JPH09159640A - Carbon dioxide gas sensor and production thereof - Google Patents
Carbon dioxide gas sensor and production thereofInfo
- Publication number
- JPH09159640A JPH09159640A JP31873895A JP31873895A JPH09159640A JP H09159640 A JPH09159640 A JP H09159640A JP 31873895 A JP31873895 A JP 31873895A JP 31873895 A JP31873895 A JP 31873895A JP H09159640 A JPH09159640 A JP H09159640A
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- dioxide gas
- gas sensor
- sensor element
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、室内や車内等の居
住空間の空気汚染モニタ、空調システム用モニタ、生鮮
食料品の輸送・保管時の炭酸ガス濃度制御装置、バイオ
施設での炭酸ガス濃度モニタシステム等に用いられる炭
酸ガスセンサ及びその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air pollution monitor in a living space such as a room or a car, a monitor for an air conditioning system, a carbon dioxide concentration controller for transporting and storing fresh food, and a carbon dioxide concentration in a bio facility. The present invention relates to a carbon dioxide gas sensor used for a monitor system and the like and a method for manufacturing the same.
【0002】[0002]
【従来の技術】近年、炭酸ガス濃度を測定し制御するシ
ステムが種々開発されていた。それに用いられる炭酸ガ
スセンサとしては赤外線吸収型や固体電解質型等が挙げ
られた。赤外線吸収型とはレーザーを放射する発光素子
と発光素子から放射されたレーザー光を受光しその強度
を測定する受光素子センサから構成されていた。赤外線
吸収型は精密な測定が可能であるが装置が大型となり炭
酸ガスセンサの構造が複雑であるので生産性や量産性に
劣り分析機器等の特殊な用途に限定して使用されてい
た。また、固体電解質型はNASICONやLi−Ti
−O酸化物等を用い電極/炭酸塩/固体電解質等の積層
構造を成していた。固体電解質型は水分を含むと炭酸ガ
スの検出感度が低下し耐水性に劣るという問題点を有し
ていた。また、構造が複雑であり材料が変質し易く不安
定なので量産性に劣り信頼性が低く寿命が短いという問
題点を有していた。一方、上記問題点を解決したものと
して、セラミックス粉末と非複合系金属酸化物との混合
物が炭酸ガスセンサとして開発された。この混合物は静
電容量の変化により炭酸ガス濃度を検知することがで
き、化学的に安定な酸化物を主成分とし、また構造も単
純なコンデンサ構造であった。この混合物の例としてB
aTiO3やSrTiO3等のペロブスカイト型酸化物と
CuOやNiO等の非複合系酸化物との混合物が特開平
4−24548号公報に開示されていた。また、他の例
としてCuO、CaO、MgO等の炭酸塩を用いるもの
もあった。2. Description of the Related Art In recent years, various systems for measuring and controlling carbon dioxide concentration have been developed. Infrared absorption type, solid electrolyte type, etc. were mentioned as the carbon dioxide gas sensor used for it. The infrared absorption type is composed of a light emitting element that emits a laser and a light receiving element sensor that receives the laser light emitted from the light emitting element and measures the intensity thereof. The infrared absorption type is capable of precise measurement, but its device is large and the structure of the carbon dioxide sensor is complicated, so that it is inferior in productivity and mass productivity, and was limited to special applications such as analytical instruments. The solid electrolyte type is NASICON or Li-Ti.
A laminated structure of electrodes / carbonate / solid electrolyte was formed using —O oxide or the like. The solid electrolyte type has a problem that if it contains water, the detection sensitivity of carbon dioxide gas is lowered and the water resistance is poor. In addition, since the structure is complicated and the material is easily changed and unstable, mass productivity is poor, reliability is low, and life is short. On the other hand, as a solution to the above problems, a mixture of ceramic powder and a non-composite metal oxide was developed as a carbon dioxide gas sensor. This mixture was able to detect the concentration of carbon dioxide gas by the change in electrostatic capacity, had a chemically stable oxide as a main component, and had a simple capacitor structure. As an example of this mixture B
mixture of the unconjugated based oxide ATiO 3 and perovskite oxides such as SrTiO 3 and the like CuO and NiO were disclosed in Japanese Patent Laid-Open No. 4-24548. Further, as another example, there is one that uses a carbonate such as CuO, CaO, or MgO.
【0003】次に、BaTiO3とCuOの混合物から
なる炭酸ガスセンサの製造方法を説明する。まず、Ba
CO3とTiO3との等モル混合物を1200℃で12時
間焼成しBaTiO3を得た。BaTiO3にCuOを等
モル量混合しディスク状に圧縮成型して500℃で1時
間焼成した。焼成後のディスクの両面に銀ペーストを塗
布し炭酸ガスセンサとした。Next, a method of manufacturing a carbon dioxide gas sensor made of a mixture of BaTiO 3 and CuO will be described. First, Ba
An equimolar mixture of CO 3 and TiO 3 was calcined at 1200 ° C. for 12 hours to obtain BaTiO 3 . CuTiO was mixed with BaTiO 3 in an equimolar amount, compression-molded into a disk shape, and baked at 500 ° C. for 1 hour. A silver paste was applied to both sides of the burned disc to prepare a carbon dioxide sensor.
【0004】[0004]
【発明が解決しようとする課題】しかしながら上記従来
の炭酸ガスセンサでは、低濃度の炭酸ガスを検知する場
合はその検出感度が低く炭酸ガス濃度の正確な変化量を
検知できず測定結果が不正確で信頼性に劣るという問題
点を有していた。また、炭酸ガス濃度の検知を継続して
行うと炭酸ガスセンサの静電容量の変化量が減少し炭酸
ガス濃度の検知能が低下し経時劣化が生じるので信頼性
に乏しいという問題点を有していた。However, in the above-mentioned conventional carbon dioxide gas sensor, when detecting low-concentration carbon dioxide gas, the detection sensitivity is low and an accurate change amount of carbon dioxide concentration cannot be detected, and the measurement result is inaccurate. It had a problem of poor reliability. Further, if the carbon dioxide concentration is continuously detected, the amount of change in the capacitance of the carbon dioxide sensor decreases, the detection capability of the carbon dioxide concentration decreases, and deterioration over time occurs. It was
【0005】本発明は上記従来の問題点を解決するもの
で、炭酸ガスの低濃度域での検知感度が著しく高く長時
間使用しても炭酸ガスの検知感度が低下せず高い検知感
度を維持し経時劣化が少なく耐久性に優れる炭酸ガスセ
ンサの提供、及び、低濃度の炭酸ガスの検知感度が高く
経時劣化が少なく耐久性に優れる炭酸ガスセンサの製造
方法を提供することを目的とする。The present invention solves the above-mentioned conventional problems. The detection sensitivity in the low concentration range of carbon dioxide is extremely high, and the detection sensitivity of carbon dioxide does not decrease even when used for a long time, and the high detection sensitivity is maintained. An object of the present invention is to provide a carbon dioxide gas sensor which is less deteriorated with time and has excellent durability, and a manufacturing method of a carbon dioxide gas sensor which has high detection sensitivity of low-concentration carbon dioxide gas and is less deteriorated with time and excellent in durability.
【0006】[0006]
【課題を解決するための手段】この目的を達成するため
に本発明は、炭酸ガス濃度を検知する炭酸ガスセンサ素
子と、炭酸ガスセンサ素子の表面に積層された1組の電
極と、を備えた炭酸ガスセンサであって、炭酸ガスセン
サ素子が、CeO2とBaCO3の混合物を含有する構成
を有するものである。In order to achieve this object, the present invention comprises a carbon dioxide gas sensor element for detecting a carbon dioxide gas concentration, and a pair of electrodes laminated on the surface of the carbon dioxide gas sensor element. In the gas sensor, the carbon dioxide sensor element has a structure containing a mixture of CeO 2 and BaCO 3 .
【0007】これにより、炭酸ガス濃度が低い場合の検
出感度が著しく高く、かつ、長時間使用しても経時劣化
が少ない炭酸ガスセンサが得られる。As a result, it is possible to obtain a carbon dioxide sensor which has a significantly high detection sensitivity when the carbon dioxide concentration is low and has little deterioration with time even when used for a long time.
【0008】[0008]
【発明の実施の形態】本発明の請求項1に記載の発明
は、炭酸ガス濃度を検知する炭酸ガスセンサ素子と、炭
酸ガスセンサ素子の表面に積層された1組の電極と、を
備えた炭酸ガスセンサであって、炭酸ガスセンサ素子
が、CeO2とBaCO3の混合物を含有する構成とした
ものであり、炭酸ガス濃度が低い場合においても炭酸ガ
ス濃度の変動により静電容量が大きく変化するとともに
長時間測定温度に保持しても静電容量の変動率が変化せ
ず大きな変動率を維持することができる。BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention comprises a carbon dioxide gas sensor element for detecting a carbon dioxide gas concentration, and a pair of electrodes laminated on the surface of the carbon dioxide gas sensor element. The carbon dioxide sensor element is configured to contain a mixture of CeO 2 and BaCO 3 , and even when the carbon dioxide concentration is low, the capacitance changes greatly due to the variation of the carbon dioxide concentration, and Even if it is kept at the measurement temperature, the fluctuation rate of the capacitance does not change and a large fluctuation rate can be maintained.
【0009】請求項2に記載の発明は、請求項1におい
て、炭酸ガスセンサ素子がCuOを含有する構成とした
ものであり、低炭酸ガス濃度においても静電容量値が大
きいと同時にその変動が大きく、かつ、この変動率を長
時間に渡って維持できる。According to a second aspect of the present invention, in the first aspect, the carbon dioxide sensor element contains CuO, and the capacitance value is large and the fluctuation is large even at a low carbon dioxide concentration. And, this fluctuation rate can be maintained for a long time.
【0010】請求項3に記載の発明は、請求項1又は2
いずれか1において、使用温度における位相角θが−5
0°≦θ≦−3°である構成としたもので、炭酸ガス感
度と静電容量の変動率の安定性を両立し正確な炭酸ガス
濃度測定値を得ることができる。[0010] The invention described in claim 3 is the invention according to claim 1 or 2.
In either case, the phase angle θ at the operating temperature is -5.
With the constitution of 0 ° ≦ θ ≦ −3 °, the carbon dioxide sensitivity and the stability of the fluctuation rate of the capacitance are compatible with each other, and an accurate carbon dioxide concentration measurement value can be obtained.
【0011】請求項4に記載の発明は、請求項1乃至3
の内いずれか1において、CeO2、BaCO3、及び、
CuOの混合モル比が、CeO2/BaCO3/CuO=
X/Y/Z(X+Y+Z=100)において、30≦X
≦80、3≦Y≦50、0≦Z≦45の範囲である構成
としたものであり、炭酸ガス濃度が数百ppmの低濃度
域においても静電容量の変動幅が大きく又その変動幅が
再現性に富むのでCO2濃度を正確に測定することがで
きる。また、長時間測定温度に保持しても静電容量及び
その変動率が劣化せず高い感度を維持することができ
る。[0011] The invention according to claim 4 is the invention according to claims 1 to 3.
In any one of the above, CeO 2 , BaCO 3 , and
The mixing molar ratio of CuO is CeO 2 / BaCO 3 / CuO =
In X / Y / Z (X + Y + Z = 100), 30 ≦ X
The range of ≦ 80, 3 ≦ Y ≦ 50, and 0 ≦ Z ≦ 45 is adopted, and the fluctuation range of the capacitance is large even in the low concentration range of the carbon dioxide gas concentration of several hundred ppm, and the fluctuation range thereof is also large. Is highly reproducible, so that the CO 2 concentration can be accurately measured. Further, even if the measurement temperature is kept for a long time, the capacitance and its variation rate are not deteriorated, and high sensitivity can be maintained.
【0012】請求項5に記載の発明は、請求項1乃至4
の内いずれか1において、炭酸ガスセンサ素子が、1〜
6モル%のAgを含有する構成としたものであり、炭酸
ガス濃度に対する感度を向上させることができる。[0012] The invention according to claim 5 provides the invention according to claims 1 to 4.
In any one of the above, the carbon dioxide sensor element is
The composition contains 6 mol% of Ag, and the sensitivity to carbon dioxide concentration can be improved.
【0013】請求項6に記載の発明は、請求項1乃至5
の内いずれか1において、炭酸ガスセンサ素子が500
〜950℃で焼成して形成される構成としたものであ
り、安定し再現性に富む静電容量を測定することができ
るとともに炭酸ガスに対する検出感度を高めることがで
きる。[0013] The invention according to claim 6 is the invention according to claims 1 to 5.
In any one of the above, the carbon dioxide sensor element is 500
It has a structure formed by baking at ˜950 ° C., and it is possible to measure a stable and reproducible electrostatic capacity and to enhance the detection sensitivity to carbon dioxide gas.
【0014】請求項7に記載の発明は、500〜950
℃の温度範囲で加熱し成形する炭酸ガスセンサ素子焼成
工程を有する構成としたもので、炭酸ガスに対する検出
感度が高く、かつ、再現性に優れ安定した静電容量を有
する炭酸ガスセンサを得ることができる。The invention according to claim 7 is 500 to 950.
A carbon dioxide gas sensor having a high detection sensitivity to carbon dioxide gas, excellent reproducibility, and stable capacitance can be obtained by using a configuration including a carbon dioxide gas sensor element firing step of heating and molding in a temperature range of ° C. .
【0015】以下、本発明の実施の形態について、図1
乃至図3を用いて説明する。 (実施の形態1)図1は第1実施の形態における炭酸ガ
スセンサの要部斜視図である。図1において、Aは第1
実施の形態における炭酸ガスセンサである。炭酸ガスセ
ンサ素子1は、静電容量値の変動により炭酸ガス濃度を
検知する作用を行い、CeO2、BaCO3、必要に応じ
てCuOの混合物を円盤状に成型される。電極2は、使
用時に炭酸ガスセンサ素子1に電圧を印加させる作用を
行い、炭酸ガスセンサ素子1の上下面にそれぞれ積層さ
れたPt、Ag、Au等からなる。リード線3は電極2
と電源(図示せず)を接続する作用を行い、Cu線、P
t線等からなる。The embodiment of the present invention will be described below with reference to FIG.
This will be described with reference to FIGS. (Embodiment 1) FIG. 1 is a perspective view of a main part of a carbon dioxide sensor according to a first embodiment. In FIG. 1, A is the first
3 is a carbon dioxide sensor according to the embodiment. The carbon dioxide gas sensor element 1 acts to detect the carbon dioxide gas concentration based on the variation of the electrostatic capacitance value, and a mixture of CeO 2 , BaCO 3 and, if necessary, CuO is formed into a disk shape. The electrode 2 acts to apply a voltage to the carbon dioxide sensor element 1 during use, and is made of Pt, Ag, Au or the like laminated on the upper and lower surfaces of the carbon dioxide sensor element 1, respectively. Lead wire 3 is electrode 2
And a power source (not shown) are connected, and Cu wire, P
It consists of t-line etc.
【0016】炭酸ガスセンサ素子1は、CeO2、Ba
CO3、及び、CuOの混合モル比が、CeO2/BaC
O3/CuO=X/Y/Z(X+Y+Z=100)にお
いて、30≦X≦80、3≦Y≦50、0≦Z≦45の
範囲であるのが好ましい。CeO2が30モル%未満に
なるにつれ導電性が大きくなり炭酸ガスに対する静電容
量の感度が低下する傾向が生じ好ましくない。CeO2
が80モル%を越えるにつれ絶縁性が大きくなり炭酸ガ
スに対する容量感度が低下する傾向が生じ好ましくな
い。BaCO3が3モル%未満になるにつれ炭酸ガスに
対する感度が消失する傾向が生じ好ましくない。BaC
O3が50モル%を越えるにつれ水分に対して膨潤する
ために特性が不安定になる傾向が生じ好ましくない。C
uOが45モル%を越えるにつれ導電性が大きくなり感
度低下の傾向が生じ好ましくない。The carbon dioxide sensor element 1 is made of CeO 2 , Ba.
The mixing molar ratio of CO 3 and CuO is CeO 2 / BaC.
In O 3 / CuO = X / Y / Z (X + Y + Z = 100), the ranges of 30 ≦ X ≦ 80, 3 ≦ Y ≦ 50, and 0 ≦ Z ≦ 45 are preferable. When CeO 2 is less than 30 mol%, the conductivity is increased and the sensitivity of capacitance to carbon dioxide tends to be lowered, which is not preferable. CeO 2
Is more than 80 mol%, the insulating property increases and the capacity sensitivity to carbon dioxide gas tends to decrease, which is not preferable. When BaCO 3 is less than 3 mol%, the sensitivity to carbon dioxide gas tends to disappear, which is not preferable. BaC
When O 3 exceeds 50 mol%, the characteristics tend to become unstable due to swelling with respect to water, which is not preferable. C
When uO exceeds 45 mol%, the electroconductivity increases and the sensitivity tends to decrease, which is not preferable.
【0017】炭酸ガスセンサ素子1は使用温度における
位相角θが−50°≦θ≦−3°であるのが好ましい。
位相角が−50℃未満になるにつれ炭酸ガスに対する静
電容量の感度が低下する傾向があり好ましくない。位相
角が−3°を越えるにつれ導電性が強くなるため炭酸ガ
スに対する静電容量の変動が大きくなり見かけ上の感度
が大きいものの安定した特性が得られない傾向となり好
ましくない。It is preferable that the carbon dioxide sensor element 1 has a phase angle θ of −50 ° ≦ θ ≦ -3 ° at an operating temperature.
As the phase angle becomes less than -50 ° C, the sensitivity of the capacitance to carbon dioxide tends to decrease, which is not preferable. Since the conductivity becomes stronger as the phase angle exceeds -3 °, the variation of the capacitance with respect to carbon dioxide gas becomes large and the apparent sensitivity is large, but stable characteristics cannot be obtained, which is not preferable.
【0018】炭酸ガスセンサ素子1は1〜6モル%のA
gを含有するのが好ましい。Agが1モル%未満或いは
6モル%を越えるにつれ炭酸ガス濃度に対する静電容量
の感度の向上が認められない傾向となり好ましくない。The carbon dioxide sensor element 1 contains 1 to 6 mol% of A
It is preferred to contain g. When Ag is less than 1 mol% or more than 6 mol%, the sensitivity of the capacitance to the carbon dioxide concentration tends not to be improved, which is not preferable.
【0019】炭酸ガスセンサ素子1が500〜950℃
で焼成されるのが好ましい。焼成温度が500℃未満に
なるにつれ静電容量の測定値が不安定となり再現性に乏
しい傾向となり好ましくない。焼成温度が950°を越
えるにつれCuOの蒸発或いは溶融により黒化するとと
もに炭酸ガス濃度に対する感度が低下する傾向となり好
ましくない。Carbon dioxide sensor element 1 is 500 to 950 ° C.
Preferably, it is baked at. When the firing temperature is lower than 500 ° C., the measured value of the electrostatic capacity becomes unstable and the reproducibility tends to be poor, which is not preferable. When the firing temperature exceeds 950 °, blackening occurs due to evaporation or melting of CuO and sensitivity to carbon dioxide concentration tends to decrease, which is not preferable.
【0020】以上のように構成された炭酸ガスセンサA
について、以下その製造方法を説明する。まず、CeO
2粉末、BaCO3粉末、CuO粉末をエタノール等の分
散剤を用いて均一に混合する。この混合物を500〜9
50℃で焼成した(炭酸ガスセンサ素子焼成工程)後に
再度エタノールを加え粉砕を行いエタノールを乾燥除去
し整粒する。この粉体を円盤状、方形状、長方形状等に
プレス成型し炭酸ガスセンサ素子1を形成する。炭酸ガ
スセンサ素子1の上下面にPtペーストを塗布しさらに
リード線3をペーストに取付けて焼成し電極2及びリー
ド線3を炭酸ガスセンサ素子1に形成し炭酸ガスセンサ
Aを成形する。A carbon dioxide sensor A having the above structure
The manufacturing method will be described below. First, CeO
2 powder, BaCO 3 powder and CuO powder are uniformly mixed using a dispersant such as ethanol. Add this mixture to 500-9
After baking at 50 ° C. (calcination process for carbon dioxide gas sensor element), ethanol is added again for grinding, and ethanol is dried and removed for sizing. The carbon dioxide sensor element 1 is formed by press-molding this powder into a disk shape, a square shape, a rectangular shape, or the like. A Pt paste is applied to the upper and lower surfaces of the carbon dioxide sensor element 1, and the lead wire 3 is attached to the paste and fired to form the electrode 2 and the lead wire 3 on the carbon dioxide sensor element 1 to form the carbon dioxide sensor A.
【0021】以上のように本実施の形態によればCeO
2、BaCO3、及び、CuOの混合物である炭酸ガスセ
ンサ素子1を設けたので、低炭酸ガス濃度においても炭
酸ガス濃度の検知感度を向上させることができるととも
に経時劣化が少なく耐久性に優れる。As described above, according to the present embodiment, CeO
Since the carbon dioxide gas sensor element 1, which is a mixture of 2 , BaCO 3 , and CuO, is provided, the detection sensitivity of the carbon dioxide gas concentration can be improved even at a low carbon dioxide gas concentration, and the deterioration over time is small and the durability is excellent.
【0022】[0022]
【実施例】次に、本発明の具体例を説明する。Next, specific examples of the present invention will be described.
【0023】(実施例1〜22、比較例1、2)まず、
和光純薬工業製のCeO2粉末とBaCO3粉末とCuO
粉末を(表1)及び(表2)の割合で調製した。(Examples 1 to 22, Comparative Examples 1 and 2) First,
CeO 2 powder, BaCO 3 powder and CuO manufactured by Wako Pure Chemical Industries
Powders were prepared in proportions (Table 1) and (Table 2).
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【表2】 [Table 2]
【0026】この粉体に分散剤としてエタノールを混入
させボールミルで45時間均一に混合を行った。この混
合物を大気中で800℃及び950℃で5時間焼成し
た。この焼成物にエタノールを配合しボールミルで45
時間粉砕し粉化した後にエタノールを乾燥させメッシュ
を用いて整粒した。この粉体をプレス加工機を用いて3
0kg/cm2の圧力で加圧し直径10mm、厚さ0.4
mmの円盤状の炭酸ガスセンサ素子1を成形した。この
炭酸ガスセンサ素子1の上下面にPtペーストを塗布し
リード線3を差し込んだ上で800℃、40分加熱し電
極2及びリード線3を炭酸ガスセンサ素子1に形成し
た。炭酸ガスセンサ素子1に対して、X線回析、FT−
IR、TGの各分析を行った所、炭酸ガスセンサ素子1
はCeO2、BaCO3、CuO、Cu2Oからなる混合
物であることが判明した。Ethanol was added to this powder as a dispersant, and the mixture was uniformly mixed by a ball mill for 45 hours. The mixture was calcined in the air at 800 ° C. and 950 ° C. for 5 hours. Add ethanol to this baked product and use a ball mill for 45
After pulverizing for a time and pulverizing, ethanol was dried and sized using a mesh. This powder is pressed using a press machine 3
Pressurized with a pressure of 0 kg / cm 2 , diameter 10 mm, thickness 0.4
A disk-shaped carbon dioxide sensor element 1 having a size of mm was formed. Pt paste was applied to the upper and lower surfaces of the carbon dioxide sensor element 1, the lead wire 3 was inserted, and heating was performed at 800 ° C. for 40 minutes to form the electrode 2 and the lead wire 3 on the carbon dioxide gas sensor element 1. For carbon dioxide sensor element 1, X-ray diffraction, FT-
Carbon dioxide sensor element 1 after IR and TG analysis
Was found to be a mixture of CeO 2 , BaCO 3 , CuO, Cu 2 O.
【0027】次に、実施例1〜22、比較例1、2の炭
酸ガス濃度の変動に対する静電容量の変化を測定した。
まず、炭酸ガスセンサAを静電容量が最大となる温度
(550℃、650℃)に保持した。炭酸ガス濃度は乾
燥空気と炭酸ガスを混合することにより350ppm
(空気)と2%を調製した。静電容量値はLCRメータ
(ヒューレットパッカー製)を用いて10kHz、0.
5Vの交流電圧を炭酸ガスセンサに印加し測定した。空
気中での静電容量値をCAIR、2%炭酸ガス雰囲気での
静電容量値をC2%CO2とすると、感度を|10×LOG
(C2%CO2/CAIR)|(単位はdB)と定義した。ま
た、静電容量測定開始時の感度をR0、静電容量測定開
始300日後の感度をR300とした。実施例1〜22、
比較例1、2の位相角、R0、R300の結果を(表1)に
示した。Next, the changes in capacitance with respect to changes in carbon dioxide concentration in Examples 1 to 22 and Comparative Examples 1 and 2 were measured.
First, the carbon dioxide sensor A was held at the temperature (550 ° C., 650 ° C.) at which the electrostatic capacity was maximum. Carbon dioxide concentration is 350ppm by mixing dry air and carbon dioxide
(Air) and 2% were prepared. The capacitance value was 10 kHz using an LCR meter (manufactured by Hewlett-Packard),
An alternating voltage of 5 V was applied to the carbon dioxide sensor and measured. If the capacitance value in air is C AIR and the capacitance value in a 2% carbon dioxide gas atmosphere is C 2% CO2 , the sensitivity is | 10 × LOG.
(C 2% CO 2 / C AIR ) | (unit is dB). The sensitivity at the start of capacitance measurement was R 0 , and the sensitivity 300 days after the start of capacitance measurement was R 300 . Examples 1-22,
The results of the phase angles R 0 and R 300 of Comparative Examples 1 and 2 are shown in (Table 1).
【0028】この(表1)及び(表2)から明らかなよ
うに、本実施例においては感度は5dB以上であり、特
に、実施例16は感度が8.7dBと極めて高いことが
判明した。この際に位相角は−48°〜−3°の範囲に
あることが判明した。比較例1、2は感度は0、1.2
dBと非常に低くこの時の位相角は−65°、−76°
と低いことが判明した。また、本発明は300日経過後
の感度低下も0〜0.5dBと極めて小さく経時劣化が
少ないことが判明した。As is clear from (Table 1) and (Table 2), it was found that the sensitivity was 5 dB or more in the present embodiment, and particularly, the sensitivity was 8.7 dB in Example 16. At this time, it was found that the phase angle was in the range of −48 ° to −3 °. Comparative Examples 1 and 2 have sensitivities of 0 and 1.2.
Very low as dB, phase angle at this time is -65 °, -76 °
And turned out to be low. Further, it was found that the present invention showed a very small sensitivity decrease of 0 to 0.5 dB after 300 days, and little deterioration with time.
【0029】(比較例3)和光純薬工業製のBaCO3
粉末と日本エアロジル製のTiO3粉末を等モル比で混
合し大気中において1200℃で12時間焼成しBaT
iO3粉末を得た。得られたBaTiO3に和光純薬工業
製のCuO粉末とBaCO3粉末を49:50:1のモ
ル比で混合し800℃で5時間焼成した。以後の工程は
実施例1と同様にして比較例3における炭酸ガスセンサ
Aを製作した。Comparative Example 3 BaCO 3 manufactured by Wako Pure Chemical Industries, Ltd.
The powder and TiO 3 powder made by Nippon Aerosil are mixed at an equimolar ratio and baked in the air at 1200 ° C. for 12 hours to obtain BaT.
An iO 3 powder was obtained. CuO powder and BaCO 3 powder manufactured by Wako Pure Chemical Industries, Ltd. were mixed with the obtained BaTiO 3 at a molar ratio of 49: 50: 1 and baked at 800 ° C. for 5 hours. The subsequent steps were the same as in Example 1 to produce a carbon dioxide sensor A in Comparative Example 3.
【0030】実施例3と比較例3の経時及び炭酸ガス濃
度に対する感度変化を測定した。測定方法は実施例1と
同様に行った。図2は実施例3と比較例3の時間経過と
感度の関係を示す図であり、図3は実施例3と比較例3
の炭酸ガス濃度と感度の関係を示す図である。The sensitivity changes with time and carbon dioxide concentration in Example 3 and Comparative Example 3 were measured. The measurement method was the same as in Example 1. FIG. 2 is a diagram showing the relationship between the elapsed time and the sensitivity of Example 3 and Comparative Example 3, and FIG. 3 is Example 3 and Comparative Example 3.
It is a figure which shows the relationship between the carbon dioxide concentration and sensitivity of.
【0031】図2及び図3から明らかなように、本発明
の実施例3においては感度は60日間保持すると0.5
%、150日間保持すると1%しか劣化せず経時変化が
極めて少ないことが判明した。また、500〜5000
ppmの炭酸ガス濃度範囲では感度が2〜6dBに漸増
し炭酸ガスの検知感度が高いとともに変化率も大きなこ
とが判明した。As is apparent from FIGS. 2 and 3, in Example 3 of the present invention, the sensitivity was 0.5 when kept for 60 days.
%, When it was kept for 150 days, it was found that only 1% deteriorated and the change with time was extremely small. Also, 500 to 5000
It was found that the sensitivity gradually increased to 2 to 6 dB in the carbon dioxide concentration range of ppm, the carbon dioxide detection sensitivity was high, and the rate of change was large.
【0032】(実施例23〜34)CeO2粉末、Ba
CO3粉末、CuO粉末を実施例3と同様に配合しAg
NO 3を(表3)のAg割合になるように添加した。(Examples 23 to 34) CeOTwoPowder, Ba
COThreePowder and CuO powder were blended in the same manner as in Example 3 to obtain Ag
NO ThreeWas added so as to have an Ag ratio of (Table 3).
【0033】[0033]
【表3】 [Table 3]
【0034】他は実施例3と同様の工程を経て実施例2
3〜34の炭酸ガスセンサを製造した。実施例23〜3
4について、実施例3と同様に位相角及び感度R0を測
定し結果を(表3)に示した。Otherwise, the same steps as in Example 3 were carried out and Example 2 was followed.
Carbon dioxide sensors 3 to 34 were manufactured. Examples 23-3
For No. 4, the phase angle and the sensitivity R 0 were measured in the same manner as in Example 3, and the results are shown in (Table 3).
【0035】この(表3)から明らかなように、特にA
gを1〜6モル%添加すると感度が13.2〜23.6
dBと1.8〜3.3倍も向上していることが判明し
た。As is clear from this (Table 3), especially A
When 1 to 6 mol% of g is added, the sensitivity is 13.2 to 23.6.
It was found that it was improved by 1.8 to 3.3 times as much as dB.
【0036】[0036]
【発明の効果】以上のように本発明の炭酸ガスセンサに
よれば、数百〜数千ppmの低炭酸ガス濃度域において
静電容量値が大きいとともにこの低炭酸ガス濃度におけ
る炭酸ガス濃度変化に対する静電容量値の変化率が大き
いので炭酸ガス濃度を正確に検知することができ信頼性
が向上する。また、長期間使用しても静電容量値に変動
が少なくまた炭酸ガス濃度に対する感度も劣化すること
がないので再現性に優れ経時劣化が少なく耐久性が著し
く向上する。As described above, according to the carbon dioxide sensor of the present invention, the capacitance value is large in the low carbon dioxide concentration range of hundreds to thousands of ppm, and the static capacitance against the change in the carbon dioxide concentration at this low carbon dioxide concentration is high. Since the rate of change of the capacitance value is large, the carbon dioxide concentration can be accurately detected and the reliability is improved. Further, the capacitance value does not fluctuate even after long-term use and the sensitivity to the carbon dioxide concentration does not deteriorate, so that the reproducibility is excellent, the deterioration with time is small, and the durability is significantly improved.
【0037】また、本発明の炭酸ガスセンサの製造方法
によれば、低炭酸ガス濃度域における炭酸ガスの検出感
度が著しく高くまた経時変化が少なく耐久性に優れる炭
酸ガスセンサを生産性良くまた高製造歩留りで量産する
ことができる。Further, according to the method for producing a carbon dioxide gas sensor of the present invention, a carbon dioxide gas sensor having a remarkably high detection sensitivity of carbon dioxide in a low carbon dioxide concentration range and a small change over time and excellent durability is produced with high productivity and high production yield. Can be mass-produced in.
【図1】第1実施の形態における炭酸ガスセンサの要部
斜視図FIG. 1 is a perspective view of a main part of a carbon dioxide sensor according to a first embodiment.
【図2】実施例3と比較例3の時間経過と感度の関係を
示す図FIG. 2 is a diagram showing the relationship between the passage of time and the sensitivity of Example 3 and Comparative Example 3.
【図3】実施例3と比較例3の炭酸ガス濃度と感度の関
係を示す図FIG. 3 is a graph showing the relationship between carbon dioxide concentration and sensitivity in Example 3 and Comparative Example 3.
A 炭酸ガスセンサ 1 炭酸ガスセンサ素子 2 電極 3 リード線 A Carbon dioxide sensor 1 Carbon dioxide sensor element 2 Electrode 3 Lead wire
フロントページの続き (72)発明者 金子 信一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Shinichiro Kaneko 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (7)
子と、前記炭酸ガスセンサ素子の表面に積層された1組
の電極と、を備えた炭酸ガスセンサであって、前記炭酸
ガスセンサ素子が、CeO2とBaCO3の混合物を含有
することを特徴とする炭酸ガスセンサ。1. A carbon dioxide gas sensor comprising a carbon dioxide gas sensor element for detecting a carbon dioxide gas concentration and a set of electrodes laminated on the surface of the carbon dioxide gas sensor element, wherein the carbon dioxide gas sensor element is CeO 2 . A carbon dioxide gas sensor characterized by containing a mixture of BaCO 3 .
ることを特徴とする請求項1に記載の炭酸ガスセンサ。2. The carbon dioxide sensor according to claim 1, wherein the carbon dioxide sensor element contains CuO.
≦−3°であることを特徴とする請求項1又は2いずれ
か1に記載の炭酸ガスセンサ。3. The phase angle θ at the operating temperature is −50 ° ≦ θ
The carbon dioxide gas sensor according to claim 1 or 2, wherein ≤-3 °.
モル比が、CeO2/BaCO3/CuO=X/Y/Z
(X+Y+Z=100)において、30≦X≦80、3
≦Y≦50、0≦Z≦45の範囲であることを特徴とす
る請求項1乃至3の内いずれか1に記載の炭酸ガスセン
サ。4. A mixed molar ratio of CeO 2 , BaCO 3 and CuO is CeO 2 / BaCO 3 / CuO = X / Y / Z.
In (X + Y + Z = 100), 30 ≦ X ≦ 80, 3
The carbon dioxide sensor according to any one of claims 1 to 3, wherein the ranges are ≤Y≤50 and 0≤Z≤45.
のAgを含有することを特徴とする請求項1乃至4の内
いずれか1に記載の炭酸ガスセンサ。5. The carbon dioxide sensor element comprises 1 to 6 mol%.
5. The carbon dioxide sensor according to claim 1, wherein the carbon dioxide sensor contains Ag.
℃で焼成して形成されることを特徴とする請求項1乃至
5の内いずれか1に記載の炭酸ガスセンサ。6. The carbon dioxide sensor element is 500 to 950.
The carbon dioxide sensor according to any one of claims 1 to 5, wherein the carbon dioxide sensor is formed by firing at ° C.
する炭酸ガスセンサ素子焼成工程を有することを特徴と
する炭酸ガスセンサの製造方法。7. A method of manufacturing a carbon dioxide gas sensor, comprising a carbon dioxide gas sensor element firing step of heating and molding in a temperature range of 500 to 950 ° C.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31873895A JP3376788B2 (en) | 1995-12-07 | 1995-12-07 | Carbon dioxide sensor |
US08/759,872 US5993624A (en) | 1995-12-07 | 1996-12-03 | Carbon dioxide gas sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31873895A JP3376788B2 (en) | 1995-12-07 | 1995-12-07 | Carbon dioxide sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09159640A true JPH09159640A (en) | 1997-06-20 |
JP3376788B2 JP3376788B2 (en) | 2003-02-10 |
Family
ID=18102399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31873895A Expired - Fee Related JP3376788B2 (en) | 1995-12-07 | 1995-12-07 | Carbon dioxide sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3376788B2 (en) |
-
1995
- 1995-12-07 JP JP31873895A patent/JP3376788B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3376788B2 (en) | 2003-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ishihara et al. | Capacitive type gas sensors | |
JPS6054259B2 (en) | Moisture sensitive ceramic | |
JPS6118857A (en) | Manufacture of electrochemical cell | |
US5993624A (en) | Carbon dioxide gas sensor | |
JP3376788B2 (en) | Carbon dioxide sensor | |
JPH09264867A (en) | Carbon dioxide sensor | |
JPH01108163A (en) | Solid electrolytic substance | |
EP0715486A1 (en) | High-frequency detecting elements and high-frequency heater using the same | |
JP2911962B2 (en) | CO Bottom 2 sensor and CO Bottom 2 detection method | |
JPH09257747A (en) | Carbon dioxide sensor | |
JPH0854363A (en) | Capacitance type carbon dioxide sensor | |
JPH03120456A (en) | Oxygen sensor | |
JPH09269309A (en) | Carbon dioxide sensor and its production | |
JP2001324464A (en) | Carbon dioxide gas sensor and production method thereof | |
JP3256618B2 (en) | Solid electrolyte type gas sensor element | |
JPH0915179A (en) | Carbon dioxide gas sensor | |
JP2834679B2 (en) | Solid electrolyte type gas sensor element | |
JPH0627071A (en) | Carbon-dioxide-gas detecting element and detecting method using it | |
JP3355834B2 (en) | Carbon dioxide sensor and method of manufacturing the same | |
JPH09264863A (en) | Carbon dioxide sensor and manufacture thereof | |
JP3074968B2 (en) | Humidity sensor | |
JPH04298240A (en) | Composition for electrode | |
JP2004117126A (en) | Hydrocarbon sensor and method for using the same | |
JPH09264866A (en) | Carbon dioxide sensor and manufacture thereof | |
JPS6322601B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |