JPH09157358A - Luminescent silicone polymer compound and its preparation - Google Patents

Luminescent silicone polymer compound and its preparation

Info

Publication number
JPH09157358A
JPH09157358A JP33565195A JP33565195A JPH09157358A JP H09157358 A JPH09157358 A JP H09157358A JP 33565195 A JP33565195 A JP 33565195A JP 33565195 A JP33565195 A JP 33565195A JP H09157358 A JPH09157358 A JP H09157358A
Authority
JP
Japan
Prior art keywords
monomer unit
polysilane
formula
methylphenyldichlorosilane
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33565195A
Other languages
Japanese (ja)
Other versions
JP2865038B2 (en
Inventor
Yoshinori Kimata
良典 木全
Akira Kuriyama
晃 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP33565195A priority Critical patent/JP2865038B2/en
Publication of JPH09157358A publication Critical patent/JPH09157358A/en
Application granted granted Critical
Publication of JP2865038B2 publication Critical patent/JP2865038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Silicon Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a novel silicone polymer compd. which emits light at wavelengths in a visible region and can be used as a display element by comprising a methylphenylsilane monomer unit and a thiophene monomer unit. SOLUTION: An oligothiophene (microthiophene), having on its terminal a chlorosilyl group, represented by formula I (wherein R represents a 4-8 C straight-chain alkyl; and (n) is 5 to 50), for example, is polycondensed with methylphenyldichlorosilane to prepare a polysilane represented by formula II (wherein R represents a 4-8 C straight-chain alkyl; (m) represents the degree of polymn. of a methylphenylsilane monomer unit and is 50 to 500; and (n) represents the degree of polymn. of a thiophene monomer unit and is 5 to 50) and having a wt.-average mol.wt. (in terms of polystyrene of 10,000 to 100,000 ad determined by gel permeation chromatography(GCP). This reaction is conducted by mixing the microthiophere with the methylphenyldichlorosilane in an org. solvent, adding a reducing agent such as metallic sodium, and conducting dehalogenation polycondensation at a temp. around the boiling point of the solvent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、発光材料および半
導体材料などに有用であり、特に可視領域で発光を示す
新規なケイ素系高分子化合物およびその製造方法を提供
するものである。
TECHNICAL FIELD The present invention provides a novel silicon polymer compound which is useful as a light emitting material, a semiconductor material and the like, and particularly emits light in the visible region, and a method for producing the same.

【0002】[0002]

【従来の技術】ケイ素系高分子化合物(以下ポリシラン
という)は主鎖骨格がSi−Si結合から構成されるポ
リマーであり、その主鎖に沿って広がるσ共役系電子構
造に起因して発光および光電導等の半導体に適した性質
が発現することが知られている。特に直鎖型ポリシラン
の発光機能に関しては、その励起時における電子遷移が
直接遷移型であるために効率良く発光が起こるので、蛍
光材料として有用性が高いが、ポリシランを表示素子用
の材料として使用する場合には、発光波長が400nm
以上の可視領域にあることが必要である。しかしなが
ら、従来から知られているポリシランの発光波長はほと
んど全て紫外領域にあった。例えば、代表的なポリシラ
ンであるポリ(メチルフェニルシラン)は353nm、
ポリ(ジ−n−ヘキシルシラン)は337nmを極大波
長とする発光が観測されているにすぎない〔R.D.Mille
r, Chemical Reviews, 89, No.6,(1989) 〕。
2. Description of the Related Art A silicon-based polymer compound (hereinafter referred to as polysilane) is a polymer whose main chain skeleton is composed of Si-Si bonds, and emits light and emits light due to a σ-conjugated electronic structure extending along the main chain. It is known that properties suitable for semiconductors such as photoconductivity are exhibited. In particular, regarding the light emitting function of linear polysilane, it is highly useful as a fluorescent material because it emits light efficiently because the electron transition during excitation is a direct transition type, but polysilane is used as a material for display devices. If the emission wavelength is 400 nm
It is necessary to be in the above visible region. However, almost all the emission wavelengths of the conventionally known polysilanes are in the ultraviolet region. For example, poly (methylphenylsilane) which is a typical polysilane has 353 nm,
Poly (di-n-hexylsilane) has only been observed to emit light with a maximum wavelength of 337 nm [RD Mille
r, Chemical Reviews, 89, No. 6, (1989)].

【0003】[0003]

【発明が解決しようとする課題】上記で述べた様にこれ
まで検討されていたポリシラン類は紫外線領域での蛍光
しか示さない。このため可視領域の波長で発光し、表示
素子として利用可能な化合物が必要とされている。そこ
で本発明者らは鋭意研究を重ねた結果、末端にオリゴチ
オフェンを含有する新規なポリシランが可視領域の波長
で発光するという機能を有することを見出し、本発明を
完成した。
As described above, the polysilanes that have been studied so far show only fluorescence in the ultraviolet region. Therefore, there is a need for a compound that emits light in the visible region and can be used as a display device. Therefore, as a result of intensive studies, the present inventors have found that a novel polysilane containing oligothiophene at the terminal has a function of emitting light at a wavelength in the visible region, and completed the present invention.

【0004】[0004]

【課題を解決するための手段】本発明は、式〔1〕で表
されるポリシランである。
The present invention is a polysilane represented by the formula [1].

【0005】[0005]

【化3】 Embedded image

【0006】(Rは炭素数4〜8の直鎖アルキル基を示
し、nは5〜50の正数を示す)
(R represents a linear alkyl group having 4 to 8 carbon atoms, and n represents a positive number of 5 to 50)

【0007】[0007]

【発明の実施の形態】本発明における式〔1〕で表され
るポリシランは文献未載の新規化合物である。式〔1〕
におけるRを具体的に示すと、ブチル基、ペンチル基、
ヘキシル基、ヘプチル基およびオクチル基であり、有機
溶媒に対する溶解性が高く、薄膜作製等の加工性に優
れ、かつ機械的強度の高い薄膜が得られるという理由か
ら、ヘキシル基、ヘプチル基およびオクチル基が好まし
く、特にヘキシル基が好適である。さらに、mとnはそ
れぞれメチルフェニルシラン単量体単位とチオフェン単
量体単位の重合度であり、mは50〜500の正数およ
びnは1〜50の正数を示す。本発明におけるポリシラ
ンのゲルパ−ミエ−ションクロマトグラフィ−(以下G
PCという)による重量平均分子量(ポリスチレン換
算)は10,000〜100,000が好ましく、さら
に好ましくは10,000〜50,000である。
BEST MODE FOR CARRYING OUT THE INVENTION The polysilane represented by the formula [1] in the present invention is a novel compound which has not been published in the literature. Formula [1]
When R is specifically shown, a butyl group, a pentyl group,
Hexyl group, heptyl group and octyl group, high solubility in organic solvents, excellent processability for thin film production, etc., and because a thin film with high mechanical strength can be obtained, hexyl group, heptyl group and octyl group Is preferable, and a hexyl group is particularly preferable. Further, m and n are the polymerization degrees of the methylphenylsilane monomer unit and the thiophene monomer unit, respectively, m is a positive number of 50 to 500 and n is a positive number of 1 to 50. The gel permeation chromatography of the polysilane in the present invention (hereinafter referred to as G
The weight average molecular weight (converted to polystyrene) based on PC is preferably 10,000 to 100,000, and more preferably 10,000 to 50,000.

【0008】本発明におけるポリシランは、例えば、末
端にクロロシリル基を含有する式〔2〕で表されるオリ
ゴチオフェン(以下マクロチオフェンという)と、メチ
ルフェニルジクロロシランを縮重合させることによる製
造される。
The polysilane in the present invention is produced, for example, by polycondensing an oligothiophene (hereinafter referred to as macrothiophene) represented by the formula [2] containing a chlorosilyl group at the terminal with methylphenyldichlorosilane.

【0009】[0009]

【化4】 Embedded image

【0010】(Rは炭素数4〜8の直鎖アルキル基を示
し、nは1〜50の正数を示す)
(R represents a linear alkyl group having 4 to 8 carbon atoms, and n represents a positive number of 1 to 50)

【0011】前記マクロチオフェンも新規物質である。
例えば、式〔3〕で表されるジブロモチオフェンと式
〔4〕で表されるモノブロモチオフェンをグリニャール
重合させて得られる式〔5〕で表されるポリチオフェン
化合物を、塩化パラジウム触媒の存在下に四塩化炭素と
反応させることにより、前記マクロチオフェンは製造さ
れる。
The macrothiophene is also a novel substance.
For example, a polythiophene compound represented by the formula [5] obtained by Grignard polymerization of dibromothiophene represented by the formula [3] and monobromothiophene represented by the formula [4] is added in the presence of a palladium chloride catalyst. The macrothiophene is produced by reacting with carbon tetrachloride.

【0012】[0012]

【化5】 Embedded image

【0013】(R1 は炭素数4〜8の直鎖アルキル基を
示す)
(R 1 represents a linear alkyl group having 4 to 8 carbon atoms)

【0014】[0014]

【化6】 [Chemical 6]

【0015】[0015]

【化7】 Embedded image

【0016】(R1 は炭素数4〜8の直鎖アルキル基を
示し、nは1〜50の正数を示す)
(R 1 represents a linear alkyl group having 4 to 8 carbon atoms, and n represents a positive number of 1 to 50)

【0017】次に本発明におけるポリシランの製造方法
について説明する。ポリシランは前記マクロチオフェン
とメチルフェニルジクロロシランを有機溶媒中で混合さ
せ、還元剤を加え脱ハロゲン縮重合させることにより製
造される。還元剤としては金属ナトリウム、金属カリウ
ムおよび金属リチウムが挙げられ、金属ナトリウムが好
適である。有機溶媒はマクロチオフェン、メチルフェニ
ルジクロロシランおよび生成するポリシランを溶解する
ものであれば特に限定なく用いることができ、具体的に
はトルエン、キシレン、テトラヒドロフラン、ベンゼン
およびエチルベンゼンなどが挙げられ、好ましくはトル
エン、キシレンおよびテトラヒドロフランであり、特に
好ましくはトルエンである。
Next, the method for producing polysilane according to the present invention will be described. Polysilane is produced by mixing the macrothiophene and methylphenyldichlorosilane in an organic solvent and adding a reducing agent to carry out dehalogenative condensation polymerization. Examples of the reducing agent include metallic sodium, metallic potassium and metallic lithium, and metallic sodium is preferable. The organic solvent can be used without particular limitation as long as it dissolves macrothiophene, methylphenyldichlorosilane and the resulting polysilane, and specific examples thereof include toluene, xylene, tetrahydrofuran, benzene and ethylbenzene, and preferably toluene. , Xylene and tetrahydrofuran, particularly preferably toluene.

【0018】上記反応におけるメチルフェニルジクロロ
シランに対するマクロチオフェンの重量比率は0.01
〜20重量%であることが好ましく、特に好ましくは
0.05〜10重量%である。反応温度は使用する溶媒
の沸点近傍が好ましく、例えば、トルエンを使用する場
合は100〜110℃、キシレンを使用する場合は13
0〜140℃が好ましい。反応時間は30分〜5時間が
好ましく、特に1〜2時間が好ましい。反応時間が5時
間より長くなると生成したポリシランが分解を起こす恐
れがある。
The weight ratio of macrothiophene to methylphenyldichlorosilane in the above reaction is 0.01.
It is preferably from 20 to 20% by weight, particularly preferably from 0.05 to 10% by weight. The reaction temperature is preferably in the vicinity of the boiling point of the solvent used, for example, 100 to 110 ° C. when using toluene and 13 when using xylene.
0-140 degreeC is preferable. The reaction time is preferably 30 minutes to 5 hours, particularly preferably 1 to 2 hours. If the reaction time is longer than 5 hours, the generated polysilane may be decomposed.

【0019】さらに、例えば、反応生成物の濾過並びに
メタノールおよびn−ヘキサンなどで再沈殿させること
により、ポリシランを精製させることができる。
Further, the polysilane can be purified by filtering the reaction product and reprecipitating it with methanol and n-hexane, for example.

【0020】本発明により得られたポリシランは、58
0nm付近に極大波長を有する可視発光を示し、発光材
料および半導体材料などに有用である。
The polysilane obtained according to the present invention is 58
It exhibits visible light emission having a maximum wavelength near 0 nm, and is useful as a light emitting material and a semiconductor material.

【0021】[0021]

【実施例】以下、実施例に基づいて本発明をより詳細に
説明する。 〈参考例〉マクロチオフェンの製造 50mlのナス型フラスコに金属マグネシウム0.24
g(10.0mmol)と磁気攪拌子を入れ、フラスコ
内部を乾燥窒素雰囲気にした。シリンジでテトラヒドロ
フランを10ml加えて、マグネチックスタ−ラ−で攪
拌しながら2,5−ジブロモ−3−ヘキシルチオフェン
3.26g(10.0mmol)を添加した。発熱を伴
いながらグリニャ−ル反応が進行し、30分後に金属マ
グネシウムがすべて消費されて反応が終結し、均一透明
な溶液になった。これに2−ブロモ−5−メチルフェニ
ルヒドロシリルチオフェン0.28g(1,0mmo
l)とテトラヒドロフラン溶媒10mlを加えて攪拌し
た。そして触媒の塩化ニッケルジフェニルフォスフィノ
エタンを0.24g(2,5−ジブロモ−3−ヘキシル
チオフェンに対して0.33モル%)を加えて攪拌し
た。直ちに重合が開始され発熱が起きた。反応を1時間
行った後、溶液は赤褐色を呈し、副生成物の臭化マグネ
シウムが析出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to embodiments. Reference Example Production of Macrothiophene Magnesium metal 0.24 in a 50 ml eggplant-shaped flask.
g (10.0 mmol) and a magnetic stirrer were put therein, and the inside of the flask was put into a dry nitrogen atmosphere. 10 ml of tetrahydrofuran was added with a syringe, and 3.26 g (10.0 mmol) of 2,5-dibromo-3-hexylthiophene was added with stirring with a magnetic stirrer. The Grignard reaction proceeded while generating heat, and after 30 minutes, the metallic magnesium was completely consumed and the reaction was terminated, resulting in a uniform transparent solution. 0.28 g (1,0 mmo of 2-bromo-5-methylphenylhydrosilylthiophene was added thereto.
1) and 10 ml of a tetrahydrofuran solvent were added and stirred. Then, 0.24 g (0.33 mol% based on 2,5-dibromo-3-hexylthiophene) of nickel chloride diphenylphosphinoethane as a catalyst was added and stirred. Polymerization started immediately and an exotherm occurred. After the reaction was carried out for 1 hour, the solution turned reddish brown and the by-product magnesium bromide was precipitated.

【0022】生成ポリマ−を精製するために、5%塩酸
100mlを入れた分液漏斗に上記反応溶液を注いで振
り混ぜた。褐色の粗ポリマ−が水層上に析出したので、
これを分離して再度テトラヒドロフラン50mlに溶解
させ、さらに300mlのアセトン中にポリマ−溶液を
投入することにより再沈澱させた。ガラスフィルタ−で
これを回収し、減圧乾燥して精製ポリマ−0.59gを
得た。収率は32%であった。GPCにより求められた
数平均分子量は5,050(分散度1.24)であっ
た。プロトン核磁気共鳴スペクトルの積分比から重合度
nは30と認められた。得られたポリマ−の赤外吸収ス
ペクトルを図1に示した。3,030cm-1にチエニル
基のC−H伸縮振動、2,956、2,927、2,8
57cm-1にヘキシル基のC−H伸縮振動、2,130
cm-1に末端基のSi−H伸縮振動、825cm-1にチ
オフェン環のC−S伸縮振動の特性吸収が観測され、得
られたポリマ−は末端にヒドロシリル基を持ち、主鎖が
3−ヘキシルチエニル基で構成された前記式〔5〕で表
されるポリチオフェン化合物であることを確認した。
In order to purify the produced polymer, the above reaction solution was poured into a separatory funnel containing 100 ml of 5% hydrochloric acid and shaken. Since a brown crude polymer was deposited on the aqueous layer,
This was separated, redissolved in 50 ml of tetrahydrofuran again, and re-precipitated by pouring the polymer solution into 300 ml of acetone. This was collected with a glass filter and dried under reduced pressure to obtain 0.59 g of a purified polymer. The yield was 32%. The number average molecular weight determined by GPC was 5,050 (dispersion degree 1.24). The degree of polymerization n was confirmed to be 30 from the integral ratio of the proton nuclear magnetic resonance spectrum. The infrared absorption spectrum of the obtained polymer is shown in FIG. C-H stretching vibration of thienyl group at 3,030 cm -1 , 2,956, 2,927, 2,8
Hexyl group C-H stretching vibration at 57 cm -1 , 2,130
Si-H stretching vibration of the terminal groups in cm -1, is observed characteristic absorption of C-S stretching vibration of the thiophene ring to 825cm -1, the resulting polymer - has a hydrosilyl group-terminated main chain 3- It was confirmed to be a polythiophene compound represented by the above formula [5] composed of a hexylthienyl group.

【0023】次に、上記で得られたポリチオフェン化合
物0.59gを乾燥窒素雰囲気に置換した100mlの
ナス型フラスコに入れ、四塩化炭素20mlに溶解させ
た。塩化パラジウムの粉末を10mg添加した後に、マ
グネチックスタ−ラ−で攪拌しながら24時間還流加熱
を行った。室温まで放冷してから触媒を濾過により取り
除いた。重合溶液を減圧乾燥することにより、濃紫色固
体状のポリマ−0.60gを得た。収率は100%であ
った。GPCにより求められた数平均分子量は5,50
0(分散度1.33)であり、プロトン核磁気共鳴スペ
クトルの積分比から重合度nは30と認められた。得ら
れたポリマ−の赤外吸収スペクトルを図2に示した。
3,055cm-1にチエニル基のC−H伸縮振動、2,
956、2,927、2,857cm-1にヘキシル基の
C−H伸縮振動、825cm-1にチオフェン環のC−S
伸縮振動の特性吸収が観測されたが、本反応を実施する
前に見られた2,130cm-1のSi−H伸縮振動が完
全に消失していた。さらにハロゲンの定性試験をバイル
シュタイン法により行ったところ陽性であった。この結
果、得られたポリマ−の末端ヒドロシリル基が全て塩素
化されたことを示し、式〔2〕で表されるα−メチルフ
ェニルクロロシリル−ポリ(3−n−ヘキシルチオフェ
ン)であることを確認した。
Next, 0.59 g of the polythiophene compound obtained above was placed in a 100 ml eggplant type flask whose atmosphere was replaced with dry nitrogen, and dissolved in 20 ml of carbon tetrachloride. After adding 10 mg of powder of palladium chloride, the mixture was heated under reflux for 24 hours while stirring with a magnetic stirrer. After allowing to cool to room temperature, the catalyst was removed by filtration. The polymerization solution was dried under reduced pressure to obtain 0.60 g of dark purple solid polymer. The yield was 100%. The number average molecular weight determined by GPC is 5,50.
It was 0 (dispersion degree 1.33), and the degree of polymerization n was recognized to be 30 from the integral ratio of the proton nuclear magnetic resonance spectrum. The infrared absorption spectrum of the obtained polymer is shown in FIG.
C-H stretching vibration of the thienyl group at 3,055 cm -1 ,
C-H stretching vibration of hexyl groups 956,2,927,2,857cm -1, C-S of the thiophene ring to 825cm -1
Although characteristic absorption of stretching vibration was observed, the Si—H stretching vibration of 2,130 cm −1 , which was observed before carrying out this reaction, had completely disappeared. Further, when a qualitative test for halogen was conducted by the Weilstein method, it was positive. As a result, it was shown that all the terminal hydrosilyl groups of the obtained polymer were chlorinated, and it was confirmed that the polymer was α-methylphenylchlorosilyl-poly (3-n-hexylthiophene) represented by the formula [2]. confirmed.

【0024】〈実施例1〉滴下漏斗、玉入冷却管と温度
測定用ガラス管を備えた500ml4つ口フラスコにス
テンレス製の撹拌羽根を取り付け、粒状の金属ナトリウ
ム4.30g(187mmol)を入れて内部を乾燥窒
素ガス雰囲気にした。脱水精製したトルエン160ml
をシリンジで加え、ヒーターで加熱してトルエンを沸騰
させた後に高速で撹拌して金属ナトリウムを細かい粒子
として分散させた。次に、参考例で製造した数平均分子
量5500(重合度n=30)のα−メチルフェニルク
ロロシリル−ポリ(3−n−ヘキシルチオフェン)とメ
チルフェニルジクロロシランをそれぞれ0.11g、1
0.8g(57mmol)採ってトルエン20mlに溶
解し、滴下漏斗から30分かけてゆっくりと滴下した。
このとき反応溶液の温度が100〜110℃となるよう
に滴下速度および加温熱量を調整した。原料溶液を全て
供給した後、1時間還流加熱を行って重合反応を進行さ
せた。室温まで冷却してから、析出した塩化ナトリウム
および未反応の金属ナトリウムを濾過し、重合溶液を5
00mlのメタノール中に投入してポリマーを沈殿させ
た。得られた粗生成物をテトラヒドロフラン100ml
に再度溶解させてから500mlのn−ヘキサンを加え
て再沈殿させた。沈殿したポリマーをガラスフィルター
で濾過した後、減圧乾燥により精製ポリマーを得た。収
率は31%であった。得られたポリマーを、検出波長4
40nmでGPC分析したところ、図3に示すように生
成したポリシランは原料化合物のα−メチルフェニルク
ロロシリル−ポリ(3−n−ヘキシルチオフェン)と比
較して明らかに高分子量化しており、ポリスチレン換算
の分子量は重量平均分子量32,100(分散度1.4
0)であった。さらに図4に示した紫外可視吸収スペク
トルによれば、ポリシラン骨格のσ→σ* 遷移に基づく
吸収が極大吸収波長339nmに示されている他に、チ
オフェン鎖のπ→π* 遷移に由来する極大吸収が440
nmに観測された。以上の結果から、本発明により得ら
れたポリマーはメチルフェニルシラン単量体単位とチオ
フェン単量体単位を構成単位とする共重合体であること
が確認された。
Example 1 A 500 ml four-necked flask equipped with a dropping funnel, a ball cooling tube and a glass tube for temperature measurement was equipped with a stainless steel stirring blade, and 4.30 g (187 mmol) of granular metallic sodium was added. The inside was made into a dry nitrogen gas atmosphere. 160 ml of dehydrated and purified toluene
Was added with a syringe, and toluene was boiled by heating with a heater, followed by stirring at high speed to disperse metallic sodium as fine particles. Next, 0.11 g each of α-methylphenylchlorosilyl-poly (3-n-hexylthiophene) having a number average molecular weight of 5500 (polymerization degree n = 30) and methylphenyldichlorosilane produced in Reference Example were prepared.
0.8 g (57 mmol) was taken, dissolved in 20 ml of toluene, and slowly dropped from the dropping funnel over 30 minutes.
At this time, the dropping rate and the heating amount were adjusted so that the temperature of the reaction solution was 100 to 110 ° C. After all the raw material solution was supplied, the mixture was heated under reflux for 1 hour to allow the polymerization reaction to proceed. After cooling to room temperature, the precipitated sodium chloride and unreacted metallic sodium were filtered, and the polymerization solution was mixed with 5
The polymer was precipitated by pouring it into 00 ml of methanol. 100 ml of the obtained crude product was added to tetrahydrofuran.
After re-dissolving in, the solution was reprecipitated by adding 500 ml of n-hexane. The precipitated polymer was filtered with a glass filter and then dried under reduced pressure to obtain a purified polymer. The yield was 31%. The obtained polymer was detected at a wavelength of 4
As a result of GPC analysis at 40 nm, the polysilane produced as shown in FIG. 3 clearly has a higher molecular weight than that of the starting compound α-methylphenylchlorosilyl-poly (3-n-hexylthiophene). Has a weight average molecular weight of 32,100 (dispersion degree of 1.4
0). Further, according to the UV-visible absorption spectrum shown in FIG. 4, the absorption due to the σ → σ * transition of the polysilane skeleton is shown at the maximum absorption wavelength of 339 nm, and the maximum due to the π → π * transition of the thiophene chain is shown. Absorption is 440
Observed at nm. From the above results, it was confirmed that the polymer obtained by the present invention was a copolymer having a methylphenylsilane monomer unit and a thiophene monomer unit as constitutional units.

【0025】一方、紫外可視吸収スペクトルにおける各
吸収帯の極大吸収波長における吸光度をポリ(メチルフ
ェニルシラン)のケイ素ユニットあたりの吸光係数εSi
=9,300、原料に用いたα−メチルフェニルクロロ
シリル−ポリ(3−n−ヘキシルチオフェン)のモル吸
光係数εT =95,500(実測値)で除して共重合組
成を求めると、前記式〔1〕におけるm=218、n=
30となった。この組成から共重合体の理論分子量を計
算すると31,222となりGPCより求められた重量
平均分子量とほぼ一致した。従って、本化合物はポリシ
ラン単量体単位とポリチオフェン単量体単位を構成単位
とするA−B型共重合体であると認められた。得られた
共重合体は420nmの光で励起したときに592nm
の可視発光が観測された(図5)。またこの発光を与え
るエネルギー順位を調べるために測定した励起スペクト
ルによれば、469nmと340nmに極大ピークが現
れた。このことは、可視発光を与える順位がチオフェン
鎖のπ→π* 遷移(極大波長469nm)のみならず、
ポリシラン骨格のσ共役系(極大波長340nm)にも
存在していることを示している。以上の結果より、本実
施例の化合物はπ共役系とσ共役系の2つのセグメント
に可視発光を与える励起順位をもつ新規なポリシランで
あり、発光材料として好適な性質を有することが確認さ
れた。
On the other hand, the absorbance at the maximum absorption wavelength of each absorption band in the UV-visible absorption spectrum is determined by the extinction coefficient ε Si per silicon unit of poly (methylphenylsilane).
= 9,300, the molar extinction coefficient ε T of the α-methylphenylchlorosilyl-poly (3-n-hexylthiophene) used as the raw material was divided by the molar extinction coefficient ε T = 95,500 (actual measurement value) to obtain the copolymer composition, In the above formula [1], m = 218, n =
It became 30. The theoretical molecular weight of the copolymer was calculated from this composition to be 31,222, which was almost the same as the weight average molecular weight determined by GPC. Therefore, this compound was confirmed to be an AB type copolymer having a polysilane monomer unit and a polythiophene monomer unit as constitutional units. The obtained copolymer has a wavelength of 592 nm when excited by light of 420 nm.
Was observed (Fig. 5). In addition, according to the excitation spectrum measured to examine the energy order giving this emission, the maximum peaks appeared at 469 nm and 340 nm. This means that the order of giving visible emission is not only the π → π * transition (maximum wavelength 469 nm) of the thiophene chain,
It is shown that it also exists in the σ-conjugated system (maximum wavelength 340 nm) of the polysilane skeleton. From the above results, it was confirmed that the compound of this example is a novel polysilane having an excitation order that gives visible light emission to two segments of a π-conjugated system and a σ-conjugated system, and has suitable properties as a light emitting material. .

【0026】〈実施例2〉重合度n=30のα−メチル
フェニルクロロシリル−ポリ(3−n−ヘキシルチオフ
ェン)とメチルフェニルジクロロシランをそれぞれ1.
0g、11.6g(61mmol)採ってトルエン50
mlに溶解した原料を用いたこと以外は実施例1と同様
にして重合を行い、収率11%で共重合体を得た。GP
Cによる分子量は25,100(分散度1.82)であ
った。実施例1と同様に共重合組成を計算するとm=1
15、n=30であった。得られた化合物の13C核磁気
共鳴スペクトルを図6に示す。図6によれば、−7pp
mにシリルメチル基、14〜32ppmにヘキシル基の
炭素に帰属されるピークが観測され、本化合物はポリメ
チルフェニルシリルセグメントおよび3−ヘキシルチエ
ニルセグメントからなる高分子であることが明らかであ
る。また、本化合物は420nmで励起したときに59
5nmの可視発光が観測され、発光材料として好適な性
質を有することが確認された。
Example 2 α-methylphenylchlorosilyl-poly (3-n-hexylthiophene) having a degree of polymerization of n = 30 and methylphenyldichlorosilane were respectively prepared as 1.
0 g, 11.6 g (61 mmol) of toluene 50
Polymerization was performed in the same manner as in Example 1 except that the raw material dissolved in ml was used to obtain a copolymer with a yield of 11%. GP
The molecular weight according to C was 25,100 (dispersion degree 1.82). When the copolymer composition was calculated in the same manner as in Example 1, m = 1.
15, n = 30. The 13 C nuclear magnetic resonance spectrum of the obtained compound is shown in FIG. According to FIG. 6, -7 pp
A peak attributed to the carbon of the hexyl group was observed at m and a carbon of the hexyl group at 14 to 32 ppm, and it is clear that this compound is a polymer composed of a polymethylphenylsilyl segment and a 3-hexylthienyl segment. In addition, this compound is 59 when excited at 420 nm.
A visible light emission of 5 nm was observed, and it was confirmed that the material has suitable properties as a light emitting material.

【0027】〈実施例3〉重合度n=20のα−メチル
フェニルクロロシリル−ポリ(3−n−オクチルチオフ
ェン)とメチルフェニルジクロロシランをそれぞれ0.
52g、10.3g(54mmol)採ってトルエン3
0mlに溶解した原料を用いたこと以外は実施例1と同
様にして重合を行い、収率25%で共重合体が得られ
た。GPCによる分子量は35,500(分散度1.4
5)であった。実施例1と同様に共重合組成を計算する
とm=264、n=20であった。また、本化合物は4
20nmで励起したときに590nmの可視発光が観測
され、発光材料として好適な性質を有することが確認さ
れた。
Example 3 α-Methylphenylchlorosilyl-poly (3-n-octylthiophene) having a degree of polymerization of n = 20 and methylphenyldichlorosilane were each added to 0.2%.
52 g, 10.3 g (54 mmol) was taken and toluene was 3
Polymerization was performed in the same manner as in Example 1 except that the raw material dissolved in 0 ml was used, and a copolymer was obtained with a yield of 25%. Molecular weight by GPC is 35,500 (dispersion degree 1.4
5). When the copolymer composition was calculated in the same manner as in Example 1, it was m = 264 and n = 20. The compound is 4
Visible light emission of 590 nm was observed when excited at 20 nm, and it was confirmed to have suitable properties as a light emitting material.

【0028】[0028]

【発明の効果】本発明におけるポリシランは発光材料お
よび半導体材料などに有用な新規な化合物であり、特に
可視領域の波長で発光特性を持つため、表示素子等への
利用が可能な極めて有用な材料である。
INDUSTRIAL APPLICABILITY The polysilane according to the present invention is a novel compound useful as a light emitting material and a semiconductor material. Since it has a light emitting property particularly in the wavelength region of the visible region, it is a very useful material which can be used for display devices and the like. Is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】参考例で得られたポリチオフェンの赤外吸収ス
ペクトルを示す。
FIG. 1 shows an infrared absorption spectrum of polythiophene obtained in Reference Example.

【図2】参考例で得られたマクロチオフェンの赤外吸収
スペクトルを示す。
FIG. 2 shows an infrared absorption spectrum of macrothiophene obtained in Reference Example.

【図3】実施例1で得られたポリシランおよび原料化合
物であるα−メチルフェニルクロロシリル−ポリ(3−
n−ヘキシルチオフェン)のゲルパーミエーションクロ
マトグラフ(GPC)分析チャートを示す。
FIG. 3 shows the polysilane obtained in Example 1 and the starting compound α-methylphenylchlorosilyl-poly (3-
The gel permeation chromatograph (GPC) analysis chart of (n-hexyl thiophene) is shown.

【図4】実施例1で得られたポリシランの紫外可視吸収
スペクトルを示す。
FIG. 4 shows an ultraviolet-visible absorption spectrum of the polysilane obtained in Example 1.

【図5】実施例1で得られたポリシランの発光および励
起スペクトルを示す。
FIG. 5 shows emission and excitation spectra of polysilane obtained in Example 1.

【図6】実施例2で得られたポリシランの13C核磁気共
鳴スペクトルを示す。
FIG. 6 shows a 13 C nuclear magnetic resonance spectrum of the polysilane obtained in Example 2.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】メチルフェニルシラン単量体単位とチオフ
ェン単量体単位を構成単位とする式〔1〕で表されるケ
イ素系高分子化合物。 【化1】 (Rは炭素数4〜8の直鎖アルキル基を示し、mは50
〜500の正数およびnは5〜50の正数を示す)
1. A silicon-based polymer compound represented by the formula [1] having a methylphenylsilane monomer unit and a thiophene monomer unit as constitutional units. Embedded image (R represents a linear alkyl group having 4 to 8 carbon atoms, m is 50
A positive number of ˜500 and n represents a positive number of 5 to 50)
【請求項2】末端にメチルフェニルクロロシリル基を含
有する式〔2〕で表されるオリゴチオフェンと、メチル
フェニルジクロロシランを縮重合させることを特徴とす
る請求項1記載のケイ素系高分子化合物の製造方法。 【化2】 (Rは炭素数4〜8の直鎖アルキル基を示し、nは5〜
50の正数を示す)
2. A silicon-based polymer compound according to claim 1, wherein oligothiophene represented by the formula [2] containing a methylphenylchlorosilyl group at the terminal and methylphenyldichlorosilane are polycondensed. Manufacturing method. Embedded image (R represents a linear alkyl group having 4 to 8 carbon atoms, and n is 5 to 5.
Indicates a positive number of 50)
JP33565195A 1995-12-01 1995-12-01 Luminescent silicon-based polymer compound and method for producing the same Expired - Fee Related JP2865038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33565195A JP2865038B2 (en) 1995-12-01 1995-12-01 Luminescent silicon-based polymer compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33565195A JP2865038B2 (en) 1995-12-01 1995-12-01 Luminescent silicon-based polymer compound and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09157358A true JPH09157358A (en) 1997-06-17
JP2865038B2 JP2865038B2 (en) 1999-03-08

Family

ID=18290992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33565195A Expired - Fee Related JP2865038B2 (en) 1995-12-01 1995-12-01 Luminescent silicon-based polymer compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP2865038B2 (en)

Also Published As

Publication number Publication date
JP2865038B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
Wang et al. Synthesis, characterization, and properties of novel phenylene-silazane-acetylene polymers
Kumar et al. Properties and applications of polysilanes
CN1124256A (en) Conjugated polymers containing ansa substructures and their use as electroluminescence materials
CN100408615C (en) Diacetylene-containing poly-siloxane and method for preparing same
Peng et al. Synthesis and optical properties of hyperbranched polyarylenes
Bacque et al. New polycarbosilane models. 2. First synthesis of poly (silapropylene)
Kim et al. Synthesis and properties of poly (silylenephenylenevinylene) s
Wang et al. Synthesis of silicon-containing unsaturated polymers by hydrosilylation reactions. Photophysical studies
US6833432B2 (en) Conjugated poly(2,7-carbazole) derivatives and process for the preparation thereof
Kim et al. Synthesis and properties of poly (silylenevinylene (bi) phenylenevinylene) s by hydrosilylation polymerization
US5229481A (en) High-molecular weight, silicon-containing polymers and methods for the preparation and use thereof
JP2865038B2 (en) Luminescent silicon-based polymer compound and method for producing the same
Budy et al. Synthesis and Properties of Polymers with an Organosilicon–Acetylene Backbone
Park Grignard Metathesis Polymerization and Properties of 1, 1-Disubstituted-2, 5-dibromo-3, 4-diphenylsiloles.
Wang et al. Facile synthesis of σ–π conjugated organosilicon polymers via click polymerization
Rao et al. Pd-catalyzed hydrosilylation polymerization of a dihydrosilane with diyne/triyne mixed systems affording crosslinked silylene–divinylene polymers and their properties
Hu et al. Synthesis and properties of novel conjugated poly (silylacetylene silazane) s
Park Synthