JPH09160021A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH09160021A
JPH09160021A JP7321394A JP32139495A JPH09160021A JP H09160021 A JPH09160021 A JP H09160021A JP 7321394 A JP7321394 A JP 7321394A JP 32139495 A JP32139495 A JP 32139495A JP H09160021 A JPH09160021 A JP H09160021A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display device
retardation film
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7321394A
Other languages
Japanese (ja)
Inventor
Shoichi Ishihara
將市 石原
Hiroshi Kubota
浩史 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7321394A priority Critical patent/JPH09160021A/en
Publication of JPH09160021A publication Critical patent/JPH09160021A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystal display element of a twisted nematic type which may be driven with a low voltage. SOLUTION: The element used in this device is formed of a TN type liquid crystal display element having a light diffusion plate having a phase difference dΔn of >=0.50μm or a TN type liquid crystal display element laminated with a twisted phase difference film or uniaxial phase difference film or a TN type liquid crystal display element having 92 to 100 deg. twist angle of liquid crystals 28, >=80μm chiral pitch of the liquid crystals 28 and <=3 deg. pretilt angle of the liquid crystals 28. The low-voltage liquid crystal display element which may be driven with 3V is then attained while a liquid crystal material having a high NI point and low viscosity is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、消費電力の少ない
液晶表示装置に関するものである。さらに詳しくは、駆
動電圧振幅の小さな液晶表示装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device with low power consumption. More specifically, the present invention relates to a liquid crystal display device having a small drive voltage amplitude.

【0002】[0002]

【従来の技術】液晶表示素子は、薄型で軽量、かつ低消
費電力のディスプレイ素子であり、テレビやビデオなど
の画像表示装置や、ワープロ、パソコンなどのOA機器
に広く用いられている。
2. Description of the Related Art Liquid crystal display devices are thin, lightweight, and low power consumption display devices, and are widely used in image display devices such as televisions and videos and OA equipment such as word processors and personal computers.

【0003】特に、最近では、携帯型ノートパソコンや
ビデオカメラ、PHS、PDA用途向けに、低消費電力
化が強く要請されている。
Particularly, recently, there has been a strong demand for lower power consumption for portable notebook personal computers, video cameras, PHS, PDA applications.

【0004】この低消費電力化は、低電圧駆動ICの開
発と相俟って、低価格化、EMIの低減、機器の小型化
にもつながり、種々の方策が検討されてきている。
The reduction in power consumption, coupled with the development of low-voltage drive ICs, leads to cost reduction, EMI reduction, and device miniaturization, and various measures have been studied.

【0005】低消費電力化の手法には、(イ)バックライ
トの効率アップ(ランプ効率または導光性の向上な
ど)、(ロ)パネル透過率の向上(偏光板・カラーフィル
タの光透過率向上、画素開口率の向上など)、(ハ)駆動
・回路系の改善による低消費電力化、(ニ)パネル光学設
計及び液晶材料改良による駆動電圧振幅低減などがあ
る。
The methods for reducing power consumption include (a) improving the efficiency of the backlight (improving the lamp efficiency or light guiding property) and (b) improving the panel transmittance (light transmittance of the polarizing plate / color filter). Improvement, improvement of pixel aperture ratio, etc.), (c) lower power consumption by improving drive / circuit system, and (d) reduction of drive voltage amplitude by improving panel optical design and liquid crystal material.

【0006】改善効果としては、バックライトの効率ア
ップ、駆動・回路系の改善による効果が大きいが、低価
格化、EMIの低減の観点から液晶層駆動電圧振幅の低
減も不可欠である。
As the improvement effect, the effect of improving the efficiency of the backlight and the improvement of the driving / circuit system are great, but it is also indispensable to reduce the liquid crystal layer drive voltage amplitude from the viewpoint of cost reduction and EMI reduction.

【0007】上記駆動電圧振幅の低減の方法としては、
一般には液晶材料の低閾値電圧化が有効な方法であり種
々の液晶材料が提案されているが、誘電率異方性Δεが
大きくなり液晶粘性が増大するため、液晶相のNI点を
高く保ったままで高速応答化を図ることは容易ではな
い。
As a method of reducing the drive voltage amplitude,
Generally, lowering the threshold voltage of the liquid crystal material is an effective method and various liquid crystal materials have been proposed. However, since the dielectric constant anisotropy Δε increases and the liquid crystal viscosity increases, it is necessary to keep the NI point of the liquid crystal phase high. It is not easy to achieve high-speed response while keeping it as it is.

【0008】一方、液晶層の捻れ角を大きくするにつれ
て液晶パネルの電圧−透過率特性が急峻になり、駆動電
圧振幅が低減することは知られているが、充分なコント
ラストを確保することは容易ではない。
On the other hand, it is known that as the twist angle of the liquid crystal layer is increased, the voltage-transmittance characteristic of the liquid crystal panel becomes steeper and the drive voltage amplitude is reduced, but it is easy to secure a sufficient contrast. is not.

【0009】また、液晶層中に高分子材料、あるいは微
粒子を分散させた材料系を用いることにより前記電圧−
透過率特性を急峻にする試み(例えば、特開平7−56
145)も為されているが、信頼性課題が存在する。
Further, by using a polymer material or a material system in which fine particles are dispersed in the liquid crystal layer, the voltage
An attempt to make the transmittance characteristic steep (for example, Japanese Patent Laid-Open No. 7-56
145) has also been done, but there are reliability issues.

【0010】[0010]

【発明が解決しようとする課題】以上示してきたよう
に、液晶表示素子の駆動電圧振幅を低減する方法につい
ては、液晶−高分子複合体を用いる方法を始めとして複
数の取り組みが並行して進められているが、効果が大き
く、画像品質・パネル信頼性を損なうことの少ない方法
はまだ提案されていない。
As described above, with respect to the method of reducing the driving voltage amplitude of the liquid crystal display element, a plurality of approaches are conducted in parallel, including the method of using the liquid crystal-polymer composite. However, a method that has a large effect and does not impair image quality and panel reliability has not been proposed yet.

【0011】本発明は、閾値電圧が高い液晶材料を用
い、低電圧で駆動でき、パネル信頼性が高い液晶表示装
置の提供を目的とする。
It is an object of the present invention to provide a liquid crystal display device which uses a liquid crystal material having a high threshold voltage, can be driven at a low voltage, and has a high panel reliability.

【0012】[0012]

【課題を解決するための手段】内面に透明電極を有する
二枚の透光性基板間に液晶層を挟持してなる捻れネマテ
ィック型(以下、TN型と称する)液晶表示素子におい
て、前記液晶層の層厚dと屈折率異方性Δnとの積dΔ
nが0.50μm以上であるとともに、前記液晶表示素
子の観察者側に少なくとも1枚の光拡散板を含む液晶表
示装置、あるいはTN型液晶表示素子と位相差フィルム
とを含む液晶表示素子において、前記位相差フィルムの
一方の側の表面層の主軸方位と、他方の側の表面層の主
軸方位とが直交配置をしており、前記主軸方位が、一方
の側から他方の側に向けて液晶層の捻れ方向とは逆方向
に連続的に捻れており、前記主軸方位が、前記位相差フ
ィルム表面層ではフィルム表面に略平行であり、前記位
相差フィルム中央部ではフィルム表面に略垂直であり、
隣接する前記液晶表示素子の液晶分子配向方位と前記位
相差フィルムの主軸方位とが直交していることを特徴と
する液晶表示装置を用いる。
A twisted nematic (hereinafter referred to as TN) liquid crystal display element having a liquid crystal layer sandwiched between two translucent substrates each having a transparent electrode on the inner surface thereof. Product of the layer thickness d and the refractive index anisotropy Δn dΔ
A liquid crystal display device having n of 0.50 μm or more and including at least one light diffusion plate on the viewer side of the liquid crystal display device, or a liquid crystal display device including a TN type liquid crystal display device and a retardation film, The principal axis azimuth of the surface layer on one side of the retardation film and the principal axis azimuth of the surface layer on the other side are arranged orthogonally, and the principal axis azimuth is liquid crystal from one side to the other side. It is continuously twisted in a direction opposite to the twisting direction of the layer, the principal axis azimuth is substantially parallel to the film surface in the retardation film surface layer, and is substantially perpendicular to the film surface in the retardation film central portion. ,
A liquid crystal display device is used in which the liquid crystal molecule orientation directions of the adjacent liquid crystal display elements and the principal axis directions of the retardation film are orthogonal to each other.

【0013】また、TN型液晶表示素子と一軸性位相差
フィルムとを含む液晶表示素子において、前記一軸性位
相差フィルムの主軸方位が、前記一軸性位相差フィルム
法線に対して1゜〜10゜傾斜しており、前記液晶表示
素子の主視角方位と直交していることを特徴とする液晶
表示装置、あるいは液晶の捻れ角が92゜〜100゜、
液晶のカイラルピッチが80μm以上、液晶のプレチル
ト角が3゜以下であるTN型液晶表示装置を用いる。
Further, in a liquid crystal display device including a TN type liquid crystal display device and a uniaxial retardation film, the principal axis direction of the uniaxial retardation film is 1 ° to 10 ° with respect to the normal line of the uniaxial retardation film. A liquid crystal display device characterized by being inclined by 90 ° and being orthogonal to the main viewing angle azimuth of the liquid crystal display element, or a twist angle of liquid crystal of 92 ° to 100 °,
A TN type liquid crystal display device in which the chiral pitch of the liquid crystal is 80 μm or more and the pretilt angle of the liquid crystal is 3 ° or less is used.

【0014】[0014]

【発明の実施の形態】TN型液晶表示素子における電圧
−透過率特性は、液晶層の位相差dΔnに大きく依存す
る。図1は、異なる位相差を有する液晶表示素子の電圧
−透過率特性を表したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The voltage-transmittance characteristic of a TN type liquid crystal display device largely depends on the phase difference dΔn of the liquid crystal layer. FIG. 1 shows voltage-transmittance characteristics of liquid crystal display devices having different phase differences.

【0015】電圧印加により液晶層が動き出す電圧(い
わゆるフレデリックスの閾値電圧)はほぼ同じであるた
め、表示素子透過率を規格化した場合、電圧無印加時の
液晶層の位相差が大きければ大きいほど、見かけ上、電
圧−透過率特性は急峻になる。
Since the voltage at which the liquid crystal layer starts to move when a voltage is applied (the so-called Fredericks threshold voltage) is almost the same, if the transmittance of the display element is standardized, the larger the phase difference of the liquid crystal layer when no voltage is applied, the greater the phase difference. The more apparently the voltage-transmittance characteristic becomes steeper.

【0016】第1の発明は、この効果を利用したもので
ある。しかしながら、一般に液晶層の位相差が大きくな
ると、表示素子の視角特性が低下することが知られてい
る。これに対して本発明は、出射光側に拡散板を配設
し、液晶表示素子の視角依存性を解消したものである。
The first invention utilizes this effect. However, it is generally known that when the phase difference of the liquid crystal layer becomes large, the viewing angle characteristics of the display element deteriorate. On the other hand, the present invention eliminates the viewing angle dependence of the liquid crystal display element by disposing a diffusion plate on the side of the emitted light.

【0017】第2の発明は、電圧−透過率特性における
高電圧側での透過率変化の急峻化を目的としたものであ
る。印加電圧が光学的閾値電圧から光学的飽和電圧程度
の大きさの場合には、印加電圧に応じて表示素子透過率
も変化していくが、印加電圧が光学的飽和電圧を越える
と、印加電圧に対する表示素子の透過率変化は急激に小
さくなる(図1参照)。
A second aspect of the invention is intended to make the transmittance change steep on the high voltage side in the voltage-transmittance characteristic. When the applied voltage is between the optical threshold voltage and the optical saturation voltage, the transmissivity of the display element also changes according to the applied voltage, but when the applied voltage exceeds the optical saturation voltage, the applied voltage The change in transmissivity of the display element with respect to is sharply reduced (see FIG. 1).

【0018】これは、配向膜表面近傍の液晶層が、配向
膜の束縛により充分その捻れ構造が解けないためと考え
られる。
It is considered that this is because the liquid crystal layer in the vicinity of the surface of the alignment film cannot sufficiently dissolve its twisted structure due to the constraint of the alignment film.

【0019】本発明は、この黒表示領域での液晶表示素
子の残留位相差を、捻れ位相差フィルムにより補償する
ことにより、高電圧領域での電圧−透過率特性のなまり
を低減させたものである。
According to the present invention, the residual retardation of the liquid crystal display element in the black display region is compensated by the twisted retardation film to reduce the rounding of the voltage-transmittance characteristic in the high voltage region. is there.

【0020】高電圧印加時の液晶層の分子配向状態と捻
れ方向が逆の位相差フィルムを用いることにより、前記
残留位相差を補償することが出来る。
The residual retardation can be compensated by using a retardation film whose twist direction is opposite to the molecular orientation state of the liquid crystal layer when a high voltage is applied.

【0021】また、第3の発明は、前記残留位相差を一
軸性フィルムで補償したものである。
The third aspect of the present invention is such that the residual retardation is compensated by a uniaxial film.

【0022】一方、液晶表示素子の電圧−透過率特性の
急峻性を上げるには、液晶捻れ角を増大させれば良いこ
とは知られているが、コントラスト低下、着色等の問題
から大幅な液晶捻れ角の増大は不可能である。
On the other hand, it is known that the steepness of the voltage-transmittance characteristic of the liquid crystal display element can be increased by increasing the liquid crystal twist angle, but the liquid crystal is drastically reduced due to problems such as reduction in contrast and coloring. It is impossible to increase the twist angle.

【0023】第4の発明は、液晶捻れ角の増大による電
圧−透過率特性の急峻化と、液晶表示素子駆動における
閾値電圧の低減による急峻化とを組み合わせたものであ
る。
The fourth invention is a combination of the steepness of the voltage-transmittance characteristic due to the increase of the twist angle of the liquid crystal and the steepness due to the reduction of the threshold voltage in driving the liquid crystal display element.

【0024】カイラルピッチの増加あるいはプレチルト
角の低減は、それぞれ高電圧領域および低電圧領域での
急峻化をもたらし、何れも駆動電圧振幅の低減につなが
るものである。
An increase in the chiral pitch or a decrease in the pretilt angle causes steepening in a high voltage region and a low voltage region, respectively, and both of them lead to a reduction in drive voltage amplitude.

【0025】以下に実施の態様を図面を用いて詳細に説
明する。以下の実施例において、駆動電圧振幅ΔVは最
大光透過率を100%、最小光透過率を0%と規格化し
た電圧−透過率曲線において、光透過率1%の駆動電圧
V1から光透過率99%の駆動電圧V99を引いた値で
もって定義した。
Embodiments will be described in detail below with reference to the drawings. In the following examples, the drive voltage amplitude ΔV is a voltage-transmittance curve in which the maximum light transmittance is 100% and the minimum light transmittance is 0%. It was defined as a value obtained by subtracting the driving voltage V99 of 99%.

【0026】本実施例では、実験の便宜上、透明電極を
有する2枚のガラス基板間に液晶を挟持した評価セルに
てΔV評価を行ったが、アクティブマトリクス型液晶表
示素子において充分なコントラストを得るためには、I
C出力ばらつき等の駆動電圧裕度を考慮に入れると、評
価セルでのΔV<2.0Vが望ましい。
In the present embodiment, for the convenience of the experiment, ΔV evaluation was carried out in an evaluation cell in which liquid crystal was sandwiched between two glass substrates having transparent electrodes, but sufficient contrast was obtained in an active matrix type liquid crystal display device. In order to
Considering the driving voltage tolerance such as C output variation, ΔV <2.0V in the evaluation cell is desirable.

【0027】(実施例1)図2は本発明の第1の液晶表
示素子の構成図である。透明電極を有する2枚のガラス
基板22、26上に、日本合成ゴム(株)製ポリイミド
配向膜塗料AL−1057(4.0wt.%、γ−ブチ
ロラクトン溶液)をスピンコート法にて塗布し、200
℃、30分の硬化条件にて硬化させた。
(Embodiment 1) FIG. 2 is a constitutional view of a first liquid crystal display element of the present invention. On the two glass substrates 22 and 26 having transparent electrodes, a polyimide alignment film paint AL-1057 (4.0 wt.%, Γ-butyrolactone solution) manufactured by Nippon Synthetic Rubber Co., Ltd. was applied by spin coating, 200
It was cured under the curing condition of 30 ° C. for 30 minutes.

【0028】その後、主視角方向がパネル下方になるよ
うに、図3の如く、捻れ角ω=90゜でラビング32、
34を施した後、このラビング処理を施した2枚のガラ
ス基板22、26を、ガラススペーサー24であるミク
ロパール(積水ファインケミカル(株)製)を用いて種
々の間隔に貼り合わせた。
After that, as shown in FIG. 3, the rubbing 32 with the twist angle ω = 90 ° so that the main viewing angle direction is located below the panel,
After applying 34, the two glass substrates 22 and 26 subjected to the rubbing treatment were attached at various intervals using a glass spacer 24, Micropearl (manufactured by Sekisui Fine Chemical Co., Ltd.).

【0029】次に、カイラル材料としてコレステリルノ
ナノエートを0.25wt.%添加したメルク社製液晶
MLC9000−100/MLC9100−000等量
混合物(NI点=91℃、Δn=0.0995)を、真
空注入法を用いてガラス基板間に注入し、液晶層厚の異
なる種々の液晶パネル29を作成した。
Next, 0.25 wt.% Of cholesteryl nonanoate was added as a chiral material. % Liquid crystal MLC9000-100 / MLC9100-000 equivalent mixture (NI point = 91 ° C., Δn = 0.0995) was injected between glass substrates using a vacuum injection method, and the liquid crystal layer thicknesses were different. Various liquid crystal panels 29 were created.

【0030】その後、図3に示すように、偏光板21、
27をお互いの偏光軸が直交するように液晶パネル29
に貼合し、更に観察者側の偏光板21上に光拡散板20
を置き、それぞれの液晶層厚dの異なる液晶表示素子A
〜Eを作成した。
After that, as shown in FIG.
27 is a liquid crystal panel 29 so that the polarization axes thereof are orthogonal to each other.
And the light diffusing plate 20 on the polarizing plate 21 on the observer side.
Liquid crystal display elements A having different liquid crystal layer thicknesses d.
~ E was created.

【0031】次に、常法に従い、本発明の液晶表示素子
の電圧−透過率特性を30Hz矩形波を印加しながら測
定した。
Next, the voltage-transmittance characteristic of the liquid crystal display device of the present invention was measured by applying a 30 Hz rectangular wave according to a conventional method.

