JPH09159303A - Heating and cooling unit - Google Patents

Heating and cooling unit

Info

Publication number
JPH09159303A
JPH09159303A JP31874995A JP31874995A JPH09159303A JP H09159303 A JPH09159303 A JP H09159303A JP 31874995 A JP31874995 A JP 31874995A JP 31874995 A JP31874995 A JP 31874995A JP H09159303 A JPH09159303 A JP H09159303A
Authority
JP
Japan
Prior art keywords
connecting pipe
refrigerant
way valve
heater
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31874995A
Other languages
Japanese (ja)
Inventor
Masahiro Ohama
昌宏 尾浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31874995A priority Critical patent/JPH09159303A/en
Publication of JPH09159303A publication Critical patent/JPH09159303A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/06Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
    • F25B1/08Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure using vapour under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0407Refrigeration circuit bypassing means for the ejector

Abstract

PROBLEM TO BE SOLVED: To improve the comfortableness and the heating efficiency in a heating and cooling unit to perform the cooling and heating using the refrigerant heated by the hot gas in the combustion. SOLUTION: A third opening/closing valve 34 is provided parallel to an ejector 8 in the middle of a fifth connection pipe 19, a second throttling device 35 and a second non-return valve 36 are provided in parallel in the middle of a seventh connection pipe 24, and in the case of the heating operation with a large load such as the case in which the operation is started when the outside temperature is low, first and second opening/closing valves 30, 32 are opened, and the third opening/closing valve 34 is closed, and not only the combustion heat of a combustion part 16 but also the outdoor atmospheric heat can be utilized for the heating through an indoor heat exchanger 23, and the room temperature rapidly rises. In the case of the regular heating operation, because the third opening/closing valve 34 is opened, and the vapor refrigerant from a heater 3 is bypassed through an ejector 8, the flow passage resistance can be reduced, and the efficiency of the heating operation can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は燃焼ガス等の高温ガ
スにより冷媒を加熱し、この加熱された冷媒を用い冷房
と暖房を行なう冷暖房装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling / heating apparatus that heats a refrigerant with a high temperature gas such as a combustion gas and cools and heats the heated refrigerant.

【0002】[0002]

【従来の技術】従来この種で自動車用の冷房装置として
は、特開昭57−134668号公報に示すようなもの
が一般的であった。以下、その構成について図10を参
照しながら説明する。図10に示すように、熱交換チュ
ーブ1内を流通する自動車のエンジンの冷却水の熱や排
気の熱を利用して冷媒ポンプ2から送られてきた冷媒を
加熱蒸発させる加熱器3と、蒸気冷媒を凝縮し液化する
凝縮器4と、前記加熱器3の加熱器出口5に一端を、凝
縮器4の入口に他端をそれぞれ接続した第一の接続管6
と、この第一の接続管6の途中に設けられ加熱器3から
送られてくる冷媒蒸気を凝縮器4に向けて噴出し、側方
に設けた吸入口7から低圧の冷媒蒸気を吸入するエジェ
クタ8と、凝縮器4の液状冷媒出口に一端を接続し、他
端をこの液状冷媒を蒸発させる蒸発器9の入口側に接続
した第二の接続管10と、この蒸発器9の出口側に一端
を接続し、他端を前記エジェクタ8の吸入口7に接続し
た第三の接続管11と、前記第二の接続管10の途中の
分岐点12から分岐し、前記加熱器3の加熱器入口13
に接続した第四の接続管14とから構成されている。な
お、第四の接続管14の途中には液冷媒を圧送する前記
冷媒ポンプ2が設けられており、さらに、前記第二の接
続管10の途中で前記分岐点12より蒸発器9側に絞り
装置15が設けられている。
2. Description of the Related Art Heretofore, as a cooling device for an automobile of this type, a cooling device as disclosed in JP-A-57-134668 has been generally used. The configuration will be described below with reference to FIG. As shown in FIG. 10, a heater 3 that heats and evaporates the refrigerant sent from the refrigerant pump 2 by utilizing the heat of the cooling water of the engine of the automobile flowing through the heat exchange tube 1 and the heat of the exhaust gas, and steam. A condenser 4 for condensing and liquefying a refrigerant, a heater outlet 5 of the heater 3, and a first connecting pipe 6 having one end connected to the inlet and the other end connected to the inlet of the condenser 4.
And, the refrigerant vapor sent from the heater 3 provided in the middle of the first connecting pipe 6 is ejected toward the condenser 4, and the low-pressure refrigerant vapor is sucked from the suction port 7 provided on the side. An ejector 8, a second connecting pipe 10 having one end connected to the liquid refrigerant outlet of the condenser 4 and the other end connected to the inlet side of an evaporator 9 for evaporating the liquid refrigerant, and the outlet side of the evaporator 9. To the third connecting pipe 11 whose one end is connected to the suction port 7 of the ejector 8 and another branching point 12 in the middle of the second connecting pipe 10 to heat the heater 3. Vessel entrance 13
And a fourth connecting pipe 14 connected to the. The refrigerant pump 2 for pumping the liquid refrigerant is provided in the middle of the fourth connecting pipe 14, and further, in the middle of the second connecting pipe 10, from the branch point 12 to the evaporator 9 side. A device 15 is provided.

【0003】このような冷房装置により自動車内の冷房
を行なう場合、熱交換チューブ1内に送られてきた自動
車のエンジンの冷却水または排気と冷媒ポンプ2から送
られてきた液冷媒とは加熱器3内で熱交換し、この液冷
媒は蒸発して高圧の蒸気となってエジェクタ8に入る。
この高圧蒸気の冷媒はエジェクタ8のノズル8aから高
速で噴射されるため、エジェクタ8の混合室8b内の圧
力が低下し負圧となる。その結果、吸入口7に接続され
た第三の接続管11を通じて蒸発器9も負圧となるた
め、凝縮器4で凝縮液化した液冷媒の一部は第三の接続
管11を通って吸入口7からエジェクタ8に吸引され
る。この液冷媒が蒸発器9で蒸発する際、周囲から熱を
奪って冷房効果を発生する。第一の接続管6から送られ
てきた高温高圧の蒸気と第三の接続管11から送られて
きた低温低圧の蒸気とがエジェクタ8で混合し、さら
に、凝縮器4に入って凝縮熱を放出して凝縮液化する。
そして、この液冷媒の一部は前述のように第二の接続管
10を通って蒸発器9に入り、他の冷媒は第四の接続管
14を通って冷媒ポンプ2に吸引される。
When the inside of a vehicle is cooled by such a cooling device, the cooling water or exhaust gas of the vehicle engine sent into the heat exchange tube 1 and the liquid refrigerant sent from the refrigerant pump 2 are heaters. Heat is exchanged inside the liquid refrigerant 3, and the liquid refrigerant is evaporated into high-pressure vapor and enters the ejector 8.
This high-pressure vapor refrigerant is ejected at a high speed from the nozzle 8a of the ejector 8, so that the pressure in the mixing chamber 8b of the ejector 8 decreases and becomes a negative pressure. As a result, since the evaporator 9 also has a negative pressure through the third connecting pipe 11 connected to the suction port 7, a part of the liquid refrigerant condensed and liquefied in the condenser 4 is sucked through the third connecting pipe 11. The ejector 8 is sucked from the mouth 7. When this liquid refrigerant evaporates in the evaporator 9, heat is taken from the surroundings to generate a cooling effect. The high-temperature and high-pressure steam sent from the first connecting pipe 6 and the low-temperature and low-pressure steam sent from the third connecting pipe 11 are mixed by the ejector 8, and further enter the condenser 4 to remove the heat of condensation. Discharge to condense and liquefy.
Then, a part of this liquid refrigerant enters the evaporator 9 through the second connecting pipe 10 as described above, and the other refrigerant passes through the fourth connecting pipe 14 and is sucked into the refrigerant pump 2.

【0004】この図10で示される従来例は冷房専用装
置である。図10の従来例を応用し、冷房と暖房とを兼
用できる一般的な冷暖房装置として図11のような構成
が考えられる。以下、その構成について図11を参照し
ながら説明する。図11に示すように、この冷暖房装置
は、燃焼部16で発生した熱を利用して冷媒ポンプ2か
ら送られてきた冷媒を加熱蒸発させる加熱器3と、冷房
運転と暖房運転時に冷媒回路を切り換える四方弁17
と、前記加熱器3の加熱器出口5に一端を、前記四方弁
17の第一の接続口18に他端をそれぞれ接続した第五
の接続管19と、この第五の接続管19の途中に設けら
れ加熱器3から送られてくる蒸気を四方弁17の第一の
接続口18に向けて噴出し、側方にに設けた吸入口7か
ら低圧の蒸気冷媒を吸入するエジェクタ8と、四方弁1
7の第二の接続口20に一端を接続し、他端を冷房時に
蒸気冷媒を凝縮し液化する室外熱交換器21に接続した
第六の接続管22と、室外熱交換器21に一端を接続
し、他端を冷房時に蒸発器となり暖房時に凝縮器となる
室内熱交換器23に接続した第七の接続管24と、この
室内熱交換器23に一端を接続し、他端を前記四方弁1
7の第三の接続口25に接続した第八の接続管26と、
四方弁17の第四の接続口27に一端を接続し、他端を
前記エジェクタ8のに吸入口7に接続した第九の接続管
28と、前記第七の接続管24の途中の分岐点12から
分岐し、前記加熱器3の加熱器入口13に接続した第十
の接続管29とから構成されている。なお、前記第七の
接続管24の途中で分岐点12より室外熱交換器21側
に第一の開閉弁30が設けられており、室内熱交換器2
3側には第一の絞り装置15と第一の逆止弁31とが並
列に設けられている。さらに、第九の接続管28の途中
には第二の開閉弁32が設けられている。33は加熱器
3の冷媒温度を検出する加熱器温度検出手段である。
The conventional example shown in FIG. 10 is a cooling-only device. By applying the conventional example of FIG. 10, a configuration as shown in FIG. 11 is conceivable as a general cooling and heating device capable of both cooling and heating. Hereinafter, the configuration will be described with reference to FIG. As shown in FIG. 11, this cooling and heating device includes a heater 3 that heats and evaporates the refrigerant sent from the refrigerant pump 2 by using the heat generated in the combustion section 16, and a refrigerant circuit during cooling operation and heating operation. Four-way valve to switch 17
And a fifth connecting pipe 19 having one end connected to the heater outlet 5 of the heater 3 and the other end connected to the first connecting port 18 of the four-way valve 17, and the middle of the fifth connecting pipe 19. An ejector 8 for ejecting the steam sent from the heater 3 provided in the first direction toward the first connection port 18 of the four-way valve 17 and sucking the low-pressure vapor refrigerant from the suction port 7 provided on the side; Four-way valve 1
The second connecting port 20 of 7 has one end connected to the outdoor heat exchanger 21 and a sixth connecting pipe 22 having the other end connected to the outdoor heat exchanger 21 which condenses and liquefies the vapor refrigerant during cooling. A seventh connecting pipe 24 connected to the indoor heat exchanger 23, the other end of which is an evaporator during cooling and a condenser during heating, and one end of which is connected to the indoor heat exchanger 23, and the other end is connected to the four sides. Valve 1
An eighth connecting pipe 26 connected to the third connecting port 25 of 7,
A ninth connecting pipe 28 having one end connected to the fourth connecting port 27 of the four-way valve 17 and the other end connected to the suction port 7 of the ejector 8, and a branch point in the middle of the seventh connecting pipe 24. It is composed of a tenth connecting pipe 29 branched from 12 and connected to the heater inlet 13 of the heater 3. A first on-off valve 30 is provided on the outdoor heat exchanger 21 side from the branch point 12 in the middle of the seventh connection pipe 24, and the indoor heat exchanger 2
A first expansion device 15 and a first check valve 31 are provided in parallel on the third side. Further, a second opening / closing valve 32 is provided in the middle of the ninth connecting pipe 28. Reference numeral 33 is a heater temperature detecting means for detecting the refrigerant temperature of the heater 3.

【0005】このような冷暖房装置により冷房運転を行
なう場合、四方弁17の第一と第二の接続口18、20
および第三と第四の接続口25、27がそれぞれ通じる
ように四方弁17を切り換え、さらに、第一の開閉弁3
0と第二の開閉弁32とを開状態とする。加熱器3の熱
源が図10の場合自動車のエンジンの冷却水または排気
であるのに対し、図11の場合は一般的な燃焼部16と
いう違いはあるが、この時の動作作用は、図10の場合
と同様なので説明は省略する。
When the cooling operation is performed by such an air conditioner, the four-way valve 17 has the first and second connection ports 18, 20.
And the four-way valve 17 is switched so that the third and fourth connection ports 25 and 27 are communicated with each other, and further, the first opening / closing valve 3
0 and the second on-off valve 32 are opened. In the case where the heat source of the heater 3 is the cooling water or the exhaust gas of the automobile engine in the case of FIG. 10, there is a difference in the case of the general combustion section 16 in the case of FIG. The description is omitted because it is the same as the case.

【0006】次に暖房運転を行なう場合、四方弁17の
第一と第三の接続口18、25および第二と第四の接続
口20、27がそれぞれ通じるように四方弁17を切り
換え、さらに、第一の開閉弁30と第二の開閉弁32と
を閉状態とする。燃焼部16で発生した燃焼ガスと冷媒
ポンプ2から送られてきた液冷媒とは加熱器3内で熱交
換し、この液冷媒は蒸発して高圧の蒸気となってエジェ
クタ8に入る。そしてこの蒸気冷媒は四方弁17を通っ
て室内熱交換器23で凝縮液化する。この蒸気冷媒が室
内熱交換器23でで凝縮する際、周囲に熱を放出して暖
房効果を発生する。この凝縮した液冷媒は逆止弁31を
通って冷媒ポンプ2に吸い込まれる。
Next, when the heating operation is performed, the four-way valve 17 is switched so that the first and third connection ports 18 and 25 and the second and fourth connection ports 20 and 27 of the four-way valve 17 are connected, respectively. The first on-off valve 30 and the second on-off valve 32 are closed. The combustion gas generated in the combustion section 16 and the liquid refrigerant sent from the refrigerant pump 2 exchange heat in the heater 3, and the liquid refrigerant evaporates into high-pressure vapor and enters the ejector 8. Then, this vapor refrigerant passes through the four-way valve 17 and is condensed and liquefied in the indoor heat exchanger 23. When this vapor refrigerant is condensed in the indoor heat exchanger 23, heat is released to the surroundings to generate a heating effect. The condensed liquid refrigerant passes through the check valve 31 and is sucked into the refrigerant pump 2.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
冷暖房装置では、室外温度が低い場合の暖房運転開始時
には暖房負荷が大きく室内温度がなかなか上昇しないと
いう課題があった。
However, the conventional cooling and heating apparatus has a problem that the heating load is large and the indoor temperature does not rise easily when the heating operation is started when the outdoor temperature is low.

【0008】また、暖房運転時に、エジェクタ8のノズ
ル8aの流路抵抗のため加熱器3を出た冷媒は高圧で高
温となるので、放熱損失が多く効率が悪くなるという課
題があった。
Further, during heating operation, the refrigerant flowing out of the heater 3 becomes high temperature and high temperature due to the flow path resistance of the nozzle 8a of the ejector 8, so that there is a problem that heat radiation loss is large and efficiency is deteriorated.

【0009】また、暖房運転を停止すると四方弁17と
第一の開閉弁30とから、暖房運転時には使用しない室
外熱交換器21等の冷媒回路に冷媒が洩れ込むことがあ
る。このため、比較的長時間暖房運転を停止すると暖房
回路内の冷媒が不足して、暖房運転を再開した場合、加
熱器3の冷媒通路表面に設けた加熱器温度検出手段33
が冷媒の異常過熱を検出することによって、暖房運転を
停止するので、安定した暖房運転ができなくなり、快適
性の上で問題があった。
When the heating operation is stopped, the refrigerant may leak from the four-way valve 17 and the first opening / closing valve 30 into the refrigerant circuit such as the outdoor heat exchanger 21 which is not used during the heating operation. Therefore, when the heating operation is stopped for a relatively long time, the refrigerant in the heating circuit runs short, and when the heating operation is restarted, the heater temperature detecting means 33 provided on the refrigerant passage surface of the heater 3 is provided.
Since the heating operation is stopped by detecting the abnormal overheating of the refrigerant, stable heating operation cannot be performed and there is a problem in terms of comfort.

【0010】さらに、暖房運転中にも四方弁17と第一
の開閉弁30とから、暖房運転時には使用しない室外熱
交換器21等の冷媒回路に冷媒が洩れ込むことがある。
このため、長時間暖房運転を続けていると暖房回路内の
冷媒が不足して、暖房運転中に加熱器3の冷媒通路表面
に設けた加熱器温度検出手段33冷媒の異常過熱を検出
し、安定した暖房運転ができなくなり、快適性の上で問
題があった。
Further, during the heating operation, the refrigerant may leak from the four-way valve 17 and the first on-off valve 30 into the refrigerant circuit such as the outdoor heat exchanger 21 which is not used during the heating operation.
Therefore, when the heating operation is continued for a long time, the refrigerant in the heating circuit runs short, and the heater temperature detecting means 33 provided on the surface of the refrigerant passage of the heater 3 detects abnormal overheating of the refrigerant during the heating operation, There was a problem in terms of comfort because stable heating operation could not be performed.

【0011】本発明は、このような従来の課題を解決す
るもので、暖房負荷が大きい時に室温の立ち上げを速く
することと、暖房運転の効率の向上と、安定した暖房運
転を保証することによって暖房時の快適性の向上とを目
的とする。
The present invention is to solve such a conventional problem and to speed up the start-up of room temperature when the heating load is large, improve the efficiency of heating operation, and ensure stable heating operation. The purpose is to improve comfort during heating.

【0012】[0012]

【課題を解決するための手段】本発明は上記目的を達成
するため暖房負荷が大きい時に室温の立ち上げを速く、
また、暖房運転の効率の向上のために、燃焼部で生じた
燃焼ガスと熱交換する加熱器と、冷房運転と暖房運転時
に冷媒回路を切り換える四方弁と、前記加熱器の出口に
一端を、前記四方弁の第一の接続口に他端をそれぞれ接
続した第五の接続管と、この第五の接続管の途中に設け
られ加熱器から送られてくる前記四方弁の第一の接続口
に向けて噴出し、側方に設けた吸入口から低圧の蒸気冷
媒を吸入するエジェクタと、前記四方弁の第二の接続口
に一端を接続し、他端を冷房時に蒸気冷媒を凝縮し液化
する室外熱交換器に接続した第六の接続管と、前記室外
熱交換器に一端を接続し、他端を冷房時に蒸発器になり
暖房時に凝縮器となる室内熱交換器に接続し第一の開閉
弁を具備した第七の接続管と、前記室内熱交換器に一端
を接続し、他端を前記四方弁の第三の接続口に接続した
第八の接続管と、前記四方弁の第四の接続口に一端を接
続し、他端を前記エジェクタの吸入口に接続し第二の開
閉弁を具備した第九の接続管と、前記第七の接続管の途
中の分岐点から分岐し、前記加熱器の入口に接続し冷媒
ポンプを具備した第十の接続管と、第五の接続管の途中
でエジェクタに並列に設けた第三の開閉弁と、前記第七
の接続管の途中に並列に接続した第二の絞り装置と第二
の逆止弁とを備えたものである。
In order to achieve the above-mentioned object, the present invention speeds up the start-up of room temperature when the heating load is large,
Further, in order to improve the efficiency of heating operation, a heater that exchanges heat with the combustion gas generated in the combustion section, a four-way valve that switches the refrigerant circuit during cooling operation and heating operation, and one end at the outlet of the heater, A fifth connecting pipe having the other end connected to the first connecting port of the four-way valve, and a first connecting port of the four-way valve which is provided in the middle of the fifth connecting pipe and is sent from a heater. Ejector that injects toward low temperature and sucks low-pressure vapor refrigerant from the intake port on the side, and one end is connected to the second connection port of the four-way valve, and the other end is condensed and liquefied during cooling. A sixth connecting pipe connected to the outdoor heat exchanger, and one end of which is connected to the outdoor heat exchanger, and the other end of which is connected to an indoor heat exchanger which serves as an evaporator during cooling and a condenser during heating. The seventh connecting pipe equipped with the on-off valve and one end is connected to the indoor heat exchanger and the other end is connected. An eighth connecting pipe connected to the third connecting port of the four-way valve and one end of the fourth connecting port of the four-way valve, the other end of which is connected to the intake port of the ejector to form a second opening / closing valve. A ninth connecting pipe provided with, a tenth connecting pipe branched from a branch point in the middle of the seventh connecting pipe, connected to the inlet of the heater and provided with a refrigerant pump, and a fifth connecting pipe. The third opening / closing valve provided in parallel with the ejector in the middle of the above, the second throttle device and the second check valve connected in parallel in the middle of the seventh connecting pipe.

【0013】本発明によれば、低外気温時の暖房運転開
始など暖房負荷が大きい場合に、加熱器から出た高温高
圧の蒸気冷媒をエジェクタに送り、前記エジェクタの吸
入口から室外熱交換器の低圧の冷媒を吸引するため、室
外の大気熱も暖房に加えることができるので高暖房能力
となり、快適性も向上することができる。さらに、通常
の暖房運転時には、前記加熱器から出た蒸気冷媒を前記
エジェクタをバイパスして流すので、流路抵抗が小さく
なる分だけ冷媒温度が下がり、放熱損失も減少させるこ
とができ、暖房運転の効率向上も可能となる。
According to the present invention, when the heating load is large such as when the heating operation is started at a low outdoor temperature, the high-temperature and high-pressure vapor refrigerant discharged from the heater is sent to the ejector, and the outdoor heat exchanger is discharged from the suction port of the ejector. Since the low-pressure refrigerant is sucked, the outdoor heat of the atmosphere can be added to the heating, so that the heating capacity becomes high and the comfort can be improved. Furthermore, during normal heating operation, the vapor refrigerant that has flowed out of the heater bypasses the ejector and flows, so the refrigerant temperature decreases by the amount that the flow path resistance decreases, and the heat dissipation loss can also decrease. It is possible to improve the efficiency of.

【0014】[0014]

【発明の実施の形態】本発明の請求項1に記載の発明
は、燃焼部で生じた燃焼ガスと熱交換する加熱器と、冷
房運転と暖房運転時に冷媒回路を切り換える四方弁と、
前記加熱器の出口に一端を、前記四方弁の第一の接続口
に他端をそれぞれ接続した第五の接続管と、この第五の
接続管の途中に設けられ加熱器から送られてくる前記四
方弁の第一の接続口に向けて噴出し、側方に設けた吸入
口から低圧の蒸気冷媒を吸入するエジェクタと、前記四
方弁の第二の接続口に一端を接続し、他端を冷房時に蒸
気冷媒を凝縮し液化する室外熱交換器に接続した第六の
接続管と、前記室外熱交換器に一端を接続し、他端を冷
房時に蒸発器になり暖房時に凝縮器となる室内熱交換器
に接続し第一の開閉弁を具備した第七の接続管と、前記
室内熱交換器に一端を接続し、他端を前記四方弁の第三
の接続口に接続した第八の接続管と、前記四方弁の第四
の接続口に一端を接続し、他端を前記エジェクタの吸入
口に接続し第二の開閉弁を具備した第九の接続管と、前
記第七の接続管の途中の分岐点から分岐し、前記加熱器
の入口に接続し冷媒ポンプを具備した第十の接続管と、
第五の接続管の途中でエジェクタに並列に設けた第三の
開閉弁と、前記第七の接続管の途中に並列に接続した第
二の絞り装置と第二の逆止弁とを備えたものである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention comprises a heater for exchanging heat with the combustion gas generated in the combustion section, and a four-way valve for switching the refrigerant circuit during cooling operation and heating operation.
A fifth connection pipe, one end of which is connected to the outlet of the heater and the other end of which is connected to the first connection port of the four-way valve, and which is provided in the middle of the fifth connection pipe and is fed from the heater An ejector, which ejects toward the first connection port of the four-way valve and sucks low-pressure vapor refrigerant from a suction port provided on the side, and one end of which is connected to the second connection port of the four-way valve, and the other end of which A sixth connecting pipe connected to the outdoor heat exchanger that condenses and liquefies the vapor refrigerant during cooling, and one end is connected to the outdoor heat exchanger, and the other end becomes an evaporator during cooling and a condenser during heating. A seventh connecting pipe connected to the indoor heat exchanger and having a first opening / closing valve, and an eighth connecting one end to the indoor heat exchanger and the other end to the third connecting port of the four-way valve. One end is connected to the connection pipe of and the fourth connection port of the four-way valve, and the other end is connected to the suction port of the ejector. A ninth connection pipe provided with the closed, and the seventh branches from the middle of the branch point of the connecting pipe, the tenth connecting tube provided with the connection to the coolant pump to the inlet of said heater,
A third opening / closing valve provided in parallel with the ejector in the middle of the fifth connection pipe, and a second throttle device and a second check valve connected in parallel in the middle of the seventh connection pipe were provided. It is a thing.

【0015】本発明によれば低外気温時の暖房運転開始
など暖房負荷が大きい場合に、加熱器から出た高温高圧
の蒸気冷媒をエジェクタに送り、前記エジェクタの吸入
口から室外熱交換器の低圧の冷媒を吸引するため、室外
の大気熱も暖房に加えることができるので高暖房能力と
なり、快適性も向上させることができる。さらに、通常
の暖房運転時には、前記加熱器から出た蒸気冷媒を前記
エジェクタをバイパスして流すので、流路抵抗が小さく
なる分だけ冷媒温度が下がり、放熱損失も減少させるこ
とができ、暖房運転の効率向上も可能となる。
According to the present invention, when the heating load is large such as when the heating operation is started at a low outdoor temperature, the high-temperature and high-pressure vapor refrigerant discharged from the heater is sent to the ejector, and the intake port of the ejector is used to supply the outdoor heat exchanger. Since the low-pressure refrigerant is sucked, the atmospheric heat outside the room can be added to the heating, so that the heating capacity becomes high and the comfort can be improved. Furthermore, during normal heating operation, the vapor refrigerant that has flowed out of the heater bypasses the ejector and flows, so the refrigerant temperature decreases by the amount that the flow path resistance decreases, and the heat dissipation loss can also decrease. It is possible to improve the efficiency of.

【0016】請求項2に記載の発明は燃焼部で生じた燃
焼ガスと熱交換する加熱器と、冷房運転と暖房運転時に
冷媒回路を切り換える四方弁と、前記加熱器の出口に一
端を、前記四方弁の第一の接続口に他端をそれぞれ接続
した第五の接続管と、この第五の接続管の途中に設けら
れ加熱器から送られてくる前記四方弁の第一の接続口に
向けて噴出し、側方に設けた吸入口から低圧の蒸気冷媒
を吸入するエジェクタと、前記四方弁の第二の接続口に
一端を接続し、他端を冷房時に蒸気冷媒を凝縮し液化す
る室外熱交換器に接続した第六の接続管と、前記室外熱
交換器に一端を接続し、他端を冷房時に蒸発器になり暖
房時に凝縮器となる室内熱交換器に接続し第一の開閉弁
を具備した第七の接続管と、前記室内熱交換器に一端を
接続し、他端を前記四方弁の第三の接続口に接続した第
八の接続管と、前記四方弁の第四の接続口に一端を接続
し、他端を前記エジェクタの吸入口に接続し第二の開閉
弁を具備した第九の接続管と、前記第七の接続管の途中
の分岐点から分岐し、前記加熱器の入口に接続し冷媒ポ
ンプを具備した第十の接続管と、第五の接続管の途中で
エジェクタに並列に設けた第三の開閉弁と、前記第七の
接続管の途中に並列に接続した第二の絞り装置と第二の
逆止弁と、外気温度検出手段と、ある設定された所定の
温度よりも前記外気温度検出手段から得られた外気温度
の方が高いときには大気熱吸収燃焼暖房運転を行い、低
いときには燃焼暖房運転を行なうように、第一、第二お
よび第三の開閉弁の開閉動作の制御を行なう制御器とか
らなるものである。
According to a second aspect of the present invention, a heater for exchanging heat with the combustion gas generated in the combustion section, a four-way valve for switching the refrigerant circuit during cooling operation and heating operation, and one end at the outlet of the heater are provided. A fifth connecting pipe having the other end connected to the first connecting port of the four-way valve, and a first connecting port of the four-way valve which is provided in the middle of the fifth connecting pipe and is sent from the heater. One end is connected to the ejector that ejects toward the ejector and sucks low-pressure vapor refrigerant from the side-intake port and the second connection port of the four-way valve, and the other end is condensed and liquefied during cooling. A sixth connecting pipe connected to the outdoor heat exchanger, one end of which is connected to the outdoor heat exchanger, and the other end of which is connected to the indoor heat exchanger which serves as an evaporator during cooling and serves as a condenser during heating. A seventh connecting pipe equipped with an on-off valve and one end is connected to the indoor heat exchanger, and the other end is connected to the front. An eighth connecting pipe connected to the third connecting port of the four-way valve and one end of the fourth connecting port of the four-way valve are connected, and the other end is connected to the suction port of the ejector to form a second opening / closing valve. A ninth connecting pipe provided, and a tenth connecting pipe branched from a branch point in the middle of the seventh connecting pipe, connected to the inlet of the heater and provided with a refrigerant pump, and a fifth connecting pipe. A third on-off valve provided in parallel with the ejector on the way, a second throttle device and a second check valve connected in parallel on the way of the seventh connecting pipe, an outside air temperature detecting means, and a certain setting When the outside air temperature obtained from the outside air temperature detecting means is higher than the predetermined temperature, the atmospheric heat absorption combustion heating operation is performed, and when the outside air temperature is low, the combustion heating operation is performed. And a controller for controlling the opening / closing operation of the opening / closing valve.

【0017】本発明によれば、室外の大気熱も暖房に加
える大気熱吸収燃焼暖房運転と通常の燃焼暖房運転と
を、外気温度に応じて、効率のよい方に切り換えるの
で、暖房運転の効率向上が可能となる。
According to the present invention, the atmospheric heat absorption combustion heating operation in which the outdoor heat is also added to the heating and the normal combustion heating operation are switched to the more efficient one according to the outside air temperature. It is possible to improve.

【0018】請求項3に記載の発明は、燃焼部で生じた
燃焼ガスと熱交換する加熱器と、冷房運転と暖房運転時
に冷媒回路を切り換える四方弁と、前記加熱器の出口に
一端を、前記四方弁の第一の接続口に他端をそれぞれ接
続した第五の接続管と、この第五の接続管の途中に設け
られ加熱器から送られてくる前記四方弁の第一の接続口
に向けて噴出し、側方に設けた吸入口から低圧の蒸気冷
媒を吸入するエジェクタと、前記四方弁の第二の接続口
に一端を接続し、他端を冷房時に蒸気冷媒を凝縮し液化
する室外熱交換器に接続した第六の接続管と、前記室外
熱交換器に一端を接続し、他端を冷房時に蒸発器になり
暖房時に凝縮器となる室内熱交換器に接続し第一の開閉
弁を具備した第七の接続管と、前記室内熱交換器に一端
を接続し、他端を前記四方弁の第三の接続口に接続した
第八の接続管と、前記四方弁の第四の接続口に一端を接
続し、他端を前記エジェクタの吸入口に接続し第二の開
閉弁を具備した第九の接続管と、前記第七の接続管の途
中の分岐点から分岐し、前記加熱器の入口に接続し冷媒
ポンプを具備した第十の接続管と、第五の接続管の途中
でエジェクタに並列に設けた第三の開閉弁と、前記第七
の接続管の途中に並列に接続した第二の絞り装置と第二
の逆止弁と、外気温度検出手段と、ある設定された所定
の温度よりも前記外気温度検出手段から得られた外気温
度の方が高いときには大気熱吸収燃焼暖房運転を行い、
低いときには燃焼暖房運転を行なうように、第一、第二
および第三の開閉弁の開閉動作の制御を行なう制御器と
からなるものである。
According to a third aspect of the present invention, a heater for exchanging heat with the combustion gas generated in the combustion section, a four-way valve for switching the refrigerant circuit during the cooling operation and the heating operation, and one end at the outlet of the heater are provided. A fifth connecting pipe having the other end connected to the first connecting port of the four-way valve, and a first connecting port of the four-way valve which is provided in the middle of the fifth connecting pipe and is sent from a heater. Ejector that injects toward low temperature and sucks low-pressure vapor refrigerant from the intake port on the side, and one end is connected to the second connection port of the four-way valve, and the other end is condensed and liquefied during cooling. A sixth connecting pipe connected to the outdoor heat exchanger, and one end of which is connected to the outdoor heat exchanger, and the other end of which is connected to an indoor heat exchanger which serves as an evaporator during cooling and a condenser during heating. The seventh connecting pipe equipped with the on-off valve and one end is connected to the indoor heat exchanger and the other end is connected. An eighth connecting pipe connected to the third connecting port of the four-way valve and one end of the fourth connecting port of the four-way valve, the other end of which is connected to the intake port of the ejector to form a second opening / closing valve. A ninth connecting pipe provided with, a tenth connecting pipe branched from a branch point in the middle of the seventh connecting pipe, connected to the inlet of the heater and provided with a refrigerant pump, and a fifth connecting pipe. There is a third on-off valve provided in parallel with the ejector in the middle of, a second throttle device and a second check valve connected in parallel in the middle of the seventh connection pipe, and an outside air temperature detecting means. When the outside air temperature obtained from the outside air temperature detecting means is higher than the set predetermined temperature, the atmospheric heat absorption combustion heating operation is performed,
A controller for controlling the opening / closing operations of the first, second and third opening / closing valves so as to perform the combustion heating operation when the temperature is low.

【0019】本発明によれば、室外の大気熱も暖房に加
える大気熱吸収燃焼暖房運転と通常の燃焼暖房運転と
を、外気温度と蒸発温度との差で切り換えるので、暖房
運転の効率向上が可能となる。
According to the present invention, the atmospheric heat absorption combustion heating operation in which the outdoor heat is also added to the heating and the normal combustion heating operation are switched by the difference between the outside air temperature and the evaporation temperature, so that the efficiency of the heating operation is improved. It will be possible.

【0020】請求項4に記載の発明は、燃焼部で生じた
燃焼ガスと熱交換する加熱器と、冷房運転と暖房運転時
に冷媒回路を切り換える四方弁と、前記加熱器の出口に
一端を、前記四方弁の第一の接続口に他端をそれぞれ接
続した第五の接続管と、この第五の接続管の途中に設け
られ加熱器から送られてくる前記四方弁の第一の接続口
に向けて噴出し、側方に設けた吸入口から低圧の蒸気冷
媒を吸入するエジェクタと、前記四方弁の第二の接続口
に一端を接続し、他端を冷房時に蒸気冷媒を凝縮し液化
する室外熱交換器に接続した第六の接続管と、前記室外
熱交換器に一端を接続し、他端を冷房時に蒸発器になり
暖房時に凝縮器となる室内熱交換器に接続し第一の開閉
弁を具備した第七の接続管と、前記室内熱交換器に一端
を接続し、他端を前記四方弁の第三の接続口に接続した
第八の接続管と、前記四方弁の第四の接続口に一端を接
続し、他端を前記エジェクタの吸入口に接続し第二の開
閉弁を具備した第九の接続管と、前記第七の接続管の途
中の分岐点から分岐し、前記加熱器の入口に接続し冷媒
ポンプを具備した第十の接続管と、第五の接続管の途中
でエジェクタに並列に設けた第三の開閉弁と、前記第七
の接続管の途中に並列に接続した第二の絞り装置と第二
の逆止弁と、外気温度検出手段と、室外熱交換器の伝熱
管表面に設けられた冷媒温度検出手段と、大気熱吸収燃
焼暖房運転時に前記外気温度検出手段から得られた外気
温度と前記冷媒温度検出手段から得られた冷媒温度との
差が所定の温度差になるように燃焼部と冷媒ポンプとの
制御を行なう制御器とからなるものである。
According to a fourth aspect of the present invention, there is provided a heater for exchanging heat with the combustion gas generated in the combustion section, a four-way valve for switching the refrigerant circuit during the cooling operation and the heating operation, and one end at the outlet of the heater. A fifth connecting pipe having the other end connected to the first connecting port of the four-way valve, and a first connecting port of the four-way valve which is provided in the middle of the fifth connecting pipe and is sent from a heater. Ejector that injects toward low temperature and sucks low-pressure vapor refrigerant from the intake port on the side, and one end is connected to the second connection port of the four-way valve, and the other end is condensed and liquefied during cooling. A sixth connecting pipe connected to the outdoor heat exchanger, and one end of which is connected to the outdoor heat exchanger, and the other end of which is connected to an indoor heat exchanger which serves as an evaporator during cooling and a condenser during heating. The seventh connecting pipe equipped with the on-off valve and one end is connected to the indoor heat exchanger and the other end is connected. An eighth connecting pipe connected to the third connecting port of the four-way valve and one end of the fourth connecting port of the four-way valve, the other end of which is connected to the intake port of the ejector to form a second opening / closing valve. A ninth connecting pipe provided with, a tenth connecting pipe branched from a branch point in the middle of the seventh connecting pipe, connected to the inlet of the heater and provided with a refrigerant pump, and a fifth connecting pipe. A third on-off valve provided in parallel with the ejector in the middle of the, the second throttle device and the second check valve connected in parallel in the middle of the seventh connecting pipe, the outside air temperature detecting means, and the outdoor Refrigerant temperature detection means provided on the heat transfer tube surface of the heat exchanger, the difference between the outside air temperature obtained from the outside air temperature detection means and the refrigerant temperature obtained from the refrigerant temperature detection means during the atmospheric heat absorption combustion heating operation Consisting of a controller that controls the combustion unit and the refrigerant pump so that the temperature difference becomes a predetermined temperature difference. A.

【0021】本発明によれば、室外の大気熱も暖房に加
える大気熱吸収燃焼暖房運転時に、外気温度に対して最
適の蒸発温度となるように燃焼量を制御するので、暖房
運転の効率向上が可能となる。
According to the present invention, during the atmospheric heat absorption combustion heating operation in which the outdoor atmospheric heat is also added to the heating, the combustion amount is controlled so that the evaporation temperature is optimum for the outside air temperature, so that the efficiency of the heating operation is improved. Is possible.

【0022】請求項5に記載の発明は燃焼部で生じた燃
焼ガスと熱交換する加熱器と、冷房運転と暖房運転時に
冷媒回路を切り換える四方弁と、前記加熱器の出口に一
端を、前記四方弁の第一の接続口に他端をそれぞれ接続
した第五の接続管と、この第五の接続管の途中に設けら
れ加熱器から送られてくる前記四方弁の第一の接続口に
向けて噴出し、側方に設けた吸入口から低圧の蒸気冷媒
を吸入するエジェクタと、前記四方弁の第二の接続口に
一端を接続し、他端を冷房時に蒸気冷媒を凝縮し液化す
る室外熱交換器に接続した第六の接続管と、前記室外熱
交換器に一端を接続し、他端を冷房時に蒸発器になり暖
房時に凝縮器となる室内熱交換器に接続し第一の開閉弁
を具備した第七の接続管と、前記室内熱交換器に一端を
接続し、他端を前記四方弁の第三の接続口に接続した第
八の接続管と、前記四方弁の第四の接続口に一端を接続
し、他端を前記エジェクタの吸入口に接続し第二の開閉
弁を具備した第九の接続管と、前記第七の接続管の途中
の分岐点から分岐し、前記加熱器の入口に接続し冷媒ポ
ンプを具備した第十の接続管と、第五の接続管の途中で
エジェクタに並列に設けた第三の開閉弁と、前記第一、
第二および第三の開閉弁の開閉と前記四方弁の切り替え
とを制御する制御器とからなるものである。
According to a fifth aspect of the present invention, a heater for exchanging heat with the combustion gas generated in the combustion section, a four-way valve for switching the refrigerant circuit during cooling operation and heating operation, and one end of the heater at the outlet are provided. A fifth connecting pipe having the other end connected to the first connecting port of the four-way valve, and a first connecting port of the four-way valve which is provided in the middle of the fifth connecting pipe and is sent from the heater. One end is connected to the ejector that ejects toward the ejector and sucks low-pressure vapor refrigerant from the side-intake port and the second connection port of the four-way valve, and the other end is condensed and liquefied during cooling. A sixth connecting pipe connected to the outdoor heat exchanger, one end of which is connected to the outdoor heat exchanger, and the other end of which is connected to the indoor heat exchanger which serves as an evaporator during cooling and serves as a condenser during heating. A seventh connecting pipe equipped with an on-off valve and one end is connected to the indoor heat exchanger, and the other end is connected to the front. An eighth connecting pipe connected to the third connecting port of the four-way valve and one end of the fourth connecting port of the four-way valve are connected, and the other end is connected to the suction port of the ejector to form a second opening / closing valve. A ninth connecting pipe provided, and a tenth connecting pipe branched from a branch point in the middle of the seventh connecting pipe, connected to the inlet of the heater and provided with a refrigerant pump, and a fifth connecting pipe. A third opening / closing valve provided in parallel with the ejector on the way, the first,
The controller comprises a controller for controlling opening / closing of the second and third opening / closing valves and switching of the four-way valve.

【0023】本発明によれば、暖房運転開始時に、加熱
器から出た高温高圧の蒸気冷媒をエジェクタに送り、前
記エジェクタの吸入口から室外熱交換器の低圧の冷媒を
吸引し暖房冷媒回路中に吸収するため、前記暖房冷媒回
路中には常に必要冷媒量を確保することができ、安定し
た暖房運転が可能となり、快適性も向上させることがで
きる。
According to the present invention, when the heating operation is started, the high-temperature and high-pressure vapor refrigerant discharged from the heater is sent to the ejector, and the low-pressure refrigerant of the outdoor heat exchanger is sucked from the intake port of the ejector to allow the refrigerant in the heating refrigerant circuit. Therefore, the required amount of refrigerant can be always secured in the heating refrigerant circuit, stable heating operation can be performed, and comfort can be improved.

【0024】請求項6に記載の発明は、燃焼部で生じた
燃焼ガスと熱交換する加熱器と、冷房運転と暖房運転時
に冷媒回路を切り換える四方弁と、前記加熱器の出口に
一端を、前記四方弁の第一の接続口に他端をそれぞれ接
続した第五の接続管と、この第五の接続管の途中に設け
られ加熱器から送られてくる前記四方弁の第一の接続口
に向けて噴出し、側方に設けた吸入口から低圧の蒸気冷
媒を吸入するエジェクタと、前記四方弁の第二の接続口
に一端を接続し、他端を冷房時に蒸気冷媒を凝縮し液化
する室外熱交換器に接続した第六の接続管と、前記室外
熱交換器に一端を接続し、他端を冷房時に蒸発器になり
暖房時に凝縮器となる室内熱交換器に接続し第一の開閉
弁を具備した第七の接続管と、前記室内熱交換器に一端
を接続し、他端を前記四方弁の第三の接続口に接続した
第八の接続管と、前記四方弁の第四の接続口に一端を接
続し、他端を前記エジェクタの吸入口に接続し第二の開
閉弁を具備した第九の接続管と、前記第七の接続管の途
中の分岐点から分岐し、前記加熱器の入口に接続し冷媒
ポンプを具備した第十の接続管と、第五の接続管の途中
でエジェクタに並列に設けた第三の開閉弁と、前記加熱
器の伝熱管表面に設けられた加熱器温度検出手段と、燃
焼暖房運転中に前記加熱器温度検出手段から得られた冷
媒温度がある設定された所定の冷媒温度よりも高いとき
に燃焼暖房運転から冷媒回収運転に切り換えを制御する
制御器とからなるものである。
According to a sixth aspect of the present invention, there is provided a heater for exchanging heat with the combustion gas generated in the combustion section, a four-way valve for switching the refrigerant circuit between the cooling operation and the heating operation, and one end at the outlet of the heater. A fifth connecting pipe having the other end connected to the first connecting port of the four-way valve, and a first connecting port of the four-way valve which is provided in the middle of the fifth connecting pipe and is sent from a heater. Ejector that injects toward low temperature and sucks low-pressure vapor refrigerant from the intake port on the side, and one end is connected to the second connection port of the four-way valve, and the other end is condensed and liquefied during cooling. A sixth connecting pipe connected to the outdoor heat exchanger, and one end of which is connected to the outdoor heat exchanger, and the other end of which is connected to an indoor heat exchanger which serves as an evaporator during cooling and a condenser during heating. The seventh connecting pipe equipped with the on-off valve and one end is connected to the indoor heat exchanger and the other end is connected. An eighth connecting pipe connected to the third connecting port of the four-way valve and one end of the fourth connecting port of the four-way valve, the other end of which is connected to the intake port of the ejector to form a second opening / closing valve. A ninth connecting pipe provided with, a tenth connecting pipe branched from a branch point in the middle of the seventh connecting pipe, connected to the inlet of the heater and provided with a refrigerant pump, and a fifth connecting pipe. The third on-off valve provided in parallel with the ejector in the middle of the, the heater temperature detection means provided on the heat transfer tube surface of the heater, the refrigerant obtained from the heater temperature detection means during combustion heating operation And a controller for controlling the switching from the combustion heating operation to the refrigerant recovery operation when the temperature is higher than a predetermined set refrigerant temperature.

【0025】本発明によれば、暖房運転中に、加熱器の
冷媒温度を検出し、冷房専用冷媒回路にある程度洩れ込
んだときに、暖房冷媒回路中に冷媒を回収するため、前
記暖房冷媒回路中には常に必要冷媒量を確保することが
でき、安定した暖房運転が可能となり、快適性も向上さ
せることができる。
According to the present invention, the refrigerant temperature of the heater is detected during the heating operation, and when the refrigerant temperature leaks to the cooling-only refrigerant circuit to some extent, the refrigerant is recovered in the heating refrigerant circuit. The required amount of refrigerant can be always secured inside, stable heating operation is possible, and comfort can be improved.

【0026】以下、本発明の実施の形態1を図1を参照
しながら説明する。図1は本発明の実施の形態1のシス
テム構成図である。
The first embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a system configuration diagram of Embodiment 1 of the present invention.

【0027】図1において、従来例の図11と異なると
ころは、第五の接続管19の途中でエジェクタ8に並列
に第三の開閉弁34を設け、さらに、第七の接続管24
の途中に第二の絞り装置35と第二の逆止弁36とが並
列に設けられている点である。
In FIG. 1, the difference from FIG. 11 of the conventional example is that a third opening / closing valve 34 is provided in parallel with the ejector 8 in the middle of the fifth connecting pipe 19, and further the seventh connecting pipe 24 is provided.
The second throttling device 35 and the second check valve 36 are provided in parallel in the middle of.

【0028】上記構成において動作を説明する。先ず、
冷房運転を行なう場合、四方弁17の第一と第二の接続
口18、20および第三と第四の接続口25、27がそ
れぞれ通じるように四方弁17を切り換え、さらに、第
一と第二の開閉弁30、32とを開状態とし、第三の開
閉弁34を閉状態とする。加熱器3の熱源が図10の場
合自動車のエンジンの冷却水または排気であるのに対
し、図1の場合は一般的な燃焼部16という違いはある
が、この時の動作作用は、図10や図11の場合と同様
なので説明は省略する。
The operation of the above configuration will be described. First,
When performing the cooling operation, the four-way valve 17 is switched so that the first and second connection ports 18 and 20 and the third and fourth connection ports 25 and 27 of the four-way valve 17 are connected to each other, and further, the first and second connection ports are connected. The second opening / closing valves 30 and 32 are opened, and the third opening / closing valve 34 is closed. In the case where the heat source of the heater 3 is the cooling water or the exhaust gas of the automobile engine in the case of FIG. 10, there is a difference in the case of the general combustion section 16 in the case of FIG. Since it is similar to the case of FIG. 11 and FIG.

【0029】次に、低外気温時の運転開始など負荷が大
きいときの大気熱吸収燃焼暖房運転の場合には、四方弁
17の第一と第三の接続口18、25および第二と第四
の接続口20、27がそれぞれ通じるように四方弁17
を切り換え、さらに、第一および第二の開閉弁30、3
2を開状態とし、第三の開閉弁34とを閉状態とする。
燃焼部16で発生した燃焼ガスと冷媒ポンプ2から送ら
れてきた液冷媒とは加熱器3内で熱交換し、この液冷媒
は蒸発して高圧の蒸気となってエジェクタ8に入る。こ
の高圧蒸気の冷媒はエジェクタ8のノズル8aから高速
で噴射されるため、エジェクタ8の混合室8b内の圧力
が低下し負圧となる。その結果、吸入口7に接続された
第九の接続管28と第六の接続管22を通じて室外熱交
換器21も負圧となるため、室内熱交換器23で凝縮液
化した液冷媒の一部は分岐点12、第七の接続管24、
室外熱交換器21、第六の接続管22および第9の接続
管28などを通って吸入口7からエジェクタ8に吸引さ
れる。この液冷媒が室外熱交換器21で蒸発する際、室
外の大気から熱を吸収する。第五の接続管19から送ら
れてきた高温高圧の蒸気と第九の接続管28から送られ
てきた低温低圧の蒸気とがエジェクタ8で混合し、さら
に、室内熱交換器23に入って凝縮液化する。この凝縮
液化するとき、室内に凝縮熱を放熱して暖房を行なう。
そして、この液冷媒の一部は前述のように第七の接続管
24を通って室外熱交換器21に入り、他の冷媒は第十
の接続管29を通って冷媒ポンプ2に吸引される。
Next, in the case of the atmospheric heat absorption combustion heating operation when the load is large such as the start of operation at low outside air temperature, the first and third connection ports 18 and 25 of the four-way valve 17 and the second and second connection ports are provided. Four-way valve 17 so that the four connection ports 20 and 27 communicate with each other
And the first and second on-off valves 30, 3
2 is opened and the third on-off valve 34 is closed.
The combustion gas generated in the combustion section 16 and the liquid refrigerant sent from the refrigerant pump 2 exchange heat in the heater 3, and the liquid refrigerant evaporates into high-pressure vapor and enters the ejector 8. This high-pressure vapor refrigerant is ejected at a high speed from the nozzle 8a of the ejector 8, so that the pressure in the mixing chamber 8b of the ejector 8 decreases and becomes a negative pressure. As a result, since the outdoor heat exchanger 21 also has a negative pressure through the ninth connecting pipe 28 and the sixth connecting pipe 22 connected to the suction port 7, a part of the liquid refrigerant condensed and liquefied in the indoor heat exchanger 23 is obtained. Is a branch point 12, a seventh connecting pipe 24,
It is sucked from the suction port 7 to the ejector 8 through the outdoor heat exchanger 21, the sixth connecting pipe 22, the ninth connecting pipe 28, and the like. When this liquid refrigerant evaporates in the outdoor heat exchanger 21, it absorbs heat from the outdoor atmosphere. The high-temperature and high-pressure steam sent from the fifth connection pipe 19 and the low-temperature and low-pressure steam sent from the ninth connection pipe 28 are mixed by the ejector 8, and further enter the indoor heat exchanger 23 to be condensed. Liquefy. When condensed and liquefied, the heat of condensation is radiated into the room for heating.
Then, as described above, a part of the liquid refrigerant enters the outdoor heat exchanger 21 through the seventh connection pipe 24, and the other refrigerant is sucked into the refrigerant pump 2 through the tenth connection pipe 29. .

【0030】次に、通常の燃焼暖房運転の場合には、四
方弁17の第一と第三の接続口18、25および第二と
第四の接続口20、27がそれぞれ通じるように四方弁
17を切り換え、さらに、第一および第二の開閉弁3
0、32を閉状態とし、第三の開閉弁34とを開状態と
する。燃焼部16で発生した燃焼ガスと冷媒ポンプ2か
ら送られてきた液冷媒とは加熱器3内で熱交換し、この
液冷媒は蒸発して蒸気となって、第三の開閉弁34と四
方弁17を通って室内熱交換器23で凝縮液化する。こ
の蒸気冷媒が室内熱交換器23でで凝縮する際、周囲に
熱を放出して暖房効果を発生する。この凝縮した液冷媒
は分岐点12を通って冷媒ポンプ2に吸い込まれる。
Next, in the case of the normal combustion heating operation, the four-way valve is configured so that the first and third connection ports 18 and 25 and the second and fourth connection ports 20 and 27 of the four-way valve 17 communicate with each other. 17, the first and second on-off valves 3
0 and 32 are closed, and the third opening / closing valve 34 is opened. The combustion gas generated in the combustion unit 16 and the liquid refrigerant sent from the refrigerant pump 2 exchange heat in the heater 3, and the liquid refrigerant evaporates to become vapor, and the third on-off valve 34 and the four-way valve It is condensed and liquefied in the indoor heat exchanger 23 through the valve 17. When this vapor refrigerant is condensed in the indoor heat exchanger 23, heat is released to the surroundings to generate a heating effect. The condensed liquid refrigerant is sucked into the refrigerant pump 2 through the branch point 12.

【0031】本発明の実施の形態1によれば、低外気温
時の運転開始など負荷が大きいときの暖房運転の場合に
は、燃焼部16の燃焼熱に加えて室外の大気から熱も暖
房に利用するので、大きな暖房能力が得られ室温の立ち
上げが速くなり、さらに、暖房の効率も良くなる。ま
た、通常の暖房運転の場合には、加熱器から出た蒸気冷
媒をエジェクタをバイパスして流すので、流路抵抗が小
さくなる分だけ冷媒温度が下がり、放熱損失も減少させ
ることができ、暖房運転の効率が向上する。
According to the first embodiment of the present invention, in the heating operation when the load is large such as the start of operation at a low outdoor temperature, the heat from the outdoor atmosphere is also heated in addition to the combustion heat of the combustion section 16. Since it is used for, the large heating capacity can be obtained, the room temperature can be started up quickly, and the heating efficiency can be improved. Also, in the case of normal heating operation, since the vapor refrigerant that has flowed out of the heater flows by bypassing the ejector, the refrigerant temperature decreases as much as the flow path resistance decreases, and the heat radiation loss can also be reduced. Driving efficiency is improved.

【0032】なお、本実施の形態1の第二の開閉弁32
のかわりに逆止弁を四方弁17の第四の接続口27から
エジェクタ8の吸入口7の方向へ流れるように用いても
同様の作用効果が得られる。
The second on-off valve 32 of the first embodiment
Alternatively, a check valve may be used so as to flow from the fourth connection port 27 of the four-way valve 17 toward the suction port 7 of the ejector 8 to obtain the same effect.

【0033】次に本発明の実施の形態2を図2を用いて
説明する。図2は本発明の実施の形態2のシステム図で
ある。
Next, a second embodiment of the present invention will be described with reference to FIG. 2 is a system diagram of Embodiment 2 of the present invention.

【0034】図2において、図1の実施の形態1と異な
るところは、制御器37が室外の温度を検出する外気温
度検出手段38の出力信号から得た外気温度によって、
第一、第二および第三の開閉弁30、32、34の開閉
動作の制御を行なうことである。
In FIG. 2, the difference from the first embodiment of FIG. 1 is that the outside temperature obtained by the output signal of the outside temperature detecting means 38 for detecting the outdoor temperature by the controller 37
Controlling the opening / closing operation of the first, second and third opening / closing valves 30, 32, 34.

【0035】上記構成において動作を説明する。運転の
種類としては、冷房運転、低外気温時の運転開始など負
荷の大きいときの大気熱吸収燃焼暖房運転および通常の
燃焼暖房運転の3種類がある。この3種類の運転の動作
作用については、図1の実施の形態1と同様なので説明
は省略する。
The operation of the above configuration will be described. There are three types of operation: air-cooling operation, atmospheric heat absorption combustion heating operation when the load is large such as operation start at low outside temperature, and normal combustion heating operation. The operation and action of these three types of operation are the same as those of the first embodiment shown in FIG.

【0036】次に、暖房運転時の大気熱吸収燃焼暖房運
転と通常の燃焼暖房運転との切り換えについて説明す
る。図3は横軸に外気温度をとり、縦軸に効率をとっ
て、外気温度が変化したときの暖房効率の変化を示した
ものである。同図で点線が通常の燃焼暖房の場合であ
り、外気温度が変化してもあまり効率は変化しない。ま
た、実線は大気熱吸収燃焼暖房運転の場合であり、外気
温度の変化に対して効率は変化する。これは、高圧蒸気
の冷媒がエジェクタ8のノズル8aから高速で噴射され
るとエジェクタ8の混合室8b内の圧力が低下し負圧と
なる。その結果、室外熱交換器21も負圧となるが、こ
の時の室外熱交換器21の冷媒の温度はこの負圧となっ
た圧力で決まる温度となる。また、室外熱交換器21が
蒸発器として室外の大気から熱を吸収する量は、外気温
度とこの冷媒の温度との温度差が大きいほど大きくなる
ので、効率は図3に示すようになる。同図において、大
気熱吸収燃焼暖房運転の効率と通常の燃焼暖房運転の効
率とが交わる点の外気温度をTとすると、Tより高い外
気温度であれば大気熱吸収燃焼暖房運転を行い、Tより
低ければ通常の燃焼暖房運転を行なえば効率のよい運転
になる。
Next, switching between the atmospheric heat absorption combustion heating operation and the normal combustion heating operation during the heating operation will be described. FIG. 3 shows the change in heating efficiency when the outside air temperature changes, with the outside air temperature on the horizontal axis and the efficiency on the vertical axis. In the figure, the dotted line indicates the case of normal combustion heating, and the efficiency does not change much even if the outside air temperature changes. Further, the solid line shows the case of the atmospheric heat absorption combustion heating operation, and the efficiency changes with changes in the outside air temperature. This is because when the high-pressure vapor refrigerant is injected from the nozzle 8a of the ejector 8 at high speed, the pressure in the mixing chamber 8b of the ejector 8 decreases and becomes a negative pressure. As a result, the outdoor heat exchanger 21 also has a negative pressure, but the temperature of the refrigerant in the outdoor heat exchanger 21 at this time becomes a temperature determined by the negative pressure. Further, the amount of heat that the outdoor heat exchanger 21 absorbs from the outdoor atmosphere as an evaporator increases as the temperature difference between the outside air temperature and the temperature of this refrigerant increases, so that the efficiency is as shown in FIG. In the figure, when the outside air temperature at the point where the efficiency of the atmospheric heat absorption combustion heating operation intersects with the efficiency of the normal combustion heating operation is T, if the outside air temperature is higher than T, the atmospheric heat absorption combustion heating operation is performed, and T If it is lower, the normal combustion heating operation will be performed, resulting in efficient operation.

【0037】そこで、外気温度検出手段38の出力信号
から得た外気温度がTより高い外気温度であれば、制御
器37は、第一および第二の開閉弁30、32を開状態
とし、第三の開閉弁34とを閉状態として、大気熱吸収
燃焼暖房運転を行う。逆に、外気温度検出手段38の出
力信号から得た外気温度がTより低い外気温度であれ
ば、制御器37は、第一および第二の開閉弁30、32
を閉状態とし、第三の開閉弁34とを開状態として、通
常の燃焼暖房運転を行う。
Therefore, if the outside air temperature obtained from the output signal of the outside air temperature detecting means 38 is an outside air temperature higher than T, the controller 37 opens the first and second opening / closing valves 30 and 32, and The atmospheric heat absorption combustion heating operation is performed with the third on-off valve 34 closed. On the contrary, if the outside air temperature obtained from the output signal of the outside air temperature detecting means 38 is the outside air temperature lower than T, the controller 37 causes the first and second on-off valves 30, 32 to be opened.
Is closed and the third on-off valve 34 is opened to perform a normal combustion heating operation.

【0038】本発明の実施の形態2によれば、大気熱吸
収燃焼暖房運転と通常の燃焼暖房運転とを外気温度によ
って効率のよい方に切り換えるので、暖房運転の効率が
向上する。
According to the second embodiment of the present invention, the atmospheric heat absorption combustion heating operation and the normal combustion heating operation are switched to the more efficient one depending on the outside air temperature, so that the efficiency of the heating operation is improved.

【0039】なお、本実施の形態2の第二の開閉弁32
のかわりに逆止弁を四方弁17の第四の接続口27から
エジェクタ8の吸入口7の方向へ流れるように用いても
同様の作用効果が得られる。
The second on-off valve 32 of the second embodiment
Alternatively, a check valve may be used so as to flow from the fourth connection port 27 of the four-way valve 17 toward the suction port 7 of the ejector 8 to obtain the same effect.

【0040】次に本発明の実施の形態3を図4を用いて
説明する。図4は本発明の実施の形態3のシステム図で
ある。
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 4 is a system diagram of Embodiment 3 of the present invention.

【0041】図4において、図1の実施の形態1と異な
るところは、制御器37が、室外の温度を検出する外気
温度検出手段38の出力信号から得た外気温度と室外熱
交換器21の冷媒温度を検出する冷媒温度検出手段39
の出力信号から得た冷媒温度との差によって、第一、第
二および第三の開閉弁30、32、34の開閉動作の制
御を行なうことである。
In FIG. 4, the difference from the first embodiment of FIG. 1 is that the controller 37 obtains the outside air temperature obtained from the output signal of the outside air temperature detecting means 38 for detecting the outside temperature and the outside heat exchanger 21. Refrigerant temperature detecting means 39 for detecting the refrigerant temperature
The opening / closing operations of the first, second and third opening / closing valves 30, 32, 34 are controlled by the difference with the refrigerant temperature obtained from the output signal.

【0042】上記構成において動作を説明する。運転の
種類としては、冷房運転、低外気温時の運転開始など負
荷の大きいときの大気熱吸収燃焼暖房運転および通常の
燃焼暖房運転の3種類がある。この3種類の運転の動作
作用については、図1の実施の形態1と同様なので説明
は省略する。
The operation of the above configuration will be described. There are three types of operation: air-cooling operation, atmospheric heat absorption combustion heating operation when the load is large such as operation start at low outside temperature, and normal combustion heating operation. The operation and action of these three types of operation are the same as those of the first embodiment shown in FIG.

【0043】次に、暖房運転時の大気熱吸収燃焼暖房運
転から通常の燃焼暖房運転への切り換えについて説明す
る。大気熱吸収燃焼暖房運転の場合、高圧蒸気の冷媒が
エジェクタ8のノズル8aから高速で噴射されるとエジ
ェクタ8の混合室8b内の圧力が低下し負圧となる。そ
の結果、室外熱交換器21も負圧となるが、この時の室
外熱交換器21の冷媒の温度はこの負圧となった圧力で
決まる温度となる。また、室外熱交換器21が蒸発器と
して室外の大気から熱を吸収する量は、外気温度とこの
冷媒の温度との温度差が大きいほど大きくなる。逆に、
外気温度の方が冷媒の温度よりも低くなると、室外熱交
換器21が凝縮器として室外の大気へ熱を放熱してしま
い、全くエネルギーの無駄となる。いま、室外熱交換器
21が蒸発器として室外の大気から熱を吸収できる外気
温度から冷媒の温度を引いた温度差をΔTとする。
Next, the switching from the atmospheric heat absorption combustion heating operation to the normal combustion heating operation during the heating operation will be described. In the atmospheric heat absorption combustion heating operation, when the high-pressure vapor refrigerant is injected from the nozzle 8a of the ejector 8 at high speed, the pressure in the mixing chamber 8b of the ejector 8 decreases and becomes a negative pressure. As a result, the outdoor heat exchanger 21 also has a negative pressure, but the temperature of the refrigerant in the outdoor heat exchanger 21 at this time becomes a temperature determined by the negative pressure. Further, the amount of heat that the outdoor heat exchanger 21 absorbs from the outdoor atmosphere as an evaporator increases as the temperature difference between the outside air temperature and the temperature of this refrigerant increases. vice versa,
When the outside air temperature becomes lower than the temperature of the refrigerant, the outdoor heat exchanger 21 radiates heat to the outdoor atmosphere as a condenser, which is a waste of energy. Now, the temperature difference obtained by subtracting the temperature of the refrigerant from the outside air temperature at which the outdoor heat exchanger 21 as an evaporator can absorb heat from the outdoor atmosphere is represented by ΔT.

【0044】そこで、大気熱吸収燃焼暖房運転中に、外
気温度検出手段38の出力信号から得た外気温度と室外
熱交換器21の冷媒温度を検出する冷媒温度検出手段3
9の出力信号から得た冷媒温度との差が、前記温度差Δ
Tよりも大きければ、制御器37は、第一、第二および
第三の開閉弁30、32、34の開閉をそのままの状態
として大気熱吸収燃焼暖房運転を続ける。逆に、外気温
度検出手段38の出力信号から得た外気温度と室外熱交
換器21の冷媒温度を検出する冷媒温度検出手段39の
出力信号から得た冷媒温度との差が、前記温度差ΔTよ
りも小さいければ、制御器37は、第一および第二の開
閉弁30、32を閉状態とし、第三の開閉弁34とを開
状態として、通常の燃焼暖房運転を行う。
Therefore, during the atmospheric heat absorption combustion heating operation, the refrigerant temperature detecting means 3 for detecting the outside air temperature obtained from the output signal of the outside air temperature detecting means 38 and the refrigerant temperature of the outdoor heat exchanger 21.
The difference from the refrigerant temperature obtained from the output signal of 9 is the temperature difference Δ
If it is larger than T, the controller 37 continues the atmospheric heat absorption combustion heating operation with the opening / closing of the first, second and third opening / closing valves 30, 32, 34 left unchanged. Conversely, the difference between the outside air temperature obtained from the output signal of the outside air temperature detecting means 38 and the refrigerant temperature obtained from the output signal of the refrigerant temperature detecting means 39 for detecting the refrigerant temperature of the outdoor heat exchanger 21 is the temperature difference ΔT. If smaller, the controller 37 closes the first and second opening / closing valves 30 and 32 and opens the third opening / closing valve 34 to perform a normal combustion heating operation.

【0045】本発明の実施の形態3によれば、外気温度
と室外熱交換器の冷媒温度との差が小さければ、大気熱
吸収燃焼暖房運転から通常の燃焼暖房運転へと、効率の
よい暖房の方に切り換えるので、暖房運転の効率が向上
する。
According to the third embodiment of the present invention, if the difference between the outside air temperature and the refrigerant temperature of the outdoor heat exchanger is small, efficient heating from atmospheric heat absorption combustion heating operation to normal combustion heating operation is performed. Since it is switched to, the efficiency of heating operation is improved.

【0046】なお、本実施の形態3の第二の開閉弁32
のかわりに逆止弁を四方弁17の第四の接続口27から
エジェクタ8の吸入口7の方向へ流れるように用いても
同様の作用効果が得られる。
The second on-off valve 32 of the third embodiment
Alternatively, a check valve may be used so as to flow from the fourth connection port 27 of the four-way valve 17 toward the suction port 7 of the ejector 8 to obtain the same effect.

【0047】次に本発明の実施の形態4を図5を用いて
説明する。図5は本発明の実施の形態4のシステム図で
ある。
Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 5 is a system diagram of Embodiment 4 of the present invention.

【0048】図5において、図1の実施の形態1と異な
るところは、制御器37が、室外の温度を検出する外気
温度検出手段38の出力信号から得た外気温度と室外熱
交換器21の冷媒温度を検出する冷媒温度検出手段39
の出力信号から得た冷媒温度との差によって、燃焼部1
6と冷媒ポンプ2との制御を行なうことである。
In FIG. 5, the difference from the first embodiment shown in FIG. 1 is that the controller 37 detects the outside temperature and the outside heat exchanger 21 from the output signal of the outside temperature detecting means 38 for detecting the outside temperature. Refrigerant temperature detecting means 39 for detecting the refrigerant temperature
The difference from the refrigerant temperature obtained from the output signal of the combustion unit 1
6 and the refrigerant pump 2 are controlled.

【0049】上記構成において動作を説明する。運転の
種類としては、冷房運転、低外気温時の運転開始など負
荷の大きいときの大気熱吸収燃焼暖房運転および通常の
燃焼暖房運転の3種類がある。この3種類の運転の動作
作用については、図1の実施の形態1と同様なので説明
は省略する。
The operation of the above configuration will be described. There are three types of operation: air-cooling operation, atmospheric heat absorption combustion heating operation when the load is large such as operation start at low outside temperature, and normal combustion heating operation. The operation and action of these three types of operation are the same as those of the first embodiment shown in FIG.

【0050】次に、大気熱吸収燃焼暖房運転について詳
しく説明する。大気熱吸収燃焼暖房運転の場合、高圧蒸
気の冷媒がエジェクタ8のノズル8aから高速で噴射さ
れるとエジェクタ8の混合室8b内の圧力が低下し負圧
となる。その結果、室外熱交換器21も負圧となるが、
この時の室外熱交換器21の冷媒の温度はこの負圧とな
った圧力で決まる温度となる。また、室外熱交換器21
が蒸発器として室外の大気から熱を吸収する量は、外気
温度とこの冷媒の温度との温度差が大きいほど大きくな
る。逆に、外気温度の方が冷媒の温度よりも低くなる
と、室外熱交換器21が凝縮器として室外の大気へ熱を
放熱してしまい、全くエネルギーの無駄となる。また、
室外熱交換器21の冷媒の圧力つまり蒸発温度は、前述
したようにエジェクタ8のノズル8aから高速で噴射さ
れる高圧蒸気の冷媒の流速に関係する。流速が速いほど
冷媒の圧力つまり蒸発温度は低くなる。いま、室外熱交
換器21が蒸発器として室外の大気から熱を効率よく吸
収できる外気温度から冷媒の温度を引いた温度差をΔT
eとする。
Next, the atmospheric heat absorption combustion heating operation will be described in detail. In the atmospheric heat absorption combustion heating operation, when the high-pressure vapor refrigerant is injected from the nozzle 8a of the ejector 8 at high speed, the pressure in the mixing chamber 8b of the ejector 8 decreases and becomes a negative pressure. As a result, the outdoor heat exchanger 21 also has a negative pressure,
The temperature of the refrigerant in the outdoor heat exchanger 21 at this time is a temperature determined by the negative pressure. In addition, the outdoor heat exchanger 21
As the evaporator, the amount of heat absorbed from the outdoor atmosphere increases as the temperature difference between the outside air temperature and the temperature of the refrigerant increases. On the contrary, when the outside air temperature becomes lower than the temperature of the refrigerant, the outdoor heat exchanger 21 radiates heat to the outdoor atmosphere as a condenser, which is a waste of energy. Also,
The pressure of the refrigerant in the outdoor heat exchanger 21, that is, the evaporation temperature, is related to the flow rate of the refrigerant of the high-pressure steam that is injected at high speed from the nozzle 8a of the ejector 8 as described above. The higher the flow velocity, the lower the refrigerant pressure, that is, the evaporation temperature. Now, the temperature difference obtained by subtracting the temperature of the refrigerant from the outside air temperature at which the outdoor heat exchanger 21 can efficiently absorb heat from the outdoor atmosphere as the evaporator is ΔT.
e.

【0051】図6は横軸に燃焼量をとり、縦軸に蒸発温
度をとって、大気熱吸収燃焼暖房運転時に燃焼量が変化
した時の室外熱交換器の蒸発温度の変化を示したもので
ある。同図で実線は外気温度Ta(同図中一点鎖線で示
す)の時の燃焼量と蒸発温度との関係を示し、点線は蒸
発温度に前記温度差ΔTeを加えたものである。同図か
ら明らかなように、一点鎖線(外気温度Ta)と点線
(蒸発温度+ΔTe)の交点で決まる燃焼量が必要な燃
焼量となる。
FIG. 6 shows the change in the evaporation temperature of the outdoor heat exchanger when the combustion amount changes during the atmospheric heat absorption combustion heating operation, with the horizontal axis representing the combustion amount and the vertical axis representing the evaporation temperature. Is. In the figure, the solid line shows the relationship between the combustion amount and the evaporation temperature at the outside air temperature Ta (shown by the one-dot chain line in the figure), and the dotted line shows the evaporation temperature plus the temperature difference ΔTe. As is clear from the figure, the required combustion amount is the combustion amount determined by the intersection of the alternate long and short dash line (outside air temperature Ta) and the dotted line (evaporation temperature + ΔTe).

【0052】そこで、大気熱吸収燃焼暖房運転中に、外
気温度検出手段38の出力信号から得た外気温度と室外
熱交換器21の冷媒温度を検出する冷媒温度検出手段3
9の出力信号から得た冷媒温度との差が、前記温度差Δ
Teよりも大きければ、前記二つの出力信号の差がΔT
eになるように、制御器37は、燃焼部16の燃焼量と
冷媒ポンプ2の回転数とを減少させる。逆に、外気温度
検出手段38の出力信号から得た外気温度と室外熱交換
器21の冷媒温度を検出する冷媒温度検出手段39の出
力信号から得た冷媒温度との差が、前記温度差ΔTより
も小さければ、前記二つの出力信号の差がΔTeになる
ように、制御器37は、燃焼部16の燃焼量と冷媒ポン
プ2の回転数とを大きくする。
Therefore, during the atmospheric heat absorption combustion heating operation, the refrigerant temperature detecting means 3 for detecting the outside air temperature obtained from the output signal of the outside air temperature detecting means 38 and the refrigerant temperature of the outdoor heat exchanger 21.
The difference from the refrigerant temperature obtained from the output signal of 9 is the temperature difference Δ
If it is larger than Te, the difference between the two output signals is ΔT.
The controller 37 reduces the combustion amount of the combustor 16 and the rotation speed of the refrigerant pump 2 so that e becomes e. Conversely, the difference between the outside air temperature obtained from the output signal of the outside air temperature detecting means 38 and the refrigerant temperature obtained from the output signal of the refrigerant temperature detecting means 39 for detecting the refrigerant temperature of the outdoor heat exchanger 21 is the temperature difference ΔT. If it is smaller, the controller 37 increases the combustion amount of the combustion section 16 and the rotation speed of the refrigerant pump 2 so that the difference between the two output signals becomes ΔTe.

【0053】本発明の実施の形態4によれば、外気温度
と室外熱交換器の冷媒温度との差が一定になるように、
燃焼部の燃焼量と冷媒ポンプの回転数とを制御するの
で、大気熱吸収燃焼暖房運転の効率が向上する。
According to the fourth embodiment of the present invention, the difference between the outside air temperature and the refrigerant temperature of the outdoor heat exchanger is kept constant.
Since the combustion amount of the combustion unit and the rotation speed of the refrigerant pump are controlled, the efficiency of the atmospheric heat absorption combustion heating operation is improved.

【0054】なお、本実施の形態4の第二の開閉弁32
のかわりに逆止弁を四方弁17の第四の接続口27から
エジェクタ8の吸入口7の方向へ流れるように用いても
同様の作用効果が得られる。
The second on-off valve 32 of the fourth embodiment
Alternatively, a check valve may be used so as to flow from the fourth connection port 27 of the four-way valve 17 toward the suction port 7 of the ejector 8 to obtain the same effect.

【0055】次に本発明の実施の形態5を図7を用いて
説明する。図7は本発明の実施の形態5のシステム図で
ある。
Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 7 is a system diagram of the fifth embodiment of the present invention.

【0056】図7において、従来例の図11と異なると
ころは、第五の接続管19の途中でエジェクタ8に並列
に第三の開閉弁34を設け、さらに、第一、第二および
第三の開閉弁30、32、34の開閉動作と四方弁17
の切り換え動作とを制御する制御器37を設けている点
である。
In FIG. 7, what is different from FIG. 11 of the conventional example is that a third opening / closing valve 34 is provided in parallel with the ejector 8 in the middle of the fifth connecting pipe 19, and further the first, second and third parts are provided. Opening / closing operations of the open / close valves 30, 32, 34 and the four-way valve 17
The point is that a controller 37 is provided for controlling the switching operation.

【0057】上記構成において動作を説明する。先ず、
冷房運転を行なう場合、図1に示す本発明の実施の形態
1と同様に、四方弁17の第一と第二の接続口18、2
0および第三と第四の接続口25、27がそれぞれ通じ
るように四方弁17を切り換え、さらに、第一の開閉弁
30と第二の開閉弁32とを開状態とし、第三の開閉弁
34を閉状態とする。加熱器3の熱源が図10の場合自
動車のエンジンの冷却水または排気であるのに対し、図
7の場合は一般的な燃焼部16という違いはあるが、こ
の時の動作作用は、図10や図11の場合と同様なので
説明は省略する。
The operation of the above configuration will be described. First,
When performing the cooling operation, as in the first embodiment of the present invention shown in FIG. 1, the first and second connection ports 18 and 2 of the four-way valve 17 are provided.
The four-way valve 17 is switched so that the 0 and the third and fourth connection ports 25 and 27 are communicated with each other, and the first opening / closing valve 30 and the second opening / closing valve 32 are opened, and the third opening / closing valve is opened. 34 is closed. In the case where the heat source of the heater 3 is the cooling water or the exhaust gas of the automobile engine in the case of FIG. 10, there is a difference in the case of the general combustion section 16 in the case of FIG. Since it is similar to the case of FIG. 11 and FIG.

【0058】次に、暖房運転の場合には、制御器37
は、四方弁17の第一と第三の接続口18、25および
第二と第四の接続口20、27がそれぞれ通じるように
四方弁17を切り換え、さらに、第一および第二の開閉
弁30、32を閉状態とし、第三の開閉弁34とを開状
態とする。燃焼部16で発生した燃焼ガスと冷媒ポンプ
2から送られてきた液冷媒とは加熱器3内で熱交換し、
この液冷媒は蒸発して蒸気となって、第三の開閉弁34
と四方弁17を通って室内熱交換器23で凝縮液化す
る。この蒸気冷媒が室内熱交換器23でで凝縮する際、
周囲に熱を放出して暖房効果を発生する。この凝縮した
液冷媒は分岐点12を通って冷媒ポンプ2に吸い込まれ
る。
Next, in the heating operation, the controller 37
Switches the four-way valve 17 so that the first and third connection ports 18 and 25 and the second and fourth connection ports 20 and 27 of the four-way valve 17 respectively communicate with each other, and further, the first and second opening / closing valves. The valves 30 and 32 are closed, and the third opening / closing valve 34 is opened. The combustion gas generated in the combustion section 16 and the liquid refrigerant sent from the refrigerant pump 2 exchange heat in the heater 3,
This liquid refrigerant evaporates and becomes vapor, and the third on-off valve 34
Then, it is condensed and liquefied in the indoor heat exchanger 23 through the four-way valve 17. When this vapor refrigerant is condensed in the indoor heat exchanger 23,
Dissipates heat to the surroundings and produces a heating effect. The condensed liquid refrigerant is sucked into the refrigerant pump 2 through the branch point 12.

【0059】次に、暖房運転の起動の場合について説明
をする。前述した暖房運転を停止すると四方弁17と第
一の開閉弁30とから、暖房運転時には使用しない室外
熱交換器21等の冷媒回路に冷媒が少しづつ洩れ込むこ
とがある。このため、比較的長時間暖房運転を停止する
と暖房回路内の冷媒が減ってくる。そこで、暖房運転起
動時には冷媒回収運転を行なう。制御器37は第一およ
び第三の開閉弁30、34を閉状態とし、第二の開閉弁
32を開状態とし、さらに、四方弁17の第一と第三の
接続口18、25および第二と第四の接続口20、27
がそれぞれ通じるように四方弁17を切り換える。燃焼
部16で発生した燃焼ガスと冷媒ポンプ2から送られて
きた液冷媒とは加熱器3内で熱交換し、この液冷媒は蒸
発して高圧の蒸気となってエジェクタ8に入る。この高
圧蒸気の冷媒はエジェクタ8のノズル8aから高速で噴
射されるため、エジェクタ8の混合室8b内の圧力が低
下し負圧となる。その結果、吸入口7に接続された第九
の接続管28と第六の接続管22を通じて室外熱交換器
21も負圧となるため、通常の暖房運転時には使用しな
い室外熱交換器21、第六の接続管22および第七の接
続管24等の冷媒回路に洩れ込んだ冷媒が、吸入口7か
らエジェクタ8に吸引される。第五の接続管19から送
られてきた高温高圧の蒸気と第九の接続管28から送ら
れてきた低温低圧の蒸気とがエジェクタ8で混合し、さ
らに、室内熱交換器23に入って凝縮液化する。この凝
縮液化するとき、室内に凝縮熱を放熱して暖房を行な
う。そして、この液冷媒は第十の接続管29を通って冷
媒ポンプ2に吸引される。
Next, the case of starting the heating operation will be described. When the heating operation is stopped, the refrigerant may gradually leak from the four-way valve 17 and the first opening / closing valve 30 into the refrigerant circuit of the outdoor heat exchanger 21 or the like that is not used during the heating operation. Therefore, when the heating operation is stopped for a relatively long time, the refrigerant in the heating circuit decreases. Therefore, the refrigerant recovery operation is performed when the heating operation is started. The controller 37 closes the first and third opening / closing valves 30 and 34, opens the second opening / closing valve 32, and further opens the first and third connection ports 18 and 25 of the four-way valve 17 and the third opening / closing valve 32. Second and fourth connection ports 20, 27
The four-way valve 17 is switched so as to communicate with each other. The combustion gas generated in the combustion section 16 and the liquid refrigerant sent from the refrigerant pump 2 exchange heat in the heater 3, and the liquid refrigerant evaporates into high-pressure vapor and enters the ejector 8. This high-pressure vapor refrigerant is ejected at a high speed from the nozzle 8a of the ejector 8, so that the pressure in the mixing chamber 8b of the ejector 8 decreases and becomes a negative pressure. As a result, since the outdoor heat exchanger 21 also has a negative pressure through the ninth connecting pipe 28 and the sixth connecting pipe 22 connected to the suction port 7, the outdoor heat exchanger 21, which is not used during normal heating operation, The refrigerant leaking into the refrigerant circuits such as the sixth connecting pipe 22 and the seventh connecting pipe 24 is sucked into the ejector 8 from the suction port 7. The high-temperature and high-pressure steam sent from the fifth connection pipe 19 and the low-temperature and low-pressure steam sent from the ninth connection pipe 28 are mixed by the ejector 8, and further enter the indoor heat exchanger 23 to be condensed. Liquefy. When condensed and liquefied, the heat of condensation is radiated into the room for heating. Then, this liquid refrigerant is sucked into the refrigerant pump 2 through the tenth connecting pipe 29.

【0060】本発明の実施の形態5によれば、暖房運転
開始時に、加熱器から出た高温高圧の蒸気冷媒をエジェ
クタに送り、前記エジェクタの吸入口から室外熱交換器
の低圧の冷媒を吸引し暖房冷媒回路中に回収する冷媒回
収運転を行なうので、前記暖房冷媒回路中には常に必要
冷媒量を確保することができ、安定した暖房運転が可能
となり、快適性も向上させることができる。さらに、冷
媒回収運転中にも室内熱交換器では通常の暖房能力で暖
房するので快適性を損なうこともない。
According to the fifth embodiment of the present invention, when the heating operation is started, the high-temperature and high-pressure vapor refrigerant discharged from the heater is sent to the ejector, and the low-pressure refrigerant of the outdoor heat exchanger is sucked from the suction port of the ejector. Since the refrigerant recovery operation for recovering in the heating refrigerant circuit is performed, the required refrigerant amount can be always secured in the heating refrigerant circuit, stable heating operation can be performed, and comfort can be improved. Further, even during the refrigerant recovery operation, the indoor heat exchanger heats with the normal heating capacity, so comfort is not impaired.

【0061】なお、本実施の形態5の第二の開閉弁32
のかわりに逆止弁を四方弁17の第四の接続口27から
エジェクタ8の吸入口7の方向へ流れるように用いても
同様の作用効果が得られる。
The second on-off valve 32 of the fifth embodiment
Alternatively, a check valve may be used so as to flow from the fourth connection port 27 of the four-way valve 17 toward the suction port 7 of the ejector 8 to obtain the same effect.

【0062】次に本発明の実施の形態6を図8を用いて
説明する。図8は本発明の実施の形態6のシステム図で
ある。
Next, a sixth embodiment of the present invention will be described with reference to FIG. FIG. 8 is a system diagram of the sixth embodiment of the present invention.

【0063】図8において、図7の実施の形態5と異な
るところは、制御器37が、加熱器3の冷媒温度を検出
する加熱器温度検出手段33の出力信号によって、第二
の開閉弁32と第二の開閉弁34との制御を行なうこと
である。
In FIG. 8, the difference from the fifth embodiment shown in FIG. 7 is that the controller 37 uses the output signal of the heater temperature detecting means 33 for detecting the refrigerant temperature of the heater 3 to cause the second on-off valve 32 to change. And controlling the second opening / closing valve 34.

【0064】上記構成において動作を説明する。運転の
種類としては、冷房運転、暖房運転および暖房運転時の
冷媒回収運転の3種類がある。このうち冷房運転と暖房
運転の動作作用については、図7の第5の実施例と同様
なので説明は省略する。そこで、暖房運転時の冷媒回収
運転について説明をする。暖房運転中には冷媒が流れて
いる暖房冷媒回路の圧力は高圧であり、暖房運転中には
冷媒が流れない冷房専用冷媒回路の圧力は低い。このた
め、暖房運転中に、四方弁17と第一の開閉弁30を通
して、暖房運転時には使用しない室外熱交換器21等の
冷房専用冷媒回路に冷媒が少しづつ洩れ込むことがあ
る。このため、長時間暖房運転を続けると暖房回路内の
冷媒が減ってくる。そこで、暖房運転中に冷媒回収運転
を行なう。
The operation of the above configuration will be described. There are three types of operation: cooling operation, heating operation, and refrigerant recovery operation during heating operation. Of these, the operation effects of the cooling operation and the heating operation are the same as in the fifth embodiment of FIG. Therefore, the refrigerant recovery operation during the heating operation will be described. The pressure of the heating refrigerant circuit in which the refrigerant flows during the heating operation is high, and the pressure of the cooling-only refrigerant circuit in which the refrigerant does not flow during the heating operation is low. Therefore, during the heating operation, the refrigerant may gradually leak through the four-way valve 17 and the first opening / closing valve 30 into the cooling-only refrigerant circuit such as the outdoor heat exchanger 21 that is not used during the heating operation. Therefore, when the heating operation is continued for a long time, the refrigerant in the heating circuit decreases. Therefore, the refrigerant recovery operation is performed during the heating operation.

【0065】図9は横軸に冷房専用冷媒回路への冷媒洩
れ量をとり、縦軸に加熱器冷媒温度をとって、暖房運転
中に冷房専用冷媒回路へ冷媒が洩れ量た時の加熱器の冷
媒温度の変化を示したものである。同図から明らかなよ
うに、洩れ量が少ない内は加熱器の冷媒温度上昇も少な
いが、ある量より多くなってくると急激に加熱器の冷媒
温度が上昇する。いま、冷媒が熱分解する温度よりも十
分低く、かつ、正常な暖房運転を行っているときの加熱
器冷媒温度よりも高い温度を上限温度Tとする。だか
ら、加熱器の冷媒温度が前記上限温度Tになると暖房運
転から冷媒回収運転に切り換え、冷房専用冷媒回路に洩
れた冷媒を暖房冷媒回路に回収する。
In FIG. 9, the horizontal axis represents the amount of refrigerant leakage to the cooling-only refrigerant circuit, and the vertical axis represents the heater refrigerant temperature. When the amount of refrigerant leaks into the cooling-only refrigerant circuit during heating operation, the heater is heated. 3 shows the change in the refrigerant temperature of the above. As is clear from the figure, the refrigerant temperature rise of the heater is small while the leakage amount is small, but the refrigerant temperature of the heater rapidly rises when the leakage amount exceeds a certain amount. An upper limit temperature T is a temperature that is sufficiently lower than the temperature at which the refrigerant thermally decomposes and higher than the heater refrigerant temperature during normal heating operation. Therefore, when the refrigerant temperature of the heater reaches the upper limit temperature T, the heating operation is switched to the refrigerant recovery operation, and the refrigerant leaked to the cooling-only refrigerant circuit is recovered in the heating refrigerant circuit.

【0066】制御器37は第三の開閉弁34を閉状態と
し、第二の開閉弁32を開状態とする。燃焼部16で発
生した燃焼ガスと冷媒ポンプ2から送られてきた液冷媒
とは加熱器3内で熱交換し、この液冷媒は蒸発して高圧
の蒸気となってエジェクタ8に入る。この高圧蒸気の冷
媒はエジェクタ8のノズル8aから高速で噴射されるた
め、エジェクタ8の混合室8b内の圧力が低下し負圧と
なる。その結果、吸入口7に接続された第九の接続管2
8と第六の接続管22を通じて室外熱交換器21も負圧
となるため、通常の暖房運転時には使用しない室外熱交
換器21、第六の接続管22および第七の接続管24等
の冷媒回路に洩れ込んだ冷媒が、吸入口7からエジェク
タ8に吸引される。第五の接続管19から送られてきた
高温高圧の蒸気と第九の接続管28から送られてきた低
温低圧の蒸気とがエジェクタ8で混合し、さらに、室内
熱交換器23に入って凝縮液化する。この凝縮液化する
とき、室内に凝縮熱を放熱して暖房を行なう。そして、
この液冷媒は第十の接続管29を通って冷媒ポンプ2に
吸引される。
The controller 37 closes the third opening / closing valve 34 and opens the second opening / closing valve 32. The combustion gas generated in the combustion section 16 and the liquid refrigerant sent from the refrigerant pump 2 exchange heat in the heater 3, and the liquid refrigerant evaporates into high-pressure vapor and enters the ejector 8. This high-pressure vapor refrigerant is ejected at a high speed from the nozzle 8a of the ejector 8, so that the pressure in the mixing chamber 8b of the ejector 8 decreases and becomes a negative pressure. As a result, the ninth connecting pipe 2 connected to the suction port 7
Since the outdoor heat exchanger 21 also has a negative pressure through 8 and the sixth connecting pipe 22, the refrigerant of the outdoor heat exchanger 21, the sixth connecting pipe 22, the seventh connecting pipe 24, and the like not used during the normal heating operation. The refrigerant that has leaked into the circuit is sucked into the ejector 8 from the suction port 7. The high-temperature and high-pressure steam sent from the fifth connection pipe 19 and the low-temperature and low-pressure steam sent from the ninth connection pipe 28 are mixed by the ejector 8, and further enter the indoor heat exchanger 23 to be condensed. Liquefy. When condensed and liquefied, the heat of condensation is radiated into the room for heating. And
This liquid refrigerant is sucked into the refrigerant pump 2 through the tenth connecting pipe 29.

【0067】本発明の実施の形態6によれば、暖房運転
中で暖房冷媒回路中の冷媒が冷房専用冷媒回路に洩れた
時、加熱器から出た高温高圧の蒸気冷媒をエジェクタに
送り、前記エジェクタの吸入口から室外熱交換器の低圧
の冷媒を吸引し暖房冷媒回路中に回収する冷媒回収運転
を行なうので、前記暖房冷媒回路中には常に必要冷媒量
を確保することができ、安定した暖房運転が可能とな
り、快適性も向上させることができる。さらに、冷媒回
収運転中にも室内熱交換器では通常の暖房能力で暖房す
るので快適性を損なうこともない。
According to the sixth embodiment of the present invention, when the refrigerant in the heating refrigerant circuit leaks to the cooling-only refrigerant circuit during the heating operation, the high-temperature and high-pressure vapor refrigerant discharged from the heater is sent to the ejector, Since the refrigerant recovery operation is performed in which the low-pressure refrigerant of the outdoor heat exchanger is sucked from the intake port of the ejector and is recovered in the heating refrigerant circuit, it is possible to always secure the required amount of refrigerant in the heating refrigerant circuit, which is stable. Heating operation is possible and comfort can be improved. Further, even during the refrigerant recovery operation, the indoor heat exchanger heats with the normal heating capacity, so comfort is not impaired.

【0068】なお、本実施の形態6の第二の開閉弁32
のかわりに逆止弁を四方弁17の第四の接続口27から
エジェクタ8の吸入口7の方向へ流れるように用いても
同様の作用効果が得られる。
The second on-off valve 32 of the sixth embodiment
Alternatively, a check valve may be used so as to flow from the fourth connection port 27 of the four-way valve 17 toward the suction port 7 of the ejector 8 to obtain the same effect.

【0069】[0069]

【発明の効果】以上のように本発明の冷暖房装置によれ
ば、次の効果が得られる。
As described above, according to the cooling and heating device of the present invention, the following effects can be obtained.

【0070】第五の接続管の途中でエジェクタに並列に
第三の開閉弁を設け、さらに、第七の接続管の途中に第
二の絞り装置と第二の逆止弁とを並列に設け、低外気温
時の運転開始など負荷が大きいときの暖房運転の場合に
は、四方弁の第一と第三の接続口および第二と第四の接
続口がそれぞれ通じるように四方弁を切り換え、さら
に、第一および第二の開閉弁を開状態とし、第三の開閉
弁とを閉状態としているので、燃焼部の燃焼熱に加えて
室外の大気から熱も暖房に利用することができ、大きな
暖房能力が得られ室温の立ち上げが速くなり、さらに、
暖房の効率も良くなるという効果を有する。
A third on-off valve is provided in parallel with the ejector in the middle of the fifth connecting pipe, and a second throttle device and a second check valve are provided in parallel in the middle of the seventh connecting pipe. For heating operation when the load is large, such as starting operation at low outside temperature, switch the four-way valve so that the first and third connection ports and the second and fourth connection ports of the four-way valve are connected to each other. Moreover, since the first and second on-off valves are opened and the third on-off valve is closed, heat from the outdoor atmosphere can be used for heating in addition to the combustion heat of the combustion section. , A large heating capacity is obtained, the room temperature starts up faster,
This has the effect of improving the efficiency of heating.

【0071】また、通常の暖房運転の場合には、四方弁
の第一と第三の接続口および第二と第四の接続口がそれ
ぞれ通じるように四方弁を切り換え、さらに、第一およ
び第二の開閉弁を閉状態とし、第三の開閉弁とを開状態
としているので、加熱器から出た蒸気冷媒をエジェクタ
をバイパスして流すため流路抵抗が小さくなる分だけ冷
媒温度が下がり、放熱損失も減少させることができ、暖
房運転の効率が向上するという効果を有する。
In the normal heating operation, the four-way valve is switched so that the first and third connection ports and the second and fourth connection ports of the four-way valve are connected to each other, and the first and third connection ports are further connected. Since the second on-off valve is in the closed state and the third on-off valve is in the open state, since the vapor refrigerant flowing out of the heater flows by bypassing the ejector, the refrigerant temperature decreases as much as the flow path resistance decreases, The heat radiation loss can be reduced, and the heating operation efficiency can be improved.

【0072】外気温度検出手段からの出力信号をもとに
外気温度によって、大気熱吸収燃焼暖房運転と通常の燃
焼暖房運転とを効率のよい方に切り換えるので、暖房運
転の効率が向上するという効果を有する。
Since the atmospheric heat absorption combustion heating operation and the normal combustion heating operation are switched to the more efficient one according to the outside air temperature based on the output signal from the outside air temperature detecting means, the efficiency of the heating operation is improved. Have.

【0073】外気温度検出手段と加熱器に設けた冷媒温
度検出手段とからの2つの出力信号をもとに、外気温度
と室外熱交換器の冷媒温度との差が小さければ、大気熱
吸収燃焼暖房運転から通常の燃焼暖房運転へと、効率の
よい暖房の方に切り換えるので、暖房運転の効率が向上
するという効果を有する。
Based on the two output signals from the outside air temperature detecting means and the refrigerant temperature detecting means provided in the heater, if the difference between the outside air temperature and the refrigerant temperature of the outdoor heat exchanger is small, then atmospheric heat absorption combustion Since the heating operation is switched to the normal combustion heating operation for more efficient heating, there is an effect that the efficiency of the heating operation is improved.

【0074】外気温度検出手段と加熱器に設けた冷媒温
度検出手段とからの2つの出力信号をもとに、外気温度
と室外熱交換器の冷媒温度との差が一定になるように、
燃焼部の燃焼量と冷媒ポンプの回転数とを制御するの
で、大気熱吸収燃焼暖房運転の効率が向上するという効
果を有する。
Based on the two output signals from the outside air temperature detecting means and the refrigerant temperature detecting means provided in the heater, the difference between the outside air temperature and the refrigerant temperature of the outdoor heat exchanger is kept constant.
Since the combustion amount of the combustion section and the rotation speed of the refrigerant pump are controlled, there is an effect that the efficiency of the atmospheric heat absorption combustion heating operation is improved.

【0075】また、第五の接続管の途中でエジェクタに
並列に第三の開閉弁を設け、さらに、第一、第二および
第三の開閉弁の開閉動作を制御する制御器を設け、暖房
運転の起動の場合には、制御器37は第一および第三の
開閉弁を閉状態とし、第二の開閉弁を開状態とし、さら
に、四方弁の第一と第三の接続口および第二と第四の接
続口がそれぞれ通じるように四方弁を切り換えるので、
暖房運転開始時に、加熱器から出た高温高圧の蒸気冷媒
をエジェクタに送り、前記エジェクタの吸入口から室外
熱交換器の低圧の冷媒を吸引し暖房冷媒回路中に回収す
る冷媒回収運転を行なうため、前記暖房冷媒回路中には
常に必要冷媒量を確保することができ、安定した暖房運
転が可能となり、快適性を向上させることができるとい
う効果を有する。
Further, a third opening / closing valve is provided in parallel with the ejector in the middle of the fifth connecting pipe, and a controller for controlling opening / closing operations of the first, second and third opening / closing valves is provided for heating. When the operation is started, the controller 37 closes the first and third on-off valves, opens the second on-off valve, and further opens the first and third connection ports and the fourth connection port of the four-way valve. Since the four-way valve is switched so that the second and fourth connection ports communicate with each other,
To perform high-temperature high-pressure vapor refrigerant discharged from the heater to the ejector at the start of the heating operation, and to suck the low-pressure refrigerant of the outdoor heat exchanger from the ejector inlet to recover the refrigerant in the heating refrigerant circuit. In addition, the required amount of refrigerant can be always secured in the heating refrigerant circuit, stable heating operation can be performed, and comfort can be improved.

【0076】また、暖房運転中で暖房冷媒回路中の冷媒
が冷房専用冷媒回路に洩れたことを加熱器温度検出手段
からの出力信号から判断し、この時には、加熱器から出
た高温高圧の蒸気冷媒をエジェクタに送り、前記エジェ
クタの吸入口から室外熱交換器の低圧の冷媒を吸引し暖
房冷媒回路中に回収する冷媒回収運転を行なうので、前
記暖房冷媒回路中には常に必要冷媒量を確保することが
でき、安定した暖房運転が可能となり、快適性も向上さ
せることができるという効果を有する。さらに、冷媒回
収運転中にも室内熱交換器では通常の暖房能力で暖房す
るので快適性を損なうこともないという効果も有する。
Further, it is judged from the output signal from the heater temperature detecting means that the refrigerant in the heating refrigerant circuit has leaked to the cooling-only refrigerant circuit during the heating operation, and at this time, the high-temperature high-pressure steam discharged from the heater is judged. Refrigerant is sent to the ejector, and a low-pressure refrigerant of the outdoor heat exchanger is sucked from the intake port of the ejector and is recovered in the heating refrigerant circuit.Therefore, the required refrigerant amount is always secured in the heating refrigerant circuit. Therefore, stable heating operation can be performed, and comfort can be improved. Further, even during the refrigerant recovery operation, since the indoor heat exchanger heats with the normal heating capacity, there is an effect that comfort is not impaired.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1における冷暖房装置のシ
ステム構成図
FIG. 1 is a system configuration diagram of an air conditioner according to Embodiment 1 of the present invention.

【図2】本発明の実施の形態2における冷暖房装置のシ
ステム構成図
FIG. 2 is a system configuration diagram of an air conditioner according to Embodiment 2 of the present invention.

【図3】同実施の形態2の外気温度に対する暖房効率の
変化を示した説明図
FIG. 3 is an explanatory diagram showing a change in heating efficiency with respect to an outside air temperature according to the second embodiment.

【図4】本発明の実施の形態3における冷暖房装置のシ
ステム構成図
FIG. 4 is a system configuration diagram of an air conditioner according to a third embodiment of the present invention.

【図5】本発明の実施の形態4における冷暖房装置のシ
ステム構成図
FIG. 5 is a system configuration diagram of an air conditioner according to Embodiment 4 of the present invention.

【図6】同実施の形態4の大気熱吸収燃焼暖房運転時の
燃焼量に対する室外熱交換器の蒸発温度の変化を示した
説明図
FIG. 6 is an explanatory diagram showing changes in the evaporation temperature of the outdoor heat exchanger with respect to the combustion amount during the atmospheric heat absorption combustion heating operation according to the fourth embodiment.

【図7】本発明の実施の形態5における冷暖房装置のシ
ステム構成図
FIG. 7 is a system configuration diagram of an air conditioner according to Embodiment 5 of the present invention.

【図8】本発明の実施の形態6における冷暖房装置のシ
ステム構成図
FIG. 8 is a system configuration diagram of an air conditioner according to Embodiment 6 of the present invention.

【図9】同実施の形態6の冷房専用冷媒回路へ冷媒が洩
れ量た時の加熱器の冷媒温度の変化を示した説明図
FIG. 9 is an explanatory diagram showing changes in the refrigerant temperature of the heater when the refrigerant leaks into the cooling-only refrigerant circuit according to the sixth embodiment.

【図10】従来例における冷房装置のシステム構成図FIG. 10 is a system configuration diagram of a cooling device in a conventional example.

【図11】従来例における冷房装置から考えられる冷暖
房装置のシステム構成図
FIG. 11 is a system configuration diagram of a cooling and heating device that can be considered as a cooling device in a conventional example.

【符号の説明】[Explanation of symbols]

2 冷媒ポンプ 3 加熱器 7 吸入口 8 エジェクタ 15 第一の絞り装置 16 燃焼部 17 四方弁 19 第五の接続管 21 室外熱交換器 22 第六の接続管 23 室内熱交換器 24 第七の接続管 26 第八の接続管 28 第九の接続管 29 第十の接続管 30 第一の開閉弁 31 第一の逆止弁 32 第二の開閉弁 34 第三の開閉弁 35 第一の絞り装置 36 第二の逆止弁 2 Refrigerant pump 3 Heater 7 Suction port 8 Ejector 15 First expansion device 16 Combustion part 17 Four-way valve 19 Fifth connecting pipe 21 Outdoor heat exchanger 22 Sixth connecting pipe 23 Indoor heat exchanger 24 Seventh connecting Pipe 26 Eighth connecting pipe 28 Ninth connecting pipe 29 Tenth connecting pipe 30 First opening / closing valve 31 First check valve 32 Second opening / closing valve 34 Third opening / closing valve 35 First throttling device 36 Second check valve

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】燃焼部で生じた燃焼ガスと熱交換する加熱
器と、冷房運転と暖房運転時に冷媒回路を切り換える四
方弁と、前記加熱器の出口に一端を、前記四方弁の第一
の接続口に他端をそれぞれ接続した第五の接続管と、こ
の第五の接続管の途中に設けられ加熱器から送られてく
る前記四方弁の第一の接続口に向けて噴出し、側方に設
けた吸入口から低圧の蒸気冷媒を吸入するエジェクタ
と、前記四方弁の第二の接続口に一端を接続し、他端を
冷房時に蒸気冷媒を凝縮し液化する室外熱交換器に接続
した第六の接続管と、前記室外熱交換器に一端を接続
し、他端を冷房時に蒸発器になり暖房時に凝縮器となる
室内熱交換器に接続し第一の開閉弁を具備した第七の接
続管と、前記室内熱交換器に一端を接続し、他端を前記
四方弁の第三の接続口に接続した第八の接続管と、前記
四方弁の第四の接続口に一端を接続し、他端を前記エジ
ェクタの吸入口に接続し第二の開閉弁を具備した第九の
接続管と、前記第七の接続管の途中の分岐点から分岐
し、前記加熱器の入口に接続し冷媒ポンプを具備した第
十の接続管と、第五の接続管の途中でエジェクタに並列
に設けた第三の開閉弁と、前記第七の接続管の途中に並
列に接続した第二の絞り装置と第二の逆止弁とからなる
冷暖房装置。
1. A heater for exchanging heat with combustion gas generated in a combustion section, a four-way valve for switching a refrigerant circuit during a cooling operation and a heating operation, one end of an outlet of the heater, and a first end of the four-way valve. A fifth connecting pipe having the other ends connected to the connecting ports respectively, and a jet provided toward the first connecting port of the four-way valve, which is provided in the middle of the fifth connecting pipe and is sent from the heater, side An ejector for sucking low-pressure vapor refrigerant from a suction port provided on one side and one end is connected to the second connection port of the four-way valve, and the other end is connected to an outdoor heat exchanger that condenses and liquefies the vapor refrigerant during cooling. A sixth connecting pipe, and one end of which is connected to the outdoor heat exchanger, and the other end of which is connected to an indoor heat exchanger which functions as an evaporator during cooling and a condenser during heating, and which includes a first opening / closing valve. One end is connected to the seven connection pipe and the indoor heat exchanger, and the other end is the third connection port of the four-way valve. A connected eighth connecting pipe, and a ninth connecting pipe having one end connected to the fourth connecting port of the four-way valve and the other end connected to the suction port of the ejector and having a second opening / closing valve, A tenth connecting pipe branched from a branch point in the middle of the seventh connecting pipe and connected to the inlet of the heater and equipped with a refrigerant pump, and a tenth connecting pipe provided in parallel with the ejector in the middle of the fifth connecting pipe. A cooling and heating device comprising three on-off valves, a second expansion device and a second check valve connected in parallel in the middle of the seventh connecting pipe.
【請求項2】燃焼部で生じた燃焼ガスと熱交換する加熱
器と、冷房運転と暖房運転時に冷媒回路を切り換える四
方弁と、前記加熱器の出口に一端を、前記四方弁の第一
の接続口に他端をそれぞれ接続した第五の接続管と、こ
の第五の接続管の途中に設けられ加熱器から送られてく
る前記四方弁の第一の接続口に向けて噴出し、側方に設
けた吸入口から低圧の蒸気冷媒を吸入するエジェクタ
と、前記四方弁の第二の接続口に一端を接続し、他端を
冷房時に蒸気冷媒を凝縮し液化する室外熱交換器に接続
した第六の接続管と、前記室外熱交換器に一端を接続
し、他端を冷房時に蒸発器になり暖房時に凝縮器となる
室内熱交換器に接続し第一の開閉弁を具備した第七の接
続管と、前記室内熱交換器に一端を接続し、他端を前記
四方弁の第三の接続口に接続した第八の接続管と、前記
四方弁の第四の接続口に一端を接続し、他端を前記エジ
ェクタの吸入口に接続し第二の開閉弁を具備した第九の
接続管と、前記第七の接続管の途中の分岐点から分岐
し、前記加熱器の入口に接続し冷媒ポンプを具備した第
十の接続管と、第五の接続管の途中でエジェクタに並列
に設けた第三の開閉弁と、前記第七の接続管の途中に並
列に接続した第二の絞り装置と第二の逆止弁と、外気温
度検出手段と、ある設定された所定の温度よりも前記外
気温度検出手段から得られた外気温度の方が高いときに
は大気熱吸収燃焼暖房運転を行い、低いときには燃焼暖
房運転を行なうように、第一、第二および第三の開閉弁
の開閉動作の制御を行なう制御器とからなる冷暖房装
置。
2. A heater for exchanging heat with combustion gas generated in a combustion section, a four-way valve for switching a refrigerant circuit during cooling operation and heating operation, one end of the outlet of the heater, and a first end of the four-way valve. A fifth connecting pipe having the other ends connected to the connecting ports respectively, and a jet provided toward the first connecting port of the four-way valve, which is provided in the middle of the fifth connecting pipe and is sent from the heater, side An ejector for sucking low-pressure vapor refrigerant from a suction port provided on one side and one end is connected to the second connection port of the four-way valve, and the other end is connected to an outdoor heat exchanger that condenses and liquefies the vapor refrigerant during cooling. A sixth connecting pipe, and one end of which is connected to the outdoor heat exchanger, and the other end of which is connected to an indoor heat exchanger which functions as an evaporator during cooling and a condenser during heating, and which includes a first opening / closing valve. One end is connected to the seven connection pipe and the indoor heat exchanger, and the other end is the third connection port of the four-way valve. A connected eighth connecting pipe, and a ninth connecting pipe having one end connected to the fourth connecting port of the four-way valve and the other end connected to the suction port of the ejector and having a second opening / closing valve, A tenth connecting pipe branched from a branch point in the middle of the seventh connecting pipe and connected to the inlet of the heater and equipped with a refrigerant pump, and a tenth connecting pipe provided in parallel with the ejector in the middle of the fifth connecting pipe. Three open / close valves, a second throttle device connected in parallel in the middle of the seventh connecting pipe, a second check valve, an outside air temperature detecting means, and the outside air above a certain preset temperature. When the outside air temperature obtained from the temperature detecting means is higher, the atmospheric heat absorption combustion heating operation is performed, and when the outside air temperature is low, the opening / closing operation of the first, second and third opening / closing valves is controlled. An air conditioner consisting of a controller to perform.
【請求項3】燃焼部で生じた燃焼ガスと熱交換する加熱
器と、冷房運転と暖房運転時に冷媒回路を切り換える四
方弁と、前記加熱器の出口に一端を、前記四方弁の第一
の接続口に他端をそれぞれ接続した第五の接続管と、こ
の第五の接続管の途中に設けられ加熱器から送られてく
る前記四方弁の第一の接続口に向けて噴出し、側方に設
けた吸入口から低圧の蒸気冷媒を吸入するエジェクタ
と、前記四方弁の第二の接続口に一端を接続し、他端を
冷房時に蒸気冷媒を凝縮し液化する室外熱交換器に接続
した第六の接続管と、前記室外熱交換器に一端を接続
し、他端を冷房時に蒸発器になり暖房時に凝縮器となる
室内熱交換器に接続し第一の開閉弁を具備した第七の接
続管と、前記室内熱交換器に一端を接続し、他端を前記
四方弁の第三の接続口に接続した第八の接続管と、前記
四方弁の第四の接続口に一端を接続し、他端を前記エジ
ェクタの吸入口に接続し第二の開閉弁を具備した第九の
接続管と、前記第七の接続管の途中の分岐点から分岐
し、前記加熱器の入口に接続し冷媒ポンプを具備した第
十の接続管と、第五の接続管の途中でエジェクタに並列
に設けた第三の開閉弁と、前記第七の接続管の途中に並
列に接続した第二の絞り装置と第二の逆止弁と、外気温
度検出手段と、ある設定された所定の温度よりも前記外
気温度検出手段から得られた外気温度の方が高いときに
は大気熱吸収燃焼暖房運転を行い、低いときには燃焼暖
房運転を行なうように、第一、第二および第三の開閉弁
の開閉動作の制御を行なう制御器とからなる冷暖房装
置。
3. A heater for exchanging heat with the combustion gas generated in the combustion section, a four-way valve for switching the refrigerant circuit during cooling operation and heating operation, and one end of the outlet of the heater for the first of the four-way valve. A fifth connecting pipe having the other ends connected to the connecting ports respectively, and a jet provided toward the first connecting port of the four-way valve, which is provided in the middle of the fifth connecting pipe and is sent from the heater, side An ejector for sucking low-pressure vapor refrigerant from a suction port provided on one side and one end is connected to the second connection port of the four-way valve, and the other end is connected to an outdoor heat exchanger that condenses and liquefies the vapor refrigerant during cooling. A sixth connecting pipe, and one end of which is connected to the outdoor heat exchanger, and the other end of which is connected to an indoor heat exchanger which functions as an evaporator during cooling and a condenser during heating, and which includes a first opening / closing valve. One end is connected to the seven connection pipe and the indoor heat exchanger, and the other end is the third connection port of the four-way valve. A connected eighth connecting pipe, and a ninth connecting pipe having one end connected to the fourth connecting port of the four-way valve and the other end connected to the suction port of the ejector and having a second opening / closing valve, A tenth connecting pipe branched from a branch point in the middle of the seventh connecting pipe and connected to the inlet of the heater and equipped with a refrigerant pump, and a tenth connecting pipe provided in parallel with the ejector in the middle of the fifth connecting pipe. Three open / close valves, a second throttle device connected in parallel in the middle of the seventh connecting pipe, a second check valve, an outside air temperature detecting means, and the outside air above a certain preset temperature. When the outside air temperature obtained from the temperature detecting means is higher, the atmospheric heat absorption combustion heating operation is performed, and when the outside air temperature is low, the opening / closing operation of the first, second and third opening / closing valves is controlled. An air conditioner consisting of a controller to perform.
【請求項4】燃焼部で生じた燃焼ガスと熱交換する加熱
器と、冷房運転と暖房運転時に冷媒回路を切り換える四
方弁と、前記加熱器の出口に一端を、前記四方弁の第一
の接続口に他端をそれぞれ接続した第五の接続管と、こ
の第五の接続管の途中に設けられ加熱器から送られてく
る前記四方弁の第一の接続口に向けて噴出し、側方に設
けた吸入口から低圧の蒸気冷媒を吸入するエジェクタ
と、前記四方弁の第二の接続口に一端を接続し、他端を
冷房時に蒸気冷媒を凝縮し液化する室外熱交換器に接続
した第六の接続管と、前記室外熱交換器に一端を接続
し、他端を冷房時に蒸発器になり暖房時に凝縮器となる
室内熱交換器に接続し第一の開閉弁を具備した第七の接
続管と、前記室内熱交換器に一端を接続し、他端を前記
四方弁の第三の接続口に接続した第八の接続管と、前記
四方弁の第四の接続口に一端を接続し、他端を前記エジ
ェクタの吸入口に接続し第二の開閉弁を具備した第九の
接続管と、前記第七の接続管の途中の分岐点から分岐
し、前記加熱器の入口に接続し冷媒ポンプを具備した第
十の接続管と、第五の接続管の途中でエジェクタに並列
に設けた第三の開閉弁と、前記第七の接続管の途中に並
列に接続した第二の絞り装置と第二の逆止弁と、外気温
度検出手段と、室外熱交換器の伝熱管表面に設けられた
冷媒温度検出手段と、大気熱吸収燃焼暖房運転時に前記
外気温度検出手段から得られた外気温度と前記冷媒温度
検出手段から得られた冷媒温度との差が所定の温度差に
なるように燃焼部と冷媒ポンプとの制御を行なう制御器
とからなる冷暖房装置。
4. A heater for exchanging heat with the combustion gas generated in the combustion section, a four-way valve for switching a refrigerant circuit during cooling operation and heating operation, and one end of the outlet of the heater, the first of the four-way valve. A fifth connecting pipe having the other ends connected to the connecting ports respectively, and a jet provided toward the first connecting port of the four-way valve, which is provided in the middle of the fifth connecting pipe and is sent from the heater, side An ejector for sucking low-pressure vapor refrigerant from a suction port provided on one side and one end is connected to the second connection port of the four-way valve, and the other end is connected to an outdoor heat exchanger that condenses and liquefies the vapor refrigerant during cooling. A sixth connecting pipe, and one end of which is connected to the outdoor heat exchanger, and the other end of which is connected to an indoor heat exchanger which functions as an evaporator during cooling and a condenser during heating, and which includes a first opening / closing valve. One end is connected to the seven connection pipe and the indoor heat exchanger, and the other end is the third connection port of the four-way valve. A connected eighth connecting pipe, and a ninth connecting pipe having one end connected to the fourth connecting port of the four-way valve and the other end connected to the suction port of the ejector and having a second opening / closing valve, A tenth connecting pipe branched from a branch point in the middle of the seventh connecting pipe and connected to the inlet of the heater and equipped with a refrigerant pump, and a tenth connecting pipe provided in parallel with the ejector in the middle of the fifth connecting pipe. Three open / close valves, a second expansion device connected in parallel in the middle of the seventh connecting pipe, a second check valve, an outside air temperature detecting means, and a heat transfer pipe surface of the outdoor heat exchanger. And a refrigerant temperature detecting means for burning so that the difference between the outside air temperature obtained by the outside air temperature detecting means and the refrigerant temperature obtained by the refrigerant temperature detecting means during the atmospheric heat absorption combustion heating operation becomes a predetermined temperature difference. Cooling and heating device including a controller for controlling the cooling section and the refrigerant pump.
【請求項5】燃焼部で生じた燃焼ガスと熱交換する加熱
器と、冷房運転と暖房運転時に冷媒回路を切り換える四
方弁と、前記加熱器の出口に一端を、前記四方弁の第一
の接続口に他端をそれぞれ接続した第五の接続管と、こ
の第五の接続管の途中に設けられ加熱器から送られてく
る前記四方弁の第一の接続口に向けて噴出し、側方に設
けた吸入口から低圧の蒸気冷媒を吸入するエジェクタ
と、前記四方弁の第二の接続口に一端を接続し、他端を
冷房時に蒸気冷媒を凝縮し液化する室外熱交換器に接続
した第六の接続管と、前記室外熱交換器に一端を接続
し、他端を冷房時に蒸発器になり暖房時に凝縮器となる
室内熱交換器に接続し第一の開閉弁を具備した第七の接
続管と、前記室内熱交換器に一端を接続し、他端を前記
四方弁の第三の接続口に接続した第八の接続管と、前記
四方弁の第四の接続口に一端を接続し、他端を前記エジ
ェクタの吸入口に接続し第二の開閉弁を具備した第九の
接続管と、前記第七の接続管の途中の分岐点から分岐
し、前記加熱器の入口に接続し冷媒ポンプを具備した第
十の接続管と、第五の接続管の途中でエジェクタに並列
に設けた第三の開閉弁と、前記第一、第二および第三の
開閉弁の開閉と前記四方弁の切り替えとを制御する制御
器とからなる冷暖房装置。
5. A heater for exchanging heat with the combustion gas generated in the combustion section, a four-way valve for switching the refrigerant circuit during cooling operation and heating operation, one end of the outlet of the heater, and a first end of the four-way valve. A fifth connecting pipe having the other ends connected to the connecting ports respectively, and a jet provided toward the first connecting port of the four-way valve, which is provided in the middle of the fifth connecting pipe and is sent from the heater, side An ejector for sucking low-pressure vapor refrigerant from a suction port provided on one side and one end is connected to the second connection port of the four-way valve, and the other end is connected to an outdoor heat exchanger that condenses and liquefies the vapor refrigerant during cooling. A sixth connecting pipe, and one end of which is connected to the outdoor heat exchanger, and the other end of which is connected to an indoor heat exchanger which functions as an evaporator during cooling and a condenser during heating, and which includes a first opening / closing valve. One end is connected to the seven connection pipe and the indoor heat exchanger, and the other end is the third connection port of the four-way valve. A connected eighth connecting pipe, and a ninth connecting pipe having one end connected to the fourth connecting port of the four-way valve and the other end connected to the suction port of the ejector and having a second opening / closing valve, A tenth connecting pipe branched from a branch point in the middle of the seventh connecting pipe and connected to the inlet of the heater and equipped with a refrigerant pump, and a tenth connecting pipe provided in parallel with the ejector in the middle of the fifth connecting pipe. An air conditioner comprising a third opening / closing valve and a controller for controlling opening / closing of the first, second and third opening / closing valves and switching of the four-way valve.
【請求項6】燃焼部で生じた燃焼ガスと熱交換する加熱
器と、冷房運転と暖房運転時に冷媒回路を切り換える四
方弁と、前記加熱器の出口に一端を、前記四方弁の第一
の接続口に他端をそれぞれ接続した第五の接続管と、こ
の第五の接続管の途中に設けられ加熱器から送られてく
る前記四方弁の第一の接続口に向けて噴出し、側方に設
けた吸入口から低圧の蒸気冷媒を吸入するエジェクタ
と、前記四方弁の第二の接続口に一端を接続し、他端を
冷房時に蒸気冷媒を凝縮し液化する室外熱交換器に接続
した第六の接続管と、前記室外熱交換器に一端を接続
し、他端を冷房時に蒸発器になり暖房時に凝縮器となる
室内熱交換器に接続し第一の開閉弁を具備した第七の接
続管と、前記室内熱交換器に一端を接続し、他端を前記
四方弁の第三の接続口に接続した第八の接続管と、前記
四方弁の第四の接続口に一端を接続し、他端を前記エジ
ェクタの吸入口に接続し第二の開閉弁を具備した第九の
接続管と、前記第七の接続管の途中の分岐点から分岐
し、前記加熱器の入口に接続し冷媒ポンプを具備した第
十の接続管と、第五の接続管の途中でエジェクタに並列
に設けた第三の開閉弁と、前記加熱器の伝熱管表面に設
けられた加熱器温度検出手段と、燃焼暖房運転中に前記
加熱器温度検出手段から得られた冷媒温度がある設定さ
れた所定の冷媒温度よりも高いときに燃焼暖房運転から
冷媒回収運転に切り換えを制御する制御器とからなる冷
暖房装置。
6. A heater for exchanging heat with the combustion gas generated in the combustion section, a four-way valve for switching the refrigerant circuit during cooling operation and heating operation, one end of the outlet of the heater, and a first end of the four-way valve. A fifth connecting pipe having the other ends connected to the connecting ports respectively, and a jet provided toward the first connecting port of the four-way valve, which is provided in the middle of the fifth connecting pipe and is sent from the heater, side An ejector for sucking low-pressure vapor refrigerant from a suction port provided on one side and one end is connected to the second connection port of the four-way valve, and the other end is connected to an outdoor heat exchanger that condenses and liquefies the vapor refrigerant during cooling. A sixth connecting pipe, and one end of which is connected to the outdoor heat exchanger, and the other end of which is connected to an indoor heat exchanger which functions as an evaporator during cooling and a condenser during heating, and which includes a first opening / closing valve. One end is connected to the seven connection pipe and the indoor heat exchanger, and the other end is the third connection port of the four-way valve. A connected eighth connecting pipe, and a ninth connecting pipe having one end connected to the fourth connecting port of the four-way valve and the other end connected to the suction port of the ejector and having a second opening / closing valve, A tenth connecting pipe branched from a branch point in the middle of the seventh connecting pipe and connected to the inlet of the heater and equipped with a refrigerant pump, and a tenth connecting pipe provided in parallel with the ejector in the middle of the fifth connecting pipe. Three on-off valves, heater temperature detecting means provided on the surface of the heat transfer tube of the heater, refrigerant temperature obtained from the heater temperature detecting means during combustion heating operation, and there is set a predetermined refrigerant temperature And a controller that controls switching from the combustion heating operation to the refrigerant recovery operation at a higher temperature.
JP31874995A 1995-12-07 1995-12-07 Heating and cooling unit Pending JPH09159303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31874995A JPH09159303A (en) 1995-12-07 1995-12-07 Heating and cooling unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31874995A JPH09159303A (en) 1995-12-07 1995-12-07 Heating and cooling unit

Publications (1)

Publication Number Publication Date
JPH09159303A true JPH09159303A (en) 1997-06-20

Family

ID=18102515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31874995A Pending JPH09159303A (en) 1995-12-07 1995-12-07 Heating and cooling unit

Country Status (1)

Country Link
JP (1) JPH09159303A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839584A (en) * 2010-04-27 2010-09-22 大连理工大学 Active balance pressure jet refrigeration system
CN105910318A (en) * 2016-04-19 2016-08-31 上海理工大学 Compression condensation system with ejector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839584A (en) * 2010-04-27 2010-09-22 大连理工大学 Active balance pressure jet refrigeration system
CN105910318A (en) * 2016-04-19 2016-08-31 上海理工大学 Compression condensation system with ejector
CN105910318B (en) * 2016-04-19 2018-06-26 上海理工大学 A kind of compression condensation system with injector

Similar Documents

Publication Publication Date Title
JP4150770B2 (en) Vehicle cooling system
US20100281901A1 (en) Air conditioner for vehicle
US7530390B2 (en) Air conditioner for a motor vehicle
US20200346520A1 (en) Vehicle air-conditioning device
JP2003075021A (en) Gas heat pump type air conditioning system, engine cooling water heating device, and operating method for the gas heat pump type air conditioning system
JP2004131034A (en) Cooling system of movable body
JP2003320837A (en) Vehicle air conditioner
JP2007332853A (en) Waste heat utilization apparatus
JP2001260640A (en) Heating device for vehicle
US10605501B2 (en) Absorption heat pump and method for operating an absorption heat pump
JPH07329544A (en) Air conditioner for automobile
JP6134290B2 (en) Air conditioner for vehicles
JP2008145022A (en) Refrigerating device comprising waste heat utilization device
JPS6181219A (en) Car heater of evaporative cooling type internal-combustion engine
JPH09159303A (en) Heating and cooling unit
JP2004224109A (en) Heat pump device
JP2002286326A (en) Hot water supply air conditioning apparatus
JPH0478613A (en) Heat pump type air conditioner
JP3637106B2 (en) Gas engine driven air conditioner
JP2000211350A (en) Vehicle air-conditioner
JPH11294872A (en) Refrigerant circuit of air conditioner
JP2698735B2 (en) Engine heat pump system
JP4133084B2 (en) Air conditioner for vehicles
JP2005053474A (en) Control method and device for cooling fan of vehicle
JPH0241917A (en) Heat pump type air conditioning device for vehicle