JPH09160083A - Light transmission device - Google Patents

Light transmission device

Info

Publication number
JPH09160083A
JPH09160083A JP7322940A JP32294095A JPH09160083A JP H09160083 A JPH09160083 A JP H09160083A JP 7322940 A JP7322940 A JP 7322940A JP 32294095 A JP32294095 A JP 32294095A JP H09160083 A JPH09160083 A JP H09160083A
Authority
JP
Japan
Prior art keywords
light
optical fiber
signal light
wavelength
converted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7322940A
Other languages
Japanese (ja)
Inventor
Chiyousei Jiyo
長青 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP7322940A priority Critical patent/JPH09160083A/en
Publication of JPH09160083A publication Critical patent/JPH09160083A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to correct the refractive index dispersion of an optical fiber without lowering the S/N of converted light by setting the wavelength of pumping light at a wavelength exclusive the wavelength band of signal light and converted light. SOLUTION: The waveform of the signal light is increasingly distorted to the waveforms S1 to S2 by the dispersion of the refractive index of the first optical fiber F1 while the light propagates in the fiber. Since distortion occurs as the propagation speed on the long waveform side is higher and the propagation speed on the short waveform side is lower among the signals transmitting in the optical fiber F1. When the signal light consisting of the waveform S2 distorted in such a manner is made incident on a wavelength conversion element 2 consisting of QPM-DFG, the pumping light, the signal light and the converted light consisting of the inverted waveform S3 are obtd. in accordance with its characteristics. The signal light and the pumping light are removed therefrom by an optical filter 3 and only the converted light consisting of the waveform S3 is sent to the second optical fiber F2 via the optical amplifier 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、信号光を光ファイ
バを介して伝送する際、光ファイバの屈折率分散を補正
する光伝送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmission device for correcting refractive index dispersion of an optical fiber when transmitting signal light through the optical fiber.

【0002】[0002]

【従来の技術】図3は従来の光伝送装置を説明するブロ
ック図、図4は従来の波長変換を説明する図である。す
なわち、従来の光伝送装置1’としては、第1および第
2光ファイバF1、F2の屈折率分散を補正するため、
同じ長さの第1および第2光ファイバF1、F2の中間
点に四光波混合器(FWM)から成る波長変換素子2’
を設けており、光フィルタ3によって波長変換の行われ
た変換光をEDFA(Er Doping Fiber
Amprifyer)から成る光増幅器4を介して第
2光ファイバF2へ伝送している。
2. Description of the Related Art FIG. 3 is a block diagram for explaining a conventional optical transmission device, and FIG. 4 is a diagram for explaining conventional wavelength conversion. That is, in the conventional optical transmission device 1 ′, in order to correct the refractive index dispersion of the first and second optical fibers F1 and F2,
A wavelength conversion element 2'comprising a four-wave mixer (FWM) at the midpoint between the first and second optical fibers F1 and F2 having the same length.
Is provided for converting the converted light whose wavelength has been converted by the optical filter 3 to an EDFA (Er Doping Fiber).
It is transmitted to the second optical fiber F2 via the optical amplifier 4 composed of an amplifier.

【0003】図2に示すように、FWMから成る波長変
換素子2’は、ポンプ光(周波数ω p )の入射によって
信号光(周波数ωs )を、変換光(周波数ωc :ωc
2ω p −ωs )あるいは変換光(周波数ωc ’:ωc
=2ωs −ωp )に変換する素子である。この特性を利
用して光伝送装置1’は、第1光ファイバF1を介して
伝送されてきた信号光を変換光(周波数ωc )あるいは
変換光(周波数ωc ’)に変換し、光フィルタ3を介し
て変換光(周波数ωc )または変換光(周波数ωc ’)
のいずれかを取り出すようにしている。
As shown in FIG. 2, a wavelength converter composed of an FWM is used.
The conversion element 2 ′ has a pump light (frequency ω p)
Signal light (frequency ωs), Converted light (frequency ωc: Ωc=
p−ωs) Or converted light (frequency ωc’: Ωc
= 2ωs−ωp) Is an element to convert. Take advantage of this property
The optical transmission device 1'uses the first optical fiber F1
The transmitted signal light is converted into light (frequency ωc) Or
Converted light (frequency ωc’) And through the optical filter 3
Converted light (frequency ωc) Or converted light (frequency ωc’)
I'm trying to take out one of them.

【0004】ところで、第1光ファイバF1を介して伝
送されてきた信号光の波形には、図1のS1〜S2に示
すようにその屈折率分散によって歪みが発生する。これ
は、第1光ファイバF1内を伝送する信号光のうち、長
波長側の伝搬速度が速く、短波長側の伝搬速度が遅いた
めに生じる。
By the way, the waveform of the signal light transmitted through the first optical fiber F1 is distorted due to the refractive index dispersion as shown by S1 and S2 in FIG. This occurs because the propagation speed on the long wavelength side is high and the propagation speed on the short wavelength side is slow in the signal light transmitted in the first optical fiber F1.

【0005】このような歪んだ波形S2から成る信号光
がFWMから成る波長変換素子2’に入射されると、先
の特性に基づいて波形S3’に示すような反転した変換
光を発生する。この反転した変換光を第1光ファイバF
1とほぼ同じ距離の第2光ファイバF2を通すことで、
今度は変換光の長波長側(信号光の短波長側に対応)の
伝搬速度が速く、短波長側(信号光の長波長側に対応)
の伝搬速度が遅くなり、第1光ファイバF1での歪みを
相殺できるようになる(S4’参照)。
When the signal light having such a distorted waveform S2 is incident on the wavelength conversion element 2'made of FWM, inverted converted light as shown by the waveform S3 'is generated based on the above characteristics. The inverted converted light is converted into the first optical fiber F.
By passing the second optical fiber F2 at a distance substantially the same as that of 1,
This time, the propagation speed on the long wavelength side of the converted light (corresponding to the short wavelength side of the signal light) is high, and the short wavelength side (corresponding to the long wavelength side of the signal light)
The propagation speed of the signal becomes slower and the distortion in the first optical fiber F1 can be canceled (see S4 ′).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、このよ
うな光伝送装置では、FWMから成る波長変換素子にお
けるポンプ光の周波数ωp が、信号光の周波数ωs や変
換光の周波数ωc 、ωc’と非常に近い(例えば、数n
mの差)とともに、ポンプ光の強度が信号光および変換
光に比べて強いことから、光フィルタによってこのポン
プ光や信号光や片方の変換光を完全に除去するのは困難
である。これにより、変換光のS/Nが低下して十分な
屈折率分散補正を行うことができなくなる。
However, in such an optical transmission device, the frequency ω p of the pump light in the wavelength conversion element composed of the FWM is the frequency ω s of the signal light or the frequencies ω c and ω c of the converted light. Very close to (for example, the number n
Since the intensity of the pump light is stronger than that of the signal light and the converted light, it is difficult to completely remove the pump light, the signal light and one of the converted lights by the optical filter. As a result, the S / N of the converted light is lowered, and it becomes impossible to perform sufficient refractive index dispersion correction.

【0007】さらに、多チャンネルの信号伝送を行う場
合には、各信号光の周波数帯域内に対応する各変換光が
発生するため、光フィルタによる変換光の取り出しが益
々困難となる。
Further, when multi-channel signal transmission is performed, converted light corresponding to the frequency band of each signal light is generated, and it becomes more difficult to extract the converted light by the optical filter.

【0008】[0008]

【課題を解決するための手段】本発明は、このような課
題を解決するために成された光伝送装置である。すなわ
ち、本発明は、光ファイバの屈折率分散を補正する光伝
送装置であり、所定の信号光を伝送する第1の光ファイ
バと、第1の光ファイバにて伝送されてきた信号光を受
けてその信号光の波長に対する波形が反転した変換光
を、その信号光と変換光との波長帯域以外の波長から成
るポンプ光の入射によって発生する波長変換素子と、信
号光、変換光、ポンプ光を受けて、そのうちの変換光の
みを通過させる光フィルタと、光フィルタを通過する変
換光を第1の光ファイバと略等距離で伝送する第2の光
ファイバとを備えている。
SUMMARY OF THE INVENTION The present invention is an optical transmission device made to solve such problems. That is, the present invention is an optical transmission device that corrects the refractive index dispersion of an optical fiber, and receives a first optical fiber that transmits a predetermined signal light and a signal light that is transmitted by the first optical fiber. A converted wavelength light whose wavelength is inverted with respect to the wavelength of the signal light is generated by the incidence of the pump light having a wavelength outside the wavelength band of the signal light and the converted light, and the signal light, the converted light, and the pump light. The optical filter includes a second optical fiber that receives only the converted light and that transmits the converted light that passes through the optical filter at substantially the same distance as the first optical fiber.

【0009】このような光伝送装置では、波長変換素子
に入射されるポンプ光の波長が信号光と変換光との波長
帯域以外となって離れているため、光フィルタでポンプ
光を確実に除去できるようになる。また、信号光の波長
帯域と変換光の波長帯域とが重ならないように容易に設
定でき、多チャンネル信号伝送であっても光フィルタを
介して変換光のみを確実に通過させることができるよう
になる。
In such an optical transmission device, since the wavelength of the pump light incident on the wavelength conversion element is apart from other than the wavelength band of the signal light and the converted light, the pump light is reliably removed by the optical filter. become able to. Further, it is possible to easily set the wavelength band of the signal light and the wavelength band of the converted light so as not to overlap with each other, so that even in the case of multi-channel signal transmission, only the converted light can be surely passed through the optical filter. Become.

【0010】[0010]

【発明の実施の形態】以下に、本発明の光伝送装置にお
ける実施の形態を図に基づいて説明する。図1は本発明
の光伝送装置における実施形態を説明するブロック図、
図2は波長変換を説明する図である。図1に示すよう
に、本実施形態における光伝送装置1は、所定の信号光
を伝送する第1光ファイバF1と、光ファイバ伝送路の
中間点に配置されるQPM−DFG(Quasi Ph
ase Matehed Difference Fr
equency Generation)から成る波長
変換素子2と、波長変換素子2で発生する変換光のみを
通過させる光フィルタ3と、EDFAから成る光増幅器
4と、変換光を伝送するため第2光ファイバF2とから
構成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of an optical transmission apparatus of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram illustrating an embodiment of an optical transmission device of the present invention,
FIG. 2 is a diagram for explaining wavelength conversion. As shown in FIG. 1, the optical transmission device 1 according to the present embodiment includes a first optical fiber F1 that transmits a predetermined signal light and a QPM-DFG (Quasi Ph) arranged at an intermediate point of the optical fiber transmission line.
ass mate difference fr
from the wavelength conversion element 2 composed of the frequency generation, the optical filter 3 that passes only the converted light generated in the wavelength conversion element 2, the optical amplifier 4 composed of the EDFA, and the second optical fiber F2 for transmitting the converted light. It is configured.

【0011】光ファイバF1、F2としては、例えば波
長1.55μm用の単一モード光ファイバを使用する。
また、QPM−DFGから成る波長変換素子2として
は、例えばLiNbO3 (ニオブ酸リチウム)にグレー
ティングを備えた導波路を形成した素子を使用する。こ
のQPM−DFGから成る波長変換素子2には、例えば
波長0.775μmのポンプ光を入射して、信号光の波
長に対する波形の反転した変換光を発生させる。
As the optical fibers F1 and F2, for example, a single mode optical fiber for a wavelength of 1.55 μm is used.
As the wavelength conversion element 2 made of QPM-DFG, for example, an element in which a waveguide having a grating is formed in LiNbO 3 (lithium niobate) is used. For example, pump light having a wavelength of 0.775 μm is incident on the wavelength conversion element 2 made of this QPM-DFG to generate converted light whose waveform is inverted with respect to the wavelength of the signal light.

【0012】図2に示すように、この波長変換素子2
(図1参照)に対して入射されるポンプ光の周波数ωp
は、信号光と変換光との周波数帯域Wから離れた値とな
っている。QPM−DFGから成る波長変換素子2にこ
のような周波数のポンプ光(波長λp )が入射された場
合には、以下の数1および数2(QPM条件)を満たす
場合に信号光(波長λs )に対する変換光(波長λc
が発生する。
As shown in FIG. 2, this wavelength conversion element 2
Frequency ω p of pump light incident on (see FIG. 1)
Is a value far from the frequency band W of the signal light and the converted light. When the pump light (wavelength λ p ) having such a frequency is incident on the wavelength conversion element 2 made of QPM-DFG, the signal light (wavelength λ) is satisfied when the following formulas 1 and 2 (QPM condition) are satisfied. s ) converted light (wavelength λ c )
Occurs.

【0013】[0013]

【数1】ΔkΛ=2π …(1)[Formula 1] ΔkΛ = 2π (1)

【数2】 Δk=(2π/λp )np −(2π/λs )ns −(2π/λc )nc …(2) ここで、(1)式におけるΛは波長変換素子2の導波路
に設けたグレーティングの周期、(2)式におけるni
(i=p,s,c)はそれぞれの波長においての屈折率
である。
Δk = (2π / λ p ) n p − (2π / λ s ) n s − (2π / λ c ) n c (2) where Λ in the equation (1) is the wavelength conversion element 2 period of the grating provided on the waveguide, n i in (2)
(I = p, s, c) is the refractive index at each wavelength.

【0014】このような波長変換素子2を備えた光伝送
装置1では、第1光ファイバF1を介して伝送されてき
た信号光(周波数ωs1、ωs2)に基づき波長変換素子2
によって変換光(周波数ωc1、ωc2)を発生し、光フィ
ルタ3を介して変換光のみを確実に取り出す。つまり、
変換光に対して信号光およびポンプ光の波長が離れてい
ることで、光フィルタ3は信号光およびポンプ光を完全
に除去した変換光のみを抽出できるようになる。
In the optical transmission device 1 provided with such a wavelength conversion element 2, the wavelength conversion element 2 is based on the signal light (frequency ω s1 , ω s2 ) transmitted through the first optical fiber F1.
The converted light (frequency ω c1 , ω c2 ) is generated by, and only the converted light is reliably extracted via the optical filter 3. That is,
Since the wavelengths of the signal light and the pump light are distant from the converted light, the optical filter 3 can extract only the converted light from which the signal light and the pump light are completely removed.

【0015】ここで、周波数ωs の信号光が第1光ファ
イバF1から伝送されてきた場合の屈折率分散の補正に
ついて説明する。図1に示すようにこの信号光の波形は
第1光ファイバF1を伝わる間にその屈折率分散によっ
て波形S1〜S2へと歪んでいく。これは、第1光ファ
イバF1内を伝送する信号光のうち、長波長側の伝搬速
度が速く、短波長側の伝搬速度が遅いために生じる。
Here, the correction of the refractive index dispersion when the signal light of the frequency ω s is transmitted from the first optical fiber F1 will be described. As shown in FIG. 1, the waveform of this signal light is distorted into waveforms S1 and S2 due to its refractive index dispersion while being transmitted through the first optical fiber F1. This occurs because the propagation speed on the long wavelength side is high and the propagation speed on the short wavelength side is slow in the signal light transmitted in the first optical fiber F1.

【0016】このような歪んだ波形S2から成る信号光
がQPM−DFGから成る波長変換素子2へ入射される
と、先に説明した特性に基づきポンプ光、信号光および
その反転した波形S3から成る変換光が得られる。つま
り、図2に示すような周波数ωs1、ωs2から成る信号光
は、周波数ωp から成るポンプ光によって周波数ω
c1(ωc1=ωp −ωs1)と周波数ωc2(ωc2=ωp −ω
s2)とに変換されることから、図1に示す波形S2は波
長変換素子2によって反転した波形S3となる。
When the signal light having such a distorted waveform S2 is incident on the wavelength conversion element 2 made of QPM-DFG, it is composed of the pump light, the signal light and its inverted waveform S3 based on the characteristics described above. Converted light is obtained. That is, the signal light comprising the frequency omega s1, omega s2 as shown in FIG. 2, the frequency omega by the pump light composed of frequency omega p
c1c1 = ω p − ω s1 ) and frequency ω c2c2 = ω p − ω
s2 ), the waveform S2 shown in FIG. 1 becomes a waveform S3 inverted by the wavelength conversion element 2.

【0017】そして、これら信号光、ポンプ光および変
換光のうち光フィルタ3によって信号光とポンプ光とが
除去されて波形S3から成る変換光のみが光増幅器4を
介して第2光ファイバF2へ送られることになる。
Then, of the signal light, the pump light and the converted light, the signal light and the pump light are removed by the optical filter 3 and only the converted light having the waveform S3 passes through the optical amplifier 4 to the second optical fiber F2. Will be sent.

【0018】図2に示すように、ポンプ光の周波数ωp
は、信号光と変換光との周波数帯域Wよりも離れた値と
なっているため、光フィルタ3は容易にポンプ光を除去
できることになる。さらに、周波数ωs1から成る信号光
と周波数ωs2から成る信号光とが多チャンネル伝送され
た場合であっても、信号光の周波数帯域Ws と各々対応
する変換光の周波数帯域Wc とが重ならないため、光フ
ィルタ3は信号光を容易に除去できるようになる。
As shown in FIG. 2, the frequency of the pump light ω p
Has a value farther than the frequency band W between the signal light and the converted light, so that the optical filter 3 can easily remove the pump light. Further, even when the signal light having the frequency ω s1 and the signal light having the frequency ω s2 are transmitted in multiple channels, the frequency band W s of the signal light and the corresponding frequency bands W c of the converted light are Since they do not overlap, the optical filter 3 can easily remove the signal light.

【0019】つまり、光フィルタ3を介して確実に変換
光のみを通過させることが可能となる。第2光ファイバ
F2には、不要な光が混入していない波形S3から成る
変換光が伝送させる。この際、第2光ファイバF2と第
1光ファイバF1との距離がほぼ等しいため、変換光の
長波長側(信号光の短波長側に対応)の伝搬速度が速
く、短波長側(信号光の長波長側に対応)の伝搬速度が
遅くなり、第1光ファイバF1での歪みを相殺した波形
S4から成る信号を得ることができる。
That is, it becomes possible to reliably pass only the converted light through the optical filter 3. The converted light having the waveform S3 in which unnecessary light is not mixed is transmitted to the second optical fiber F2. At this time, since the distance between the second optical fiber F2 and the first optical fiber F1 is almost equal, the propagation speed on the long wavelength side of the converted light (corresponding to the short wavelength side of the signal light) is high, and the short wavelength side (signal light is (Corresponding to the long wavelength side of 1) becomes slower, and a signal having a waveform S4 that cancels the distortion in the first optical fiber F1 can be obtained.

【0020】したがって、第2光ファイバF2には、信
号光の波形S2が反転した波形S3から成る変換光のみ
が確実に伝送されるため、歪みを相殺した波形S4から
成る信号は、伝送路の光ファイバの屈折率分散を正確に
補正したものとなる。
Therefore, since only the converted light having the waveform S3 obtained by inverting the waveform S2 of the signal light is reliably transmitted to the second optical fiber F2, the signal having the waveform S4 with the distortion canceled is transmitted through the transmission line. The refractive index dispersion of the optical fiber is accurately corrected.

【0021】なお、上記の実施形態では、LiNbO3
(ニオブ酸リチウム)から成るQPM−DFGの波長変
換素子2を用いる例を説明したが、半導体やKTiOP
4等の素子を用いても同様である。また、実施形態で
示した第1光ファイバF1および第2光ファイバF2の
適用波長や、波長変換素子2に入力するポンプ光の波長
は一例であり、本発明はこれに限定されることはない。
In the above embodiment, LiNbO 3 is used.
The example using the QPM-DFG wavelength conversion element 2 made of (lithium niobate) has been described.
The same applies when an element such as O 4 is used. Further, the applicable wavelengths of the first optical fiber F1 and the second optical fiber F2 and the wavelength of the pump light input to the wavelength conversion element 2 shown in the embodiment are examples, and the present invention is not limited thereto. .

【0022】[0022]

【発明の効果】以上説明したように、本発明の光伝送装
置によれば次のような効果がある。すなわち、本発明の
光伝送装置では、ポンプ光の波長を信号光と変換光との
波長帯域以外の波長とすることで、光フィルタによるポ
ンプ光および信号光の除去し変換光のみを確実に伝送で
きるようになる。これによって、変換光のS/Nを低下
させることなく光ファイバの屈折率分散を補正できるよ
うになる。また、信号光が多チャンネル伝送されてきた
場合でも、確実に各チャンネルに対応した変換光を得る
ことができ、S/Nを低下させることなく屈折率分散を
補正できるようになる。
As described above, the optical transmission device of the present invention has the following effects. That is, in the optical transmission device of the present invention, by setting the wavelength of the pump light to a wavelength other than the wavelength band of the signal light and the converted light, the pump light and the signal light are removed by the optical filter and only the converted light is reliably transmitted. become able to. This makes it possible to correct the refractive index dispersion of the optical fiber without reducing the S / N of the converted light. Further, even when the signal light is transmitted through multiple channels, it is possible to surely obtain the converted light corresponding to each channel, and it is possible to correct the refractive index dispersion without lowering the S / N.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光伝送装置における実施形態を説明す
るブロック図である。
FIG. 1 is a block diagram illustrating an embodiment of an optical transmission device of the present invention.

【図2】本発明の波長変換を説明する図である。FIG. 2 is a diagram illustrating wavelength conversion of the present invention.

【図3】従来の光伝送装置を説明するブロック図であ
る。
FIG. 3 is a block diagram illustrating a conventional optical transmission device.

【図4】従来の波長変換を説明する図である。FIG. 4 is a diagram illustrating conventional wavelength conversion.

【符号の説明】 1 光伝送装置 2 波長変換素子 3 光フィルタ 4 光増幅器 F1 第1光ファイバ F2 第2光ファイバ[Description of Reference Signs] 1 optical transmission device 2 wavelength conversion element 3 optical filter 4 optical amplifier F1 first optical fiber F2 second optical fiber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバの屈折率分散を補正する光伝
送装置であって、 所定の信号光を伝送する第1の光ファイバと、 前記第1の光ファイバにて伝送されてきた信号光を受け
て該信号光の波長に対する波形が反転した変換光を、該
信号光と該変換光との波長帯域以外の波長から成るポン
プ光の入射によって発生する波長変換素子と、 前記信号光、前記変換光、前記ポンプ光を受けて、その
うちの該変換光のみを通過させる光フィルタと、 前記光フィルタを通過する前記変換光を前記第1の光フ
ァイバと略等距離で伝送する第2の光ファイバとを備え
ていることを特徴とする光伝送装置。
1. An optical transmission device for correcting the refractive index dispersion of an optical fiber, comprising: a first optical fiber for transmitting a predetermined signal light; and a signal light transmitted by the first optical fiber. A wavelength conversion element that receives the converted light having a waveform inverted with respect to the wavelength of the signal light when the pump light having a wavelength outside the wavelength band of the signal light and the converted light is generated, the signal light, and the conversion light. An optical filter that receives light and the pump light and passes only the converted light of the pump light, and a second optical fiber that transmits the converted light that passes through the optical filter at substantially the same distance as the first optical fiber. An optical transmission device comprising:
JP7322940A 1995-12-12 1995-12-12 Light transmission device Pending JPH09160083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7322940A JPH09160083A (en) 1995-12-12 1995-12-12 Light transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7322940A JPH09160083A (en) 1995-12-12 1995-12-12 Light transmission device

Publications (1)

Publication Number Publication Date
JPH09160083A true JPH09160083A (en) 1997-06-20

Family

ID=18149339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7322940A Pending JPH09160083A (en) 1995-12-12 1995-12-12 Light transmission device

Country Status (1)

Country Link
JP (1) JPH09160083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474803A (en) * 2020-04-03 2020-07-31 浙江工业大学 All-optical XOR optical logic gate operation system based on time lens imaging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111474803A (en) * 2020-04-03 2020-07-31 浙江工业大学 All-optical XOR optical logic gate operation system based on time lens imaging

Similar Documents

Publication Publication Date Title
KR950001050B1 (en) Dispersion equalized optical fiber link
JP3223562B2 (en) Optical transmission device, optical transmission device, and optical modulator
US6330383B1 (en) Disperson compensation by using tunable nonlinearly-chirped gratings
EP0547779B1 (en) Soliton generator
US6453082B1 (en) Device and system for waveform shaping
US20040081464A1 (en) Optical gate device, manufacturing method for the device, and system including the device
EP0987583A2 (en) Polarisation-independent phase-conjugation apparatus and system comprising this apparatus
US20040005153A1 (en) Method and device for processing an optical signal
UA48141C2 (en) Symmetric dispersion-managed fiber-optic cable and a fiber-optic transmission system
JP2000298296A (en) Device including optical pulse re-shaping means
US7352504B2 (en) Optical fourier transform device and method
KR20010041551A (en) an optical device for dispersion compensation
CA2229516C (en) Compensation of dispersion
GB2182516A (en) Optical fibre network
JP2000022640A (en) Optical transmitter and optical transmission system
US6704519B1 (en) Optical transmission system with reduced Kerr effect nonlinearities
US6591047B2 (en) Method and apparatus for compensation of nonlinearity in fiber optic links
US20030043366A1 (en) Optical sampling waveform measuring apparatus
JPH09160083A (en) Light transmission device
US6148122A (en) High speed lithium niobate polarization independent modulators
TW459148B (en) Circularly polarized fiber for switching
US6842565B2 (en) Optical modulation/multiplexing circuit
US20090290827A1 (en) Nonlinear optical loop mirrors
JP3764032B2 (en) Optical fiber system for ultra-high speed optical communication
JP4131833B2 (en) Optical amplifier and optical repeater transmission system using the same