JPH09157720A - Method for desulfurizing molten iron - Google Patents

Method for desulfurizing molten iron

Info

Publication number
JPH09157720A
JPH09157720A JP34496995A JP34496995A JPH09157720A JP H09157720 A JPH09157720 A JP H09157720A JP 34496995 A JP34496995 A JP 34496995A JP 34496995 A JP34496995 A JP 34496995A JP H09157720 A JPH09157720 A JP H09157720A
Authority
JP
Japan
Prior art keywords
hot metal
desulfurizing
reaction
desulfurizing agent
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34496995A
Other languages
Japanese (ja)
Inventor
Yutaka Hiraga
由多可 平賀
Kiyotaka Gennai
清孝 源内
Yoshio Nakajima
義夫 中島
Jun Hirama
潤 平間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP34496995A priority Critical patent/JPH09157720A/en
Publication of JPH09157720A publication Critical patent/JPH09157720A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an extra-low sulfur molten iron by efficiently executing desulfurizing treatment of the molten iron in a short time. SOLUTION: In a desulfurizing treatment process of the molten iron by using plural desulfurizing agent filling wires 11, 21, reaction sites in the molten iron 31 are distributed in the vertical direction by changing the charging speed of each of the wires 11, 21 or using the metallic materials having different melting points as sheath materials of the desulfurizing agent filling wires. Therefore, reaction interfacial area of the desulfurizing reaction can be increased and the efficient desulfurizing treatment to the extra-low sulfur range can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に目標硫黄濃度30
ppm以下の極低硫溶銑の製造に適した溶銑脱硫方法に
関する。
BACKGROUND OF THE INVENTION The present invention is particularly applicable to a target sulfur concentration of 30.
The present invention relates to a hot metal desulfurization method suitable for producing ultra-low sulfur hot metal having a ppm or less.

【0002】[0002]

【従来の技術】硫黄濃度を20ppm以下に下げた極低
硫鋼を製造する一般的な方法では、溶銑段階で30pp
m以下まで脱硫し、2次精錬工程で仕上げ脱硫してい
る。2次精錬工程では、鋼中の酸素濃度が高く、脱硫効
率が低くなりがちであるため、迅速な脱硫処理が困難で
ある。そこで、溶銑段階で可能な限り低い硫黄濃度まで
脱硫することが望ましい。溶銑の脱硫に使用される脱硫
剤は、石灰系、カルシウムカーバイド、ソーダ灰等から
選択されたものを主成分としている。しかし、従来の脱
硫剤には、種々の欠点がある。たとえば、石灰系の脱硫
剤は、最も安価であるが、主成分の石灰が溶銑温度で固
体であり、処理時間が長くなる傾向がある。カルシウム
カーバイドは、不純物として含まれるPが有毒なフォス
フィンを生成し、環境上問題がある。ソーダ灰は、蒸気
圧が高く、処理中に多量の白煙を生じる上、溶銑温度が
著しく低下する。しかも、カルシウムカーバイド、ソー
ダ灰に由来する脱硫スラグは、リサイクルが困難であ
り、スラグ処理の点でも難がある。これらの脱硫剤に代
わるものとして、マグネシウム系の脱硫剤が近年注目さ
れている。マグネシウム系脱硫剤は、一般に石灰とマグ
ネシウムとの混合粉体として使用され、ガスインジェク
ションやワイヤフィーダにより溶銑中へ供給されてい
る。マグネシウム系脱硫剤は、高い脱硫効率が期待でき
る上、処理後の生成スラグの主成分がCaO−MgO系
であるため、スラグ処理、再利用が容易であり、環境上
の問題も少ないという利点がある。
2. Description of the Related Art A general method for producing an extremely low sulfur steel having a sulfur concentration reduced to 20 ppm or less is 30 pp at the hot metal stage.
It is desulfurized to m or less and finish desulfurized in the secondary refining process. In the secondary refining process, the oxygen concentration in the steel is high and the desulfurization efficiency tends to be low, so that rapid desulfurization treatment is difficult. Therefore, it is desirable to desulfurize to the lowest possible sulfur concentration in the hot metal stage. The desulfurizing agent used for desulfurizing hot metal mainly contains lime, calcium carbide, soda ash and the like. However, conventional desulfurizing agents have various drawbacks. For example, a lime-based desulfurizing agent is the cheapest, but the main component, lime, is solid at the hot metal temperature, and the treatment time tends to be long. Calcium carbide produces toxic phosphine, which contains P as an impurity, and is environmentally problematic. Soda ash has a high vapor pressure, produces a large amount of white smoke during processing, and significantly lowers the hot metal temperature. Moreover, the desulfurized slag derived from calcium carbide and soda ash is difficult to recycle, and is also difficult in terms of slag treatment. As an alternative to these desulfurizing agents, magnesium-based desulfurizing agents have been receiving attention in recent years. The magnesium-based desulfurizing agent is generally used as a mixed powder of lime and magnesium, and is supplied into the hot metal by gas injection or a wire feeder. The magnesium-based desulfurizing agent can be expected to have high desulfurization efficiency, and since the main component of the generated slag after treatment is CaO-MgO-based, it has the advantages that it is easy to perform slag treatment and reuse, and there are few environmental problems. is there.

【0003】[0003]

【発明が解決しようとする課題】マグネシウム系脱硫剤
のみならず、従来の脱硫剤を用いた場合においても、脱
硫処理の末期、具体的には硫黄濃度が30ppmを下回
る濃度域においては脱硫効率が低下し、極低硫溶銑を安
定的に得るには長い処理時間と多量の脱硫剤を必要とし
ていた。このため、極低硫域における脱硫効率を如何に
高めるかが、生産性良く極低硫溶銑を製造する上で重要
な課題になる。本発明は、このような課題に応えるべく
案出されたものであり、溶銑内部における脱硫反応サイ
トを垂直方向に分布させることにより、少量の脱硫剤で
効率よく且つ短い処理時間で目標硫黄濃度30ppm以
下の極低硫溶銑を得ることを目的とする。
Even when a conventional desulfurizing agent is used in addition to the magnesium-based desulfurizing agent, the desulfurization efficiency is not improved in the final stage of the desulfurization treatment, specifically, in the concentration range where the sulfur concentration is less than 30 ppm. It took a long time and a large amount of desulfurizing agent to stably obtain ultra-low sulfur hot metal. Therefore, how to improve the desulfurization efficiency in the extremely low sulfur area is an important issue for producing the extremely low sulfur hot metal with high productivity. The present invention has been devised to meet such a problem, and by distributing the desulfurization reaction sites in the hot metal in the vertical direction, a small amount of desulfurizing agent can be used efficiently and in a short treatment time with a target sulfur concentration of 30 ppm. The purpose is to obtain the following ultra-low sulfur hot metal.

【0004】[0004]

【課題を解決するための手段】本発明は、その目的を達
成するため、容器内の溶銑に複数の脱硫剤充填ワイヤを
供給して溶銑を脱硫する際、ワイヤの投入速度を2種以
上に設定し、溶銑中における反応サイトを垂直方向に分
布させることを特徴とする。また、脱硫剤充填ワイヤの
シースとして融点が異なる2種以上の金属を使用し、融
点の相違に基づいて溶銑中における反応サイトを垂直方
向に分布させることもできる。
In order to achieve the object, the present invention, when desulfurizing hot metal by supplying a plurality of desulfurizing agent-filled wires to the hot metal in a container, sets the wire feeding speed to two or more. It is characterized by setting and distributing the reaction sites in the hot metal in the vertical direction. It is also possible to use two or more kinds of metals having different melting points as the sheath of the desulfurizing agent-filled wire and distribute the reaction sites in the hot metal in the vertical direction based on the difference in the melting points.

【0005】[0005]

【作用】化学反応速度論的に検討すると、低硫黄濃度域
においては、硫黄原子の溶銑中の移動が反応を律速する
ことに反応速度低下の原因があるものと考えられる。硫
黄原子の移動が反応を律速しているとき、それ以上反応
速度を大きくするためには、反応サイトまでの距離を短
くするか、反応サイトの数そのものを増やすのが有効で
ある。そこで、本発明においては、溶銑中の推定硫黄濃
度が30ppmを下回る濃度域において、脱硫反応の起
こるサイトを深さ方向に多様化させる。具体的には、投
入する脱硫剤充填ワイヤの投入速度をワイヤごとに別々
に設定し、反応の起こる深さをワイヤごとに個別にコン
トロールし、溶銑鍋の全領域で反応を起こさせる。この
場合、早い速度で供給されたワイヤは深い位置で、遅い
速度で供給されたワイヤは浅い位置で脱硫反応を起こ
す。また、脱硫反応の開始及び進行に伴って溶銑全体が
撹拌されるため、強化された撹拌によって脱硫反応が溶
銑全体に均等に行き渡る。更に、脱硫効率を上げるた
め、不活性ガス,窒素等の撹拌用ガスを溶銑に吹込んで
も良い。或いは、脱硫剤を被覆するシース材として、融
点が異なる2種以上の金属材料を選択使用することも有
効である。この場合、同一の投入速度でもシース材の融
点が異なることにより反応の起こる位置が変わり、同様
の効果が得られる。この場合にはワイヤの投入速度を変
える場合と異なり、脱硫剤の供給速度を変える必要がな
い。
When the chemical reaction kinetics is examined, it is considered that in the low sulfur concentration range, the movement rate of sulfur atoms in the hot metal limits the reaction, which causes the reduction in the reaction rate. When the movement of the sulfur atom controls the reaction, in order to increase the reaction rate further, it is effective to shorten the distance to the reaction site or increase the number of reaction sites themselves. Therefore, in the present invention, the sites where the desulfurization reaction occurs are diversified in the depth direction in the concentration range where the estimated sulfur concentration in the hot metal is lower than 30 ppm. Specifically, the feeding speed of the desulfurizing agent-filled wire to be fed is set separately for each wire, the depth at which the reaction occurs is controlled individually for each wire, and the reaction is caused in the entire area of the hot metal ladle. In this case, the wire supplied at a high speed causes a desulfurization reaction at a deep position, and the wire supplied at a low speed causes a desulfurization reaction at a shallow position. Further, since the entire hot metal is stirred with the start and progress of the desulfurization reaction, the desulfurization reaction is evenly spread over the entire hot metal by the enhanced stirring. Further, in order to improve the desulfurization efficiency, an inert gas, a stirring gas such as nitrogen, may be blown into the hot metal. Alternatively, it is also effective to select and use two or more kinds of metal materials having different melting points as the sheath material for coating the desulfurizing agent. In this case, even if the feeding speed is the same, the position where the reaction occurs changes due to the different melting points of the sheath materials, and the same effect can be obtained. In this case, it is not necessary to change the supply rate of the desulfurizing agent, unlike the case where the feeding rate of the wire is changed.

【0006】[0006]

【実施の形態】本発明に従った溶銑脱硫は、たとえば図
1に示すような形態で実施される。ワイヤフィーダ1
0,20を用いて、処理容器30中の溶銑31に複数の
脱硫剤充填ワイヤ21,22を投入し、溶銑31を脱硫
処理する。脱硫剤充填ワイヤ21,22は、それぞれの
ペイオフリール12,22から送り出され、ガイド1
3,23を経て溶銑31中に送り込まれる。溶銑31中
で脱硫剤充填ワイヤ21,22のシースが溶融し、脱硫
剤14,24が溶銑31中に分散される。初期のワイヤ
投入本数は、通常、反応効率を最大にする脱硫剤供給速
度・脱硫剤中のマグネシウム配合量をもとに考慮されて
おり、2本以上であることが一般的である。そこで、脱
硫反応サイトを溶銑の深さ方向に分布させる手段として
は、次の二つの方法が考えられる。
BEST MODE FOR CARRYING OUT THE INVENTION The hot metal desulfurization according to the present invention is carried out, for example, in the form shown in FIG. Wire feeder 1
The desulfurizing agent-filled wires 21 and 22 are put into the hot metal 31 in the processing container 30 using 0 and 20 to desulfurize the hot metal 31. The desulfurizing agent-filled wires 21 and 22 are sent out from the payoff reels 12 and 22, respectively, and the guide 1
It is fed into the hot metal 31 through 3,23. The sheaths of the desulfurizing agent-filled wires 21, 22 are melted in the hot metal 31, and the desulfurizing agents 14, 24 are dispersed in the hot metal 31. The initial number of inserted wires is usually taken into consideration based on the desulfurizing agent supply rate and the amount of magnesium compounded in the desulfurizing agent, which maximizes the reaction efficiency, and is generally 2 or more. Therefore, the following two methods are considered as means for distributing the desulfurization reaction sites in the depth direction of the hot metal.

【0007】第一には、ワイヤ11,21の投入速度を
個別に設定する方法が考えられる。脱硫剤,シース材,
ワイヤ外径,脱硫剤充填量等が同一の場合、投入から反
応が開始されるまでに要する時間は一定であるため、反
応の起こる深さはワイヤ投入速度により一義的に決定さ
れる。これにより反応の起こる深さ方向位置が複数箇所
になり、溶銑21中の全領域で脱硫反応が生起する。第
二の方法では、同一の投入速度で、シース材の材質を変
える。シース材としては通常低炭素鋼が用いられるが、
融点の異なる他の材質を用いることにより、シース材の
溶解に要する時間が変化する。たとえば、低融点のシー
ス材を用いた場合には、浅い位置で反応を起こす。低融
点のシース材としては、ワイヤへの加工が容易で、強度
が十分であるとともに脱硫工程以降の製鋼プロセスで残
留濃度の制御が可能なアルミニウム系合金が良い。
First, a method of individually setting the feeding speeds of the wires 11 and 21 can be considered. Desulfurizing agent, sheath material,
When the wire outer diameter, the desulfurizing agent filling amount, and the like are the same, the time required from the charging to the start of the reaction is constant, so the depth at which the reaction occurs is uniquely determined by the wire charging speed. As a result, there are a plurality of positions in the depth direction where the reaction occurs, and the desulfurization reaction occurs in the entire region of the hot metal 21. In the second method, the material of the sheath material is changed at the same feeding speed. Low carbon steel is usually used as the sheath material,
By using another material having a different melting point, the time required for melting the sheath material changes. For example, when a sheath material having a low melting point is used, a reaction occurs at a shallow position. As the low melting point sheath material, an aluminum-based alloy is preferable because it can be easily processed into a wire, has sufficient strength, and can control the residual concentration in the steelmaking process after the desulfurization step.

【0008】[0008]

【実施例】【Example】

実施例1:高炉溶銑90トンを断面積5.4m2 の処理
容器に装入し、マグネシウム濃度50重量%,石灰50
重量%の組成をもつ脱硫剤を低炭素鋼製のシース材で被
覆した脱硫剤充填ワイヤを投入し、脱硫処理を実施し
た。このときの処理条件を表1に示す。初期投入本数は
2本とし、ワイヤの投入速度については、マグネシウム
純分の供給速度が0.11kg/分・トンとなるように
設定した。この場合、1本の脱硫剤充填ワイヤを80m
/分で、他方の脱硫剤充填ワイヤを40m/分で投入し
た。脱硫処理中に溶銑中[S]濃度を連続的に測定し
た。溶銑中[S]濃度は、図2に示すようにほぼ直線的
に低下し、投入開始後約8分で20ppmまで低下し
た。
Example 1: 90 tons of blast furnace hot metal was charged into a processing vessel having a cross-sectional area of 5.4 m 2 , and magnesium concentration was 50% by weight and lime was 50.
A desulfurizing agent-filled wire in which a desulfurizing agent having a composition of wt% was coated with a sheath material made of low carbon steel was put in to perform desulfurization treatment. Table 1 shows the processing conditions at this time. The initial number of wires was set to 2, and the wire introduction speed was set so that the pure magnesium content supply rate was 0.11 kg / min · ton. In this case, 80m of one desulfurizing agent filled wire
/ Min, the other desulfurizing agent-filled wire was charged at 40 m / min. [S] concentration in the hot metal was continuously measured during the desulfurization treatment. The [S] concentration in the hot metal decreased almost linearly as shown in FIG. 2, and decreased to 20 ppm about 8 minutes after the start of charging.

【0009】実施例2:基本的には実施例1と同じ溶銑
に対し、1本は低炭素鋼シースのワイヤを、もう1本は
アルミニウム合金シースのワイヤを投入した。ワイヤの
投入速度はいずれも60m/分とし、マグネシウム純分
の供給速度が実施例1と同じになるように設定した。溶
銑中[S]濃度は、経時変化を図3に示すように、やは
り20ppmまでほぼ直線的に低下したが、ごく初期に
おける脱硫速度が実施例1よりも大きかった。そのた
め、投入開始後約7分で溶銑中[S]濃度が20ppm
に到達した。
Example 2: Basically, the same hot metal as in Example 1 was charged with one wire having a low carbon steel sheath and another wire having an aluminum alloy sheath. The wire feeding speed was set to 60 m / min in all cases, and the pure magnesium supply rate was set to be the same as in Example 1. The [S] concentration in the hot metal decreased almost linearly to 20 ppm as shown in FIG. 3, but the desulfurization rate at the very early stage was higher than that in Example 1. Therefore, the [S] concentration in the hot metal is 20 ppm in about 7 minutes after the start of charging.
Reached.

【0010】比較例:実施例1と同じ初期条件で2本の
ワイヤ投入速度を共にに60m/分として投入を行っ
た。このときの溶銑中[S]濃度は、経時変化を図4に
示すように、50ppmまではほぼ直線的に低下した
が、その後脱硫速度が低下した。そして、投入開始後1
0分の時点で30ppmまで低下したに止まった。以上
の操業諸元を表1に、脱硫処理結果をまとめて表2に示
す。表2に示したように、実施例1,2の条件で非常に
効率よい脱硫処理が実現できることが確認された。
COMPARATIVE EXAMPLE: Under the same initial conditions as in Example 1, two wires were introduced at a rate of 60 m / min. At this time, the [S] concentration in the hot metal decreased almost linearly up to 50 ppm, as shown in FIG. 4, and thereafter the desulfurization rate decreased. And 1 after the start of charging
It dropped to 30 ppm at 0 minutes. The above operational specifications are shown in Table 1, and the desulfurization treatment results are summarized in Table 2. As shown in Table 2, it was confirmed that extremely efficient desulfurization treatment can be realized under the conditions of Examples 1 and 2.

【0011】 [0011]

【0012】 [0012]

【0013】[0013]

【発明の効果】以上に説明したように、本発明の脱硫方
法では、脱硫剤充填ワイヤの投入速度を変え、或いは脱
硫剤充填ワイヤのシース材として融点が異なる金属材料
を使用することにより、溶銑の深さ方向に関して脱硫反
応サイトを分散させている。これにより、溶銑全体に脱
硫反応が行き渡り、溶銑中[S]濃度が低くなった領域
でも脱硫反応が円滑且つ迅速に進行する。その結果、硫
黄濃度が30ppm以下の溶銑を短時間で製造すること
ができる。
As described above, in the desulfurization method of the present invention, by changing the feeding speed of the desulfurization agent-filled wire or by using a metal material having a different melting point as a sheath material of the desulfurization agent-filled wire, The desulfurization reaction sites are dispersed in the depth direction. As a result, the desulfurization reaction spreads throughout the hot metal, and the desulfurization reaction proceeds smoothly and quickly even in the region where the [S] concentration in the hot metal is low. As a result, hot metal having a sulfur concentration of 30 ppm or less can be produced in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る脱硫処理実施形態の一例FIG. 1 is an example of an embodiment of a desulfurization treatment according to the present invention.

【図2】 実施例1における溶銑中[S]濃度の経時変
FIG. 2 is a temporal change in [S] concentration in hot metal in Example 1.

【図3】 実施例2における溶銑中[S]濃度の経時変
FIG. 3 is a change with time of the [S] concentration in the hot metal in Example 2.

【図4】 比較例における溶銑中[S]濃度の経時変化FIG. 4 is a temporal change of [S] concentration in hot metal in a comparative example.

【符号の説明】[Explanation of symbols]

10,20:ワイヤフィーダ 11,21:脱硫剤充
填ワイヤ 12,22:ペイオフリール 13,2
3:ガイド 14,24:脱硫剤充填ワイヤから溶銑
に要求された脱硫剤 30:処理容器 31:溶銑
10,20: Wire feeder 11,21: Desulfurizing agent filled wire 12,22: Payoff reel 13,2
3: Guide 14, 24: Desulfurization agent required for hot metal from desulfurization agent-filled wire 30: Processing container 31: Hot metal

フロントページの続き (72)発明者 平間 潤 東京都千代田区丸の内3丁目4番1号 日 新製鋼株式会社内Front page continuation (72) Inventor Jun Hirama 3-4-1, Marunouchi, Chiyoda-ku, Tokyo Nisshin Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 容器内の溶銑に複数の脱硫剤充填ワイヤ
を供給して溶銑を脱硫する際、ワイヤの投入速度を2種
以上に設定し、溶銑中における反応サイトを垂直方向に
分布させることを特徴とする溶銑の脱硫方法。
1. When supplying a plurality of desulfurizing agent-filled wires to the hot metal in the container to desulfurize the hot metal, the feeding speed of the wires is set to two or more, and the reaction sites in the hot metal are vertically distributed. A method for desulfurizing hot metal, which is characterized by:
【請求項2】 容器内の溶銑に複数の脱硫剤充填ワイヤ
を供給して溶銑を脱硫する際、脱硫剤充填ワイヤのシー
スとして融点が異なる2種以上の金属を使用し、融点の
相違に基づいて溶銑中における反応サイトを垂直方向に
分布させることを特徴とする溶銑の脱硫方法。
2. When desulfurizing the hot metal by supplying a plurality of desulfurizing agent-filled wires to the hot metal in the container, two or more kinds of metals having different melting points are used as the sheath of the desulfurizing agent-filling wire, and based on the difference in melting points. A method for desulfurizing hot metal, characterized in that the reaction sites in the hot metal are vertically distributed.
JP34496995A 1995-12-06 1995-12-06 Method for desulfurizing molten iron Withdrawn JPH09157720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34496995A JPH09157720A (en) 1995-12-06 1995-12-06 Method for desulfurizing molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34496995A JPH09157720A (en) 1995-12-06 1995-12-06 Method for desulfurizing molten iron

Publications (1)

Publication Number Publication Date
JPH09157720A true JPH09157720A (en) 1997-06-17

Family

ID=18373391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34496995A Withdrawn JPH09157720A (en) 1995-12-06 1995-12-06 Method for desulfurizing molten iron

Country Status (1)

Country Link
JP (1) JPH09157720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133490A (en) * 2006-11-27 2008-06-12 Jfe Steel Kk Method for desulfurizing molten pig iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133490A (en) * 2006-11-27 2008-06-12 Jfe Steel Kk Method for desulfurizing molten pig iron

Similar Documents

Publication Publication Date Title
US3998625A (en) Desulfurization method
KR101113717B1 (en) Method and melting system for manufacturing a steel containing high contents of manganese and low contents of carbon
SK2952000A3 (en) Method of making iron and steel
US4518422A (en) Process and apparatus for refining steel in a metallurgical vessel
CN111670258B (en) Method for dephosphorizing molten iron
CN113994015A (en) Method for adding Ca to molten steel
JP3332010B2 (en) Manufacturing method of low phosphorus hot metal
KR910008143B1 (en) Method for producing steel in a top-blown vessel
US4773929A (en) Method of and device for the simultaneous heating and refining of a metal bath
JP5200324B2 (en) Desulfurization method for molten steel
JP4894325B2 (en) Hot metal dephosphorization method
JPH09157720A (en) Method for desulfurizing molten iron
JP2007092181A (en) Method for producing low phosphorus molten iron
JP2008095136A (en) Metal band coated desulfurization wire, and method for desulfurizing molten iron
JP3670098B2 (en) Hot metal dephosphorization method
US4023962A (en) Process for regenerating or producing steel from steel scrap or reduced iron
JPH09157721A (en) Production of extremely low sulfur molten iron
JPS6333512A (en) Pre-treating method for molten iron
CN113056566A (en) Carbon increasing material and carbon increasing method using same
JP2000129329A (en) Method for dephosphorizing molten iron
JP2007254843A (en) Molten iron desulfurization treatment method
CN1206373C (en) Method and use of calcium nitrate for foaming of steel-making slags
RU2138563C1 (en) Method for treating steel in ladle
JP5386972B2 (en) Hot metal dephosphorization method
JPH09194924A (en) Production of extra-low sulfur molten iron

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304