【0032】(表1)に20℃における各液晶表示素子
の位相差dΔnと閾値電圧、飽和電圧、および駆動電圧
振幅ΔVを示す。
Table 1 shows the phase difference dΔn, threshold voltage, saturation voltage, and drive voltage amplitude ΔV of each liquid crystal display element at 20 ° C.

【0033】[0033]

【表1】 [Table 1]

【0034】(表1)より明らかなように、本発明液晶
表示素子D、Eは液晶材料の誘電率異方性Δεを大きく
することなく低電圧駆動が可能であり、NI点が高く、
粘度の低い液晶材料を用いることが出来、その実用的価
値は極めて高い。
As is clear from Table 1, the liquid crystal display devices D and E of the present invention can be driven at a low voltage without increasing the dielectric anisotropy Δε of the liquid crystal material, and have a high NI point.
A liquid crystal material having a low viscosity can be used, and its practical value is extremely high.

【0035】また、本発明は観察者側に光拡散板を配置
しているため、高dΔnにもかかわらず優れた視角特性
が観測された。
Further, in the present invention, since the light diffusing plate is arranged on the viewer side, excellent viewing angle characteristics were observed despite the high dΔn.

【0036】dΔnを大きくするにつれて駆動電圧振幅
は小さくなるが、位相差dΔnが0.6μmを越えると
液晶表示素子輝度の低下が大きくなるため、実用的な位
相差としては0.5μm〜0.6μmが好ましい。
The driving voltage amplitude decreases as dΔn increases, but the brightness of the liquid crystal display element decreases greatly when the phase difference dΔn exceeds 0.6 μm. 6 μm is preferable.

【0037】本実施例では測定の便宜上、単純マトリク
ス型液晶表示素子を用いたが、基板上に多数のアクティ
ブ素子を配置したアクティブマトリクス型液晶表示素子
でも良いことは言うまでもない。
In the present embodiment, a simple matrix type liquid crystal display element is used for convenience of measurement, but it goes without saying that an active matrix type liquid crystal display element having a large number of active elements arranged on a substrate may be used.

【0038】また、液晶パネルに垂直に光が入射するよ
う、入射光側にプリズムシート等の導光板を設けても良
い。
Further, a light guide plate such as a prism sheet may be provided on the incident light side so that the light is vertically incident on the liquid crystal panel.

【0039】(実施例2)図4は本発明の第2の液晶表
示素子の構成図である。透明電極を有する2枚のガラス
基板42、46上に、日本合成ゴム(株)製ポリイミド
配向膜塗料AL−1057(4.0wt.%、γ−ブチ
ロラクトン溶液)をスピンコート法にて塗布し、200
℃、30分の硬化条件にて硬化させた。
(Embodiment 2) FIG. 4 is a constitutional view of a second liquid crystal display element of the present invention. On two glass substrates 42 and 46 having transparent electrodes, a coating composition for polyimide alignment film AL-1057 (4.0 wt.%, Γ-butyrolactone solution) manufactured by Japan Synthetic Rubber Co., Ltd. was applied by spin coating, 200
It was cured under the curing condition of 30 ° C. for 30 minutes.

【0040】その後、主視角方向がパネル下方になるよ
うに、図5の如く、ω=90゜の捻れ角でラビングを施
した後、このラビング処理を施した2枚のガラス基板4
2、46を、ガラススペーサー44であるミクロパール
(積水ファインケミカル(株)製)を用いて5μmの間
隔に貼り合わせた。
After that, as shown in FIG. 5, rubbing was performed at a twist angle of ω = 90 ° so that the main viewing angle direction was on the lower side of the panel, and then the two glass substrates 4 subjected to this rubbing treatment.
2, 46 were attached to each other at intervals of 5 μm using a glass spacer 44, Micropearl (manufactured by Sekisui Fine Chemical Co., Ltd.).

【0041】次に、左捻れカイラル材としてコレステリ
ルノナノエートを0.26wt.%含有するチッソ
(株)製液晶MT−5076LA(NI点=92℃、Δ
n=0.083)を、真空注入法を用いてガラス基板間
に注入し、液晶パネル49を作成した。
Next, 0.26 wt.% Of cholesteryl nonanoate was added as a left-handed chiral material. % Liquid crystal MT-5076LA manufactured by Chisso Corporation (NI point = 92 ° C., Δ
n = 0.083) was injected between the glass substrates by using a vacuum injection method to form a liquid crystal panel 49.

【0042】その後、図5に示されるように隣接する位
相差フィルムの主軸と液晶パネルのラビング方向(配向
容易軸)とが直交するように、位相差フィルム41を配
置し、さらに偏光板40、47をお互いの偏光軸が直交
するように液晶パネル49に貼合し液晶表示素子Fを作
成した。
Then, as shown in FIG. 5, the retardation film 41 is arranged so that the principal axis of the adjacent retardation film and the rubbing direction (easy alignment axis) of the liquid crystal panel are orthogonal to each other, and the polarizing plate 40, A liquid crystal display element F was prepared by bonding 47 to a liquid crystal panel 49 so that their polarization axes were orthogonal to each other.

【0043】位相差フィルム41は、フィルムの一方の
表面での主軸方向と他方の表面での主軸方向とが90゜
の角度をなしており、この軸方位は、一方の表面から他
方の表面に向けて連続的に右廻りに90゜捻れており、
フィルム中央部での主軸はフィルム表面に対してほぼ垂
直となっている。またフィルムの位相差は、波長545
nmの光に対して60nmであった。
In the retardation film 41, the principal axis direction on one surface of the film and the principal axis direction on the other surface make an angle of 90 °, and this axis azimuth is from one surface to the other surface. It is twisted 90 degrees to the right continuously,
The main axis at the center of the film is almost perpendicular to the film surface. In addition, the retardation of the film has a wavelength of 545
It was 60 nm for nm light.

【0044】次に、実施例1と同様の方法にて閾値電
圧、飽和電圧、及び駆動電圧振幅を測定したところ、閾
値電圧は1.24V、飽和電圧は2.15V、駆動電圧
振幅ΔVは1.85Vであった。
Next, the threshold voltage, the saturation voltage, and the drive voltage amplitude were measured by the same method as in Example 1. The threshold voltage was 1.24 V, the saturation voltage was 2.15 V, and the drive voltage amplitude ΔV was 1. It was 0.85V.

【0045】一方、比較例として位相差フィルムを含ま
ないこと以外は実施例2と全く同様の液晶表示素子Gを
作成した。実施例1と同様の方法にて閾値電圧、飽和電
圧、及び駆動電圧振幅を測定したところ、閾値電圧は
1.33V、飽和電圧は2.40V、駆動電圧振幅ΔV
は2.20Vであった。
On the other hand, as a comparative example, a liquid crystal display element G was prepared in exactly the same manner as in Example 2 except that the retardation film was not included. When the threshold voltage, the saturation voltage, and the drive voltage amplitude were measured by the same method as in Example 1, the threshold voltage was 1.33 V, the saturation voltage was 2.40 V, and the drive voltage amplitude ΔV.
Was 2.20V.

【0046】本発明液晶表示素子Fで用いた位相差フィ
ルム41は、電圧印加時の液晶パネル49での残留位相
差を補償する働きを有しており、液晶パネル49の電圧
−透過率特性を急峻にする効果がある。
The retardation film 41 used in the liquid crystal display element F of the present invention has a function of compensating for the residual retardation in the liquid crystal panel 49 when a voltage is applied, and has a voltage-transmittance characteristic of the liquid crystal panel 49. It has a sharpening effect.

【0047】本発明液晶表示装置は、閾値電圧の比較的
高い液晶材料を用いながらも、3V駆動を可能にせしめ
るものであり、高NI点を有する液晶材料を使うことが
でき、その実用的価値は大きい。
The liquid crystal display device of the present invention is capable of being driven by 3V while using a liquid crystal material having a relatively high threshold voltage, and a liquid crystal material having a high NI point can be used, and its practical value. Is big.

【0048】また、本実施例2で用いた位相差フィルム
は、高分子液晶と光硬化性樹脂との混合物を透光性基板
間に挟持し、高温・高電界下で配向させながら光硬化さ
せることにより作成した。
In the retardation film used in Example 2, a mixture of a polymer liquid crystal and a photocurable resin is sandwiched between translucent substrates and photocured while being aligned under a high temperature and a high electric field. Created by

【0049】(実施例3)図6は本発明の第3の液晶表
示素子の構成図である。透明電極を有する2枚のガラス
基板62、66上に、日本合成ゴム(株)製ポリイミド
配向膜塗料AL−1057(4.0wt.%、γ−ブチ
ロラクトン溶液)をスピンコート法にて塗布し、200
℃、30分の硬化条件にて硬化させた。
(Embodiment 3) FIG. 6 is a constitutional view of a third liquid crystal display element of the present invention. On two glass substrates 62 and 66 having transparent electrodes, a polyimide alignment film paint AL-1057 (4.0 wt.%, Γ-butyrolactone solution) manufactured by Nippon Synthetic Rubber Co., Ltd. was applied by spin coating, 200
It was cured under the curing condition of 30 ° C. for 30 minutes.

【0050】その後、主視角方向がパネル下方になるよ
うに、図7の如く、ω=90゜の捻れ角でラビングを施
した後、このラビング処理を施した2枚のガラス基板6
2、66を、ガラススペーサー64であるミクロパール
(積水ファインケミカル(株)製)を用いて5μmの間
隔に貼り合わせた。
After that, as shown in FIG. 7, rubbing is performed at a twist angle of ω = 90 ° so that the main viewing angle direction is below the panel, and then the two glass substrates 6 subjected to this rubbing treatment
2, 66 were attached at intervals of 5 μm using a glass spacer 64, Micropearl (manufactured by Sekisui Fine Chemical Co., Ltd.).

【0051】次に、カイラル材としてコレステリルノナ
ノエートを0.25wt.%含有したチッソ(株)製液
晶MT−5076LA(NI点=92℃、Δn=0.0
83)を、真空注入法を用いてガラス基板間に注入し、
液晶パネル69を作成した。
Next, 0.25 wt.% Of cholesteryl nonanoate was added as a chiral material. % Liquid crystal MT-5076LA manufactured by Chisso Corporation (NI point = 92 ° C., Δn = 0.0
83) is injected between the glass substrates using a vacuum injection method,
A liquid crystal panel 69 was created.

【0052】その後、図7に示されるように、位相差フ
ィルムの主軸と液晶パネルの主視角方向とが直交するよ
うに、位相差フィルム61を配置し、さらに偏光板6
0、67をお互いの偏光軸が直交するように液晶パネル
69に貼合し液晶表示素子Hを作成した。
Thereafter, as shown in FIG. 7, the retardation film 61 is arranged so that the principal axis of the retardation film and the principal viewing angle direction of the liquid crystal panel are orthogonal to each other, and further the polarizing plate 6
A liquid crystal display element H was prepared by bonding 0 and 67 to the liquid crystal panel 69 so that their polarization axes were orthogonal to each other.

【0053】位相差フィルム61の主軸方位は、フィル
ム法線に対して3゜傾斜しており、その位相差は波長5
45nmの光に対して45nmであった。
The principal axis azimuth of the retardation film 61 is inclined by 3 ° with respect to the film normal, and the retardation thereof has a wavelength of 5
It was 45 nm for 45 nm light.

【0054】次に、実施例1と同様の方法にて閾値電
圧、飽和電圧、及び駆動電圧振幅を測定したところ、閾
値電圧は1.28V、飽和電圧は2.17V、駆動電圧
振幅ΔVは1.90Vであった。
Next, the threshold voltage, the saturation voltage, and the drive voltage amplitude were measured by the same method as in Example 1. The threshold voltage was 1.28 V, the saturation voltage was 2.17 V, and the drive voltage amplitude ΔV was 1. It was 0.90V.

【0055】本発明液晶表示素子Hで用いた位相差フィ
ルム61は、電圧印加時の液晶パネル69での残留位相
差を補償する働きを有しており、液晶パネル69の電圧
−透過率特性を急峻にする効果がある。
The retardation film 61 used in the liquid crystal display element H of the present invention has a function of compensating for the residual retardation in the liquid crystal panel 69 when a voltage is applied, and has a voltage-transmittance characteristic of the liquid crystal panel 69. It has a sharpening effect.

【0056】本実施例で用いた位相差フィルムの主軸方
位は、位相差フィルム法線に対して3゜の傾斜をなして
いるが、1゜〜10゜の角度であれば適格である。即
ち、1゜未満の場合には効果が認められず、10゜を越
えるとコントラストの低下、及び着色による画像品質の
低下が問題となってくる。
The principal axis azimuth of the retardation film used in this example has an inclination of 3 ° with respect to the normal to the retardation film, but an angle of 1 ° to 10 ° is suitable. That is, when the angle is less than 1 °, no effect is recognized, and when the angle exceeds 10 °, the contrast is deteriorated and the image quality is deteriorated due to coloring.

【0057】本発明液晶表示装置は閾値電圧の比較的高
い液晶材料を用いながらも、3V駆動を可能にせしめる
ものであり、高NI点を有する液晶材料を使うことがで
き、その実用的価値は大きい。
The liquid crystal display device of the present invention is capable of driving 3V while using a liquid crystal material having a relatively high threshold voltage, and a liquid crystal material having a high NI point can be used, and its practical value is large.

【0058】また、本実施例3で用いた位相差フィルム
は、高分子液晶と光硬化性樹脂との混合物を透光性基板
間に挟持し、高温・高電界下で配向させながら光硬化さ
せることにより作成した。
In the retardation film used in Example 3, a mixture of a polymer liquid crystal and a photocurable resin is sandwiched between translucent substrates and photocured while being aligned at a high temperature and a high electric field. Created by

【0059】(実施例4)図8は本発明の第4の発明で
ある液晶表示装置の構成図である。液晶パネル89は実
施例1と同様に、以下の方法にて作成した。透明電極を
有する2枚のガラス基板82、86上に、種々の配向膜
塗料をスピンコート法にて塗布し、200℃、30分の
硬化条件にて硬化させた。
(Embodiment 4) FIG. 8 is a block diagram of a liquid crystal display device according to a fourth invention of the present invention. The liquid crystal panel 89 was created by the following method, as in the first embodiment. Various alignment film coating materials were applied onto two glass substrates 82 and 86 having transparent electrodes by a spin coating method, and cured at 200 ° C. for 30 minutes.

【0060】その後、主視角方向がパネル下方になるよ
うに、図9の如く、捻れ角ω=92度でラビング92、
94を施した後、このラビング処理を施した2枚のガラ
ス基板82、86を、ガラススペーサー84であるミク
ロパール(積水ファインケミカル(株)製)を用いて5
μmの間隔に貼り合わせた。
Then, as shown in FIG. 9, the rubbing 92 is performed with the twist angle ω = 92 degrees so that the main viewing angle direction is below the panel.
After performing 94, the two glass substrates 82 and 86 subjected to the rubbing treatment are subjected to 5 by using a glass spacer 84, Micropearl (manufactured by Sekisui Fine Chemical Co., Ltd.).
The pieces were attached at an interval of μm.

【0061】次に、カイラル材コレステリルノナノエー
トの添加割合を変え、カイラルピッチを変化させたメル
ク社製液晶MLC9000−000を、真空注入法を用
いてガラス基板間に注入し、液晶パネル89を作成し
た。
Next, liquid crystal MLC9000-000 manufactured by Merck & Co., Inc. in which the addition ratio of the chiral material cholesteryl nonanoate is changed and the chiral pitch is changed is injected between the glass substrates by using a vacuum injection method to form a liquid crystal panel 89. did.

【0062】その後、図9に示すように、偏光板81、
87をお互いの偏光軸が直交するように液晶パネル89
の前後に貼合し、液晶表示素子I〜Xを作成した。
After that, as shown in FIG.
87 is a liquid crystal panel 89 so that their polarization axes are orthogonal to each other.
Liquid crystal display elements I to X were prepared by pasting before and after.

【0063】(表2)に作成した液晶表示素子I〜Xの
プレチルト角と注入液晶のカイラルピッチの関係を示
す。
Table 2 shows the relationship between the pretilt angles of the prepared liquid crystal display devices I to X and the chiral pitch of the injected liquid crystal.

【0064】[0064]

【表2】 [Table 2]

【0065】次に、実施例1と同様の方法にて各液晶表
示素子の駆動電圧振幅ΔVを測定した。結果を(表3)
に示す。
Next, the driving voltage amplitude ΔV of each liquid crystal display element was measured by the same method as in Example 1. The results (Table 3)
Shown in

【0066】[0066]

【表3】 [Table 3]

【0067】(表3)からも明らかなように、プレチル
ト角が3゜以下であり、カイラルピッチが80μm以上
の本発明の液晶表示素子は、駆動電圧振幅ΔVが2.0
V以下であり、低消費電力液晶表示素子実現には極めて
有用である。
As is clear from Table 3, the liquid crystal display device of the present invention having a pretilt angle of 3 ° or less and a chiral pitch of 80 μm or more has a driving voltage amplitude ΔV of 2.0.
Since it is V or less, it is extremely useful for realizing a low power consumption liquid crystal display device.

【0068】(実施例5)実施例4と同様にして液晶捻
れ角の異なる液晶パネルを以下の方法にて作成した。パ
ネル構成は図8と同一である。まず、透明電極を有する
2枚のガラス基板82、86上に、日産化学工業(株)
製ポリイミド配向膜塗料RN−707(4.0wt.
%、NMP溶液)をスピンコート法にて塗布し、200
℃、30分の硬化条件にて硬化させた。
(Embodiment 5) Similar to Embodiment 4, liquid crystal panels having different twist angles of liquid crystal were prepared by the following method. The panel structure is the same as in FIG. First, on two glass substrates 82 and 86 having transparent electrodes, Nissan Chemical Industries, Ltd.
Manufactured polyimide alignment film paint RN-707 (4.0 wt.
%, NMP solution) by spin coating
It was cured under the curing condition of 30 ° C. for 30 minutes.

【0069】その後、主視角方向がパネル下方になるよ
うに、種々の液晶捻れ角ωでラビングを施した後、この
ラビング処理を施した2枚のガラス基板82、86を、
ガラススペーサー84であるミクロパール(積水ファイ
ンケミカル(株)製)を用いて5μmの間隔に貼り合わ
せた。
After that, after rubbing at various liquid crystal twist angles ω so that the main viewing angle direction is on the lower side of the panel, the two glass substrates 82 and 86 subjected to the rubbing treatment are
The glass spacers 84, Micropearl (manufactured by Sekisui Fine Chemical Co., Ltd.), were used to bond them at intervals of 5 μm.

【0070】次に、左捻れカイラル材としてコレステリ
ルノナノエートを用い、カイラルピッチが90μmとな
るように調製したチッソ(株)製液晶MT−5071L
Aを真空注入法を用いてガラス基板間に注入し、液晶パ
ネル89を作成した。
Next, liquid crystal MT-5071L manufactured by Chisso Corp. was prepared by using cholesteryl nonanoate as a left-handed chiral material and adjusting the chiral pitch to 90 μm.
A was injected between the glass substrates by using a vacuum injection method to form a liquid crystal panel 89.

【0071】その後、図9に示すように、お互いの偏光
軸が直交するように偏光板81、87を液晶パネル89
の前後に貼合し、液晶表示素子α、β、γを作成した。
After that, as shown in FIG. 9, the polarizing plates 81 and 87 are arranged on the liquid crystal panel 89 so that their polarization axes are orthogonal to each other.
Liquid crystal display elements α, β and γ were prepared by pasting before and after.

【0072】その後、実施例1と同様の方法にて閾値電
圧、飽和電圧、駆動電圧振幅を測定した。結果を(表
4)に示す。
After that, the threshold voltage, the saturation voltage and the driving voltage amplitude were measured by the same method as in Example 1. The results are shown in (Table 4).

【0073】[0073]

【表4】 [Table 4]

【0074】また、別途作成したホモジニアス液晶セル
により、液晶材料のプレチルト角を測定したところ3゜
であった。
The pretilt angle of the liquid crystal material was measured by a separately prepared homogeneous liquid crystal cell and found to be 3 °.

【0075】実施例4及び実施例5より明らかなよう
に、本発明液晶表示素子は駆動電圧振幅の小さい液晶表
示素子を提供するものであり、その実用的価値は大き
い。
As is clear from Examples 4 and 5, the liquid crystal display device of the present invention provides a liquid crystal display device having a small drive voltage amplitude, and its practical value is great.

【0076】プレチルト角が3゜以下の時、カイラルピ
ッチが120μmを越える場合や、液晶捻れ角が100
゜を越える場合には、逆ツイストドメインが発生しやす
くなるため実用的ではない。
When the pretilt angle is 3 ° or less, the chiral pitch exceeds 120 μm, or the liquid crystal twist angle is 100.
If it exceeds 0, reverse twist domains are likely to occur, which is not practical.

【0077】[0077]

【発明の効果】本発明液晶表示素子は、比較的閾値電圧
の高い液晶材料を用いながらも3V駆動可能な液晶表示
素子を提供するものであり、NI点が高く、粘度の低い
液晶材料を用いた低電圧液晶表示素子を提供することが
可能である。
The liquid crystal display device of the present invention provides a liquid crystal display device which can be driven at 3V even though a liquid crystal material having a relatively high threshold voltage is used, and a liquid crystal material having a high NI point and a low viscosity is used. It is possible to provide a low-voltage liquid crystal display device that has been used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】TN型液晶表示素子における電圧−透過率特性
と位相差dΔnの関係を説明するための図
FIG. 1 is a diagram for explaining a relationship between a voltage-transmittance characteristic and a phase difference dΔn in a TN type liquid crystal display element.

【図2】本発明液晶表示素子の第1の構成例を示すため
の図
FIG. 2 is a diagram showing a first configuration example of the liquid crystal display element of the present invention.

【図3】本発明液晶表示素子における偏光板の偏光軸
と、配向膜ラビング方向との関係を説明するための図
FIG. 3 is a diagram for explaining a relationship between a polarization axis of a polarizing plate and a rubbing direction of an alignment film in a liquid crystal display device of the present invention.

【図4】本発明液晶表示素子の第2の構成例を示すため
の図
FIG. 4 is a diagram showing a second configuration example of the liquid crystal display element of the present invention.

【図5】本発明液晶表示素子における偏光板の偏光軸
と、配向膜ラビング方向と、位相差フィルム主軸方向と
の関係を説明するための図
FIG. 5 is a diagram for explaining a relationship among a polarization axis of a polarizing plate, a rubbing direction of an alignment film, and a principal axis direction of a retardation film in a liquid crystal display device of the present invention.

【図6】本発明液晶表示素子の第3の構成例を示すため
の図
FIG. 6 is a diagram showing a third configuration example of the liquid crystal display element of the present invention.

【図7】本発明液晶表示素子における偏光板の偏光軸
と、配向膜ラビング方向と、位相差フィルム主軸方向と
の関係を説明するための図
FIG. 7 is a diagram for explaining a relationship among a polarization axis of a polarizing plate, a rubbing direction of an alignment film, and a main axis direction of a retardation film in a liquid crystal display device of the present invention.

【図8】本発明液晶表示素子の第4の構成例を示すため
の図
FIG. 8 is a diagram showing a fourth configuration example of the liquid crystal display element of the present invention.

【図9】本発明液晶表示素子における偏光板の偏光軸
と、配向膜ラビング方向との関係を説明するための図
FIG. 9 is a diagram for explaining the relationship between the polarization axis of the polarizing plate and the rubbing direction of the alignment film in the liquid crystal display device of the present invention.

【符号の説明】[Explanation of symbols]

10 dΔn=0.58μmの時の電圧−透過率特性 11 dΔn=0.47μmの時の電圧−透過率特性 12 dΔn=0.58μmの液晶表示素子の駆動電圧
振幅 13 dΔn=0.47μmの液晶表示素子の駆動電圧
振幅 20 光拡散板 21、27、40、47、60、67、81、87 偏
光板 22、26、42、46、62、66、82、86 ガ
ラス基板 23、25、43、45、63、65、83、85 配
向膜 24、44、64、84 スペーサー 28、48、68、88 液晶 29、49、69、89 液晶パネル 31、51、71、91 上側基板偏光板の偏光軸方向 32、52、72、92 上側基板のラビング方向 33、53、73、93 下側基板偏光板の偏光軸方向 34、54、74、94 下側基板のラビング方向 35、55、75、95 液晶捻れ角 41、61 位相差フィルム 56、57、77 位相差フィルムの主軸方向 76 主視角方向
10 voltage-transmittance characteristic when dΔn = 0.58 μm 11 voltage-transmittance characteristic when dΔn = 0.47 μm 12 drive voltage amplitude of a liquid crystal display element when dΔn = 0.58 μm 13 dΔn = 0.47 μm liquid crystal Display element drive voltage amplitude 20 Light diffusion plate 21, 27, 40, 47, 60, 67, 81, 87 Polarizing plate 22, 26, 42, 46, 62, 66, 82, 86 Glass substrate 23, 25, 43, 45, 63, 65, 83, 85 Alignment film 24, 44, 64, 84 Spacer 28, 48, 68, 88 Liquid crystal 29, 49, 69, 89 Liquid crystal panel 31, 51, 71, 91 Polarization axis of upper substrate polarizing plate Direction 32, 52, 72, 92 Upper substrate rubbing direction 33, 53, 73, 93 Lower substrate polarizing plate polarization direction 34, 54, 74, 94 Lower substrate rubbing direction 35, 55 , 75, 95 Liquid crystal twist angle 41, 61 Retardation film 56, 57, 77 Main axis direction of retardation film 76 Main viewing angle direction

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】内面に透明電極を有する二枚の透光性基板
間に液晶層を挟持してなる捻れネマティック型液晶表示
素子において、前記液晶層の層厚dと屈折率異方性Δn
との積dΔnが0.50μm以上であるとともに、前記
液晶表示素子の観察者側に少なくとも1枚の光拡散板を
含む液晶表示装置。
1. A twisted nematic liquid crystal display device comprising a liquid crystal layer sandwiched between two translucent substrates each having a transparent electrode on its inner surface, wherein a layer thickness d of the liquid crystal layer and a refractive index anisotropy Δn.
And a product dΔn of 0.50 μm or more, and at least one light diffusion plate is provided on the viewer side of the liquid crystal display device.
【請求項2】捻れネマティック型液晶表示素子と位相差
フィルムとを含む液晶表示素子において、前記位相差フ
ィルムの一方の側の表面層の主軸方位と他方の側の表面
層の主軸方位が直交配置をしており、前記主軸方位が一
方の側から他方の側に向けて液晶層の捻れ方向とは逆方
向に連続的に捻れており、前記主軸方位が前記位相差フ
ィルム表面層ではフィルム表面に略平行であり、前記位
相差フィルム中央部ではフィルム表面に略垂直であり、
隣接する前記液晶表示素子の液晶分子配向方位と前記位
相差フィルムの主軸方位とが直交していることを特徴と
する液晶表示装置。
2. A liquid crystal display device including a twisted nematic liquid crystal display device and a retardation film, wherein a principal axis direction of a surface layer on one side of the retardation film and a principal axis direction of a surface layer on the other side are arranged orthogonally. The main axis azimuth is continuously twisted in a direction opposite to the twist direction of the liquid crystal layer from one side to the other side, and the main axis azimuth is on the film surface in the retardation film surface layer. It is substantially parallel, in the central portion of the retardation film is substantially perpendicular to the film surface,
A liquid crystal display device, wherein liquid crystal molecule orientation directions of the adjacent liquid crystal display elements and main axis directions of the retardation film are orthogonal to each other.
【請求項3】捻れネマティック型液晶表示素子と一軸性
位相差フィルムとを含む液晶表示素子において、前記一
軸性位相差フィルムの主軸方位が、前記一軸性位相差フ
ィルム法線に対して1゜〜10゜傾斜し、前記液晶表示
素子の主視角方位と直交していることを特徴とする液晶
表示装置。
3. A liquid crystal display device including a twisted nematic liquid crystal display device and a uniaxial retardation film, wherein the azimuth of the uniaxial retardation film has a principal axis azimuth of 1 ° to the normal to the uniaxial retardation film. A liquid crystal display device, wherein the liquid crystal display device is tilted by 10 ° and is orthogonal to the main viewing angle direction of the liquid crystal display element.
【請求項4】液晶の捻れ角が92゜〜100゜、液晶の
カイラルピッチが80μm以上、液晶のプレチルト角が
3゜以下である捻れネマティック型液晶表示素子を含む
液晶表示装置。
4. A liquid crystal display device including a twisted nematic liquid crystal display element in which the twist angle of the liquid crystal is 92 ° to 100 °, the chiral pitch of the liquid crystal is 80 μm or more, and the pretilt angle of the liquid crystal is 3 ° or less.
JP7321394A 1995-12-11 1995-12-11 Liquid crystal display device Pending JPH09160021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7321394A JPH09160021A (en) 1995-12-11 1995-12-11 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7321394A JPH09160021A (en) 1995-12-11 1995-12-11 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH09160021A true JPH09160021A (en) 1997-06-20

Family

ID=18132064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7321394A Pending JPH09160021A (en) 1995-12-11 1995-12-11 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH09160021A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100500690B1 (en) * 2002-01-18 2005-07-12 비오이 하이디스 테크놀로지 주식회사 A spiral-aligned-nematic lcd

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100500690B1 (en) * 2002-01-18 2005-07-12 비오이 하이디스 테크놀로지 주식회사 A spiral-aligned-nematic lcd

Similar Documents

Publication Publication Date Title
US5621558A (en) Liquid crystal electro-optical device having alignment films for perpendicular alignment
JPH08122750A (en) Liquid crystal eelectrooptical device, projection type display device formed by utilizing the same and their driving method
JP2861982B2 (en) Liquid crystal display device and method for producing dichroic dye-containing sheet
JP3072513B2 (en) Polymer dispersed liquid crystal display panel
JPH03122615A (en) Liquid crystal display device
JPH0365926A (en) Liquid crystal display
US20130148066A1 (en) Liquid crystal panel and liquid crystal display device
JP3322397B2 (en) Laminated retarder
JP3007555B2 (en) Liquid crystal display device
JPH1195195A (en) High polymer dispersion type liquid crystal display device and its production
KR100241816B1 (en) Liquid crystal display device and optical isotropic device
JP3342940B2 (en) Liquid crystal display
JPH09160021A (en) Liquid crystal display device
JP2006301466A (en) Liquid crystal display device
JP3183652B2 (en) Liquid crystal display device
JP3628094B2 (en) Liquid crystal display element and optical anisotropic element
JP2839802B2 (en) Liquid crystal display
JP2000298266A (en) Polymer-dispersed liquid crystal display panel and its manufacture
JP2813222B2 (en) Liquid crystal display device
KR100235168B1 (en) Reflection type lcd device
JP3399463B2 (en) Color liquid crystal display device
JPH06347762A (en) Liquid crystal display device
JPH05289097A (en) Liquid crystal display element
KR100708795B1 (en) Liquid crystal display device
JP3308076B2 (en) Liquid crystal display device and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091117

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20101117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees