は縦切削部、図2(B)は図2(A)の一部側
面図であり、12は縦、横の切削及び研磨によって完成
された極板接続部である。An example of such a pole will be described below with reference to the drawings. FIG. 2 (A) shows a front view of a conventional cutting and polishing type pole. Reference numeral 9 is a screw portion, 10 is a horizontal cutting portion, 11 is a vertical cutting portion, FIG. 2B is a partial side view of FIG. 2A, and 12 is a pole completed by vertical and horizontal cutting and polishing. It is a plate connection part.
【0006】これら従来のアルカリ蓄電池用極柱の製造
方法としては、円柱状の機械構造用炭素鋼(S25C)
を所定の寸法に切断し、両端面を切削加工した後、同じ
く切削加工により一方の端部にネジ部を作製し、他方を
側面の両側から平板状に切削、研磨して極板接続部に作
製し、極柱に仕上げていた。[0006] As a conventional method for manufacturing the pole column for an alkaline storage battery, a columnar carbon steel for mechanical structure (S25C) is used.
After cutting to a predetermined size and cutting both end faces, similarly make a screw part at one end by cutting and cut the other side from both sides into a flat plate shape and polish it to the electrode plate connection part. It was made and finished into a pole.
【0007】[0007]
【発明が解決しようとする課題】しかしながらこのよう
な従来の方法では、極板接続部の切削加工が縦切削、横
切削の2工程からなっているため研磨時間を費やす上、
材料ロスも大きい。さらにアルカリ蓄電池が10年以上
の長期にわたって浮動充電で使用された場合、電解液の
這い上がりにより極柱上部の随所に白色の炭酸塩が付着
する外観的な問題が発生してくる。しかるに、アルカリ
蓄電池の特徴として大電流放電性能に優れ、完全放電し
ても容量回復が可能等、優れた耐久性を有するが、反面
コストの高いことが欠点とされている。従って今日にお
けるアルカリ蓄電池は、長期に亘っての安定した品質及
び性能と、これに伴うコスト削減が要望される。However, in such a conventional method, since the machining of the electrode plate connecting portion is composed of two steps of vertical cutting and horizontal cutting, polishing time is consumed.
Material loss is also large. Further, when the alkaline storage battery is used by floating charging for a long period of 10 years or more, the appearance of a white carbonate adheres to various parts of the upper part of the pole due to the rising of the electrolytic solution. However, the alkaline storage battery has excellent durability such as excellent large current discharge performance and capacity recovery even after complete discharge, but it is disadvantageous in that the cost is high. Therefore, alkaline storage batteries today are required to have stable quality and performance for a long period of time and cost reductions associated therewith.
【0008】本発明は上記従来の問題点を解決してアル
カリ蓄電池の品質を向上させ、さらに大電流放電性能を
向上させる安価なアルカリ蓄電池を提供することを目的
とする。An object of the present invention is to provide an inexpensive alkaline storage battery which solves the above-mentioned conventional problems, improves the quality of the alkaline storage battery, and further improves the large current discharge performance.
【0009】[0009]
【課題を解決するための手段】この目的を達成するため
に本発明では、極柱の材料を鍛造加工が可能な冷間圧造
用の鋼材に変更し、この鋼材を一定の寸法に切断した
後、両端を圧縮加工して中央に鍔部を形成する。その
後、一方の端部にネジ部、他端に極板接続部をそれぞれ
圧縮プレス加工により形成した極柱をアルカリ蓄電池に
使用することを特徴とする。このようにして、切削工程
を無くすことにより、材料ロスや工数を低減し、もとの
鋼材より、通電断面積を減らすこともないので放電性能
も高まる。また、もとの鋼材径より大きな鍔部を有する
ので、前記鍔部と電槽カバー内面との間に介在するパッ
キングのシール面積が増大することにより電解液の這い
上がりが防止される。In order to achieve this object, in the present invention, the material of the poles is changed to a cold forging steel material which can be forged, and after this steel material is cut to a certain size. , Both ends are compressed to form a collar at the center. After that, the pole column having the screw portion at one end and the electrode plate connecting portion at the other end formed by compression pressing is used for the alkaline storage battery. In this way, by eliminating the cutting process, material loss and man-hours are reduced, and the current-carrying cross-sectional area is not reduced as compared with the original steel material, so the discharge performance is also improved. Further, since the flange portion having a diameter larger than the original steel material diameter is provided, the sealing area of the packing interposed between the collar portion and the inner surface of the battery case cover is increased to prevent the electrolyte from creeping up.
【0010】[0010]
【発明の実施の形態】本発明の実施形態を図1により説
明する。円柱状の鋼材を所定の寸法に切断した後、両端
を長さ方向に圧縮加工して中央に図1(A)の鍔部13
を形成する。その後、一方の端部に14のネジ部を鍛造
加工の一種である転造法により作製し、もう一方の端部
15を所定厚さになるまで鍛造加工し、図1(A)の一
部側面図である図1(B)に示す16の平板状の極板接
続部を形成して仕上げた極柱をアルカリ蓄電池に使用す
る。DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described with reference to FIG. After cutting a cylindrical steel material to a predetermined size, both ends are compression-processed in the longitudinal direction and the collar portion 13 of FIG.
To form After that, 14 threaded portions are formed on one end by a rolling method, which is a type of forging, and the other end 15 is forged until it has a predetermined thickness, and a part of FIG. The pole post finished by forming 16 flat plate-like electrode plate connecting portions shown in FIG. 1 (B) which is a side view is used for an alkaline storage battery.
【0011】このとき、極柱の材料は従来の機械構造用
炭素鋼(S25C)から鍛造加工が可能な冷間圧造用の
炭素鋼(SWCH10R)に変更することが効果的であ
る。At this time, it is effective to change the material of the poles from the conventional carbon steel for machine structure (S25C) to carbon steel for cold forging (SWCH10R) which can be forged.
【0012】[0012]
【実施例】本発明の一実施例についてさらに詳しく、図
1を参照しながら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in more detail with reference to FIG.
【0013】本発明による極柱1はφ22mmの冷間圧
造用の炭素鋼を使用した円柱を84mmの一定寸法に切
断した後、両端を圧縮加工して中央に鍔部13を形成
し、その後、一方の端部に転造法によりネジ部14を作
製して、他端部15にプレスをかけて厚さ10mmの平
坦な極板接続部16を形成して仕上げ、前記極柱にニッ
ケルメッキ加工を施した。焼結式ニッケル陽極板13
枚、同じく陰極板13枚を交互に配置して、6枚、8
枚、6枚、6枚の合計4群に分け、同極性の極板のリー
ド部をスッポト溶接で仮止めした後、一括して正負それ
ぞれの極板接続部16にスポット溶接し、鍔部13上に
パッキングを取付けた後、さらに電槽カバーをナットに
て取付けたものにセパレータを正負極板間に介挿して出
来た極板群を電槽内に挿入し、最後に電槽カバーと電槽
とを接着し、電解液を規定液面線まで注入して公称容量
60Ahの本発明の実施例によるアルカリ蓄電池Aを得
た。In the pole 1 according to the present invention, a cylinder made of carbon steel for cold forging having a diameter of 22 mm is cut into a constant size of 84 mm, and then both ends are subjected to compression processing to form a collar portion 13 at the center, and thereafter, The threaded portion 14 is formed on one end by a rolling method, the other end 15 is pressed to form a flat electrode plate connecting portion 16 having a thickness of 10 mm, and finished, and the electrode pole is nickel-plated. Was applied. Sintered nickel anode plate 13
6 sheets, 8 sheets by alternately arranging 13 sheets, also 13 sheets of cathode plates
It is divided into a total of 4 groups of 6 pieces, 6 pieces, and 6 pieces, and after temporarily fixing the lead parts of the same polarity electrode plate by spot welding, they are collectively spot welded to the positive and negative electrode plate connection parts 16 and the collar part 13 After installing the packing on the top, insert the electrode plate group made by inserting the separator between the positive and negative electrode plates into the battery case cover with nuts, and finally insert the battery case cover and the battery case. An alkaline storage battery A according to an example of the present invention having a nominal capacity of 60 Ah was obtained by adhering it to a tank and injecting an electrolytic solution up to a specified liquid level line.
【0014】比較のために従来の機械構造用炭素鋼を使
用して切削研磨式にて作製した従来極柱を用い、前記実
施例と同様にて作製したアルカリ蓄電池を比較例電池B
とする。For comparison, an alkaline storage battery manufactured in the same manner as in the above-mentioned embodiment using a conventional pole column manufactured by a cutting and polishing method using a conventional carbon steel for machine structure was used as a comparative battery B.
And
【0015】次に実施例電池Aと比較例電池Bを25℃
の室温中にて、6A(0.1CA)の定電流で16時間
充電し、その後60A(1.0CA)の定電流で蓄電池
電圧1.0V/セルまで放電し、この時得られた容量を
初期容量とした。次に25℃の室温中にて6A(0.1
CA)の定電流で16時間充電し120A(2.0C
A)の定電流で蓄電池電圧1.0V/セルまで放電し
た。その後も6A(0.1CA)の定電流で16時間充
電した後、180A(3.0CA)、240A(4.0
CA)、300A(5.0CA)、360A(6.0C
A)の定電流で充放電を繰り返し実施した。この容量試
験結果を図3に、また放電電圧及び容量比を図4に示
す。図3より放電電流が大きいほど、実施例電池Aは比
較例電池Bより容量的に優れていることがわかる。また
図4より実施例電池Aは比較例電池Bより各放電率にお
ける放電中間電圧に優れ、放電率が上昇しても容量の低
下が小さいことがわかる。さらに実施例電池A、比較例
電池Bの電解液の這い上がりを観察するため、−10℃
〜65℃までのヒートショックを24時間1サイクルで
与える準ミル試験を0.2Aの充電中に60日間実施し
た結果、比較例電池Bには極柱の一部に若干の炭酸塩が
観察されたが実施例電池Aには変化がなかった。以上の
結果から、鍛造方式の極柱を用いたアルカリ蓄電池は性
能面において、従来のアルカリ蓄電池を上回る結果を得
られたことがわかる。Next, Example battery A and Comparative battery B were set at 25 ° C.
At room temperature, the battery was charged with a constant current of 6 A (0.1 CA) for 16 hours, and then discharged with a constant current of 60 A (1.0 CA) to a storage battery voltage of 1.0 V / cell. The initial capacity was used. Next, at room temperature of 25 ° C., 6 A (0.1
Charged for 16 hours with a constant current of (CA), 120A (2.0C
The battery was discharged to a battery voltage of 1.0 V / cell with the constant current of A). After that, after charging with a constant current of 6 A (0.1 CA) for 16 hours, 180 A (3.0 CA), 240 A (4.0)
CA), 300A (5.0CA), 360A (6.0C)
Charge and discharge were repeatedly performed with the constant current of A). The results of this capacity test are shown in FIG. 3, and the discharge voltage and capacity ratio are shown in FIG. It can be seen from FIG. 3 that the larger the discharge current, the better the capacity of the example battery A than the comparative battery B. Further, FIG. 4 shows that Example battery A is superior to Comparative Example battery B in the discharge intermediate voltage at each discharge rate, and the decrease in capacity is small even if the discharge rate increases. Furthermore, in order to observe the rising of the electrolytic solution of Example battery A and Comparative battery B, -10 ° C
As a result of conducting a quasi-mill test in which a heat shock of up to ˜65 ° C. is applied for 24 hours in one cycle for 60 days while charging 0.2 A, a small amount of carbonate was observed in a part of the pole in Comparative Example Battery B. However, there was no change in Example Battery A. From the above results, it can be seen that the alkaline storage battery using the forged pole column has a higher performance than the conventional alkaline storage battery.
【0016】[0016]
【発明の効果】以上のように本発明によれば、極柱製造
方法の改良によりアルカリ蓄電池の極柱部からの電解液
の這い上がりが防止でき、品質が向上するとともに従来
のアルカリ蓄電池以上の大電流放電性能の向上が達成さ
れる。また、これに伴いアルカリ蓄電池のコスト削減も
達成され、工業的利用価値が大である。As described above, according to the present invention, it is possible to prevent the electrolytic solution from creeping up from the pole portion of the alkaline storage battery by the improvement of the method for manufacturing the pole battery, which improves the quality and is more than the conventional alkaline storage battery. Improvement of high current discharge performance is achieved. Along with this, the cost reduction of the alkaline storage battery is also achieved, and the industrial utility value is great.
【図1】本発明の鍛造方式極柱を示す図FIG. 1 is a diagram showing a forged pole column of the present invention.
【図2】従来技術による切削研磨式極柱を示す図FIG. 2 is a diagram showing a cutting and polishing type pole column according to a conventional technique.
【図3】本発明の極柱を用いたアルカリ蓄電池と従来の
アルカリ蓄電池の容量試験結果を示す図FIG. 3 is a diagram showing the capacity test results of an alkaline storage battery using the pole of the present invention and a conventional alkaline storage battery.
【図4】本発明の極柱を用いたアルカリ蓄電池と従来の
アルカリ蓄電池の放電電圧及び容量比を示す図FIG. 4 is a diagram showing a discharge voltage and a capacity ratio of an alkaline storage battery using a pole of the present invention and a conventional alkaline storage battery.
【図5】従来のアルカリ蓄電池を示す斜視図FIG. 5 is a perspective view showing a conventional alkaline storage battery.
1 極柱 2 陽極板 3 陰極板 4 パッキング 5 電槽カバー 6 セパレータ 7 電槽 8 液栓 9 ネジ部 10 横切削部 11 縦切削部 12 極板接続部 13 鍔部 14 ネジ部 15 プレス部 16 極板接続部 1 pole pillar 2 anode plate 3 cathode plate 4 packing 5 battery case cover 6 separator 7 battery case 8 liquid stopper 9 screw part 10 horizontal cutting part 11 vertical cutting part 12 electrode plate connection part 13 collar part 14 screw part 15 press part 16 poles Board connection
───────────────────────────────────────────────────── フロントページの続き (72)発明者 原 知敏 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomotoshi Hara 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (2)
に積層され、前記各正極板及び負極板はそれぞれのリー
ド部が外部端子を兼ねる極柱に電気的且つ機械的に接続
されてなるアルカリ蓄電池であって、前記極柱のネジ部
と極板接続部の中間に位置する鍔部が鍛造方式にて形成
されることを特徴とするアルカリ蓄電池の製造方法。1. A positive electrode plate and a negative electrode plate are alternately laminated with a separator interposed therebetween, and each of the positive electrode plate and the negative electrode plate has its lead portion electrically and mechanically connected to a pole that also serves as an external terminal. A method for manufacturing an alkaline storage battery, which is an alkaline storage battery, characterized in that the collar portion located between the screw portion of the pole and the electrode plate connecting portion is formed by a forging method.
炭素鋼からなることを特徴とする請求項1記載のアルカ
リ蓄電池の製造方法。2. The method for manufacturing an alkaline storage battery according to claim 1, wherein the pole column formed by the forging method is made of carbon steel for cold forging.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7325458A JPH09161761A (en) | 1995-12-14 | 1995-12-14 | Manufacture of alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7325458A JPH09161761A (en) | 1995-12-14 | 1995-12-14 | Manufacture of alkaline storage battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09161761A true JPH09161761A (en) | 1997-06-20 |
Family
ID=18177101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7325458A Pending JPH09161761A (en) | 1995-12-14 | 1995-12-14 | Manufacture of alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09161761A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000003442A1 (en) * | 1998-07-08 | 2000-01-20 | Kazuo Hagino | Junction of dry cell |
JP2006324178A (en) * | 2005-05-20 | 2006-11-30 | Kyushu Electric Power Co Inc | Secondary battery |
JP2007042628A (en) * | 2005-07-29 | 2007-02-15 | Samsung Sdi Co Ltd | Rechargeable battery |
JP2008034298A (en) * | 2006-07-31 | 2008-02-14 | Sanyo Electric Co Ltd | Manufacturing method of connection terminal |
WO2013023768A1 (en) * | 2011-08-17 | 2013-02-21 | Li-Tec Battery Gmbh | Energy accumulator device, contact element for said energy accumulator device and method for producing said energy accumulator device |
JP2014093259A (en) * | 2012-11-06 | 2014-05-19 | Toyota Industries Corp | Power storage device |
US8859139B2 (en) | 2006-05-23 | 2014-10-14 | Toyota Jidosha Kabushiki Kaisha | Alkaline storage battery |
-
1995
- 1995-12-14 JP JP7325458A patent/JPH09161761A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000003442A1 (en) * | 1998-07-08 | 2000-01-20 | Kazuo Hagino | Junction of dry cell |
JP2006324178A (en) * | 2005-05-20 | 2006-11-30 | Kyushu Electric Power Co Inc | Secondary battery |
JP2007042628A (en) * | 2005-07-29 | 2007-02-15 | Samsung Sdi Co Ltd | Rechargeable battery |
JP4537353B2 (en) * | 2005-07-29 | 2010-09-01 | 三星エスディアイ株式会社 | Secondary battery |
US8318336B2 (en) * | 2005-07-29 | 2012-11-27 | Samsung Sdi Co., Ltd. | Rechargeable battery |
US8859139B2 (en) | 2006-05-23 | 2014-10-14 | Toyota Jidosha Kabushiki Kaisha | Alkaline storage battery |
JP2008034298A (en) * | 2006-07-31 | 2008-02-14 | Sanyo Electric Co Ltd | Manufacturing method of connection terminal |
WO2013023768A1 (en) * | 2011-08-17 | 2013-02-21 | Li-Tec Battery Gmbh | Energy accumulator device, contact element for said energy accumulator device and method for producing said energy accumulator device |
JP2014093259A (en) * | 2012-11-06 | 2014-05-19 | Toyota Industries Corp | Power storage device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7745046B2 (en) | Secondary battery | |
CN103500837A (en) | Battery grid | |
US20070148542A1 (en) | Battery electrode design and a flat stack battery cell design and methods of making same | |
CN101651186A (en) | Method for assembling lugs and cover plate of battery | |
US2379374A (en) | Manufacture of electric storage cells | |
US20190393512A1 (en) | Battery grid | |
KR100599714B1 (en) | Secondary battery | |
JPH09161761A (en) | Manufacture of alkaline storage battery | |
US2883443A (en) | Lead-acid storage battery | |
CN107634173A (en) | Lithium ion battery exempts from spot welding connector, exempts from spot welding connection unit and battery modules | |
CN109755449B (en) | Battery pack manufacturing method and battery pack | |
KR20090082125A (en) | Cylindrical Battery Can for Preparation of Battery and Process of Fabricating the Same | |
JPH01195673A (en) | Cell | |
JP2003338310A (en) | Lead storage battery | |
EP0264862B1 (en) | Plate assembly for a lead-acid battery | |
US20100304197A1 (en) | Flexible foil prismatic battery having improved volumetric efficiency | |
CN1224934A (en) | Battery | |
CN2614389Y (en) | Winding valve-controlled sealed lead-acid accumulator | |
CN217956073U (en) | Battery pack with inserted positive and negative electrode posts of battery core | |
CN221239760U (en) | Cylindrical battery and vehicle | |
KR20050098886A (en) | Method of producing lattice body for lead storage battery, and lead storage battery | |
CN221328046U (en) | Battery pin, battery top cover structure and high-rate battery | |
JPS61133571A (en) | Flat battery | |
JP2806211B2 (en) | Method of manufacturing lithium battery | |
JPH06333544A (en) | Manufacture of lithium battery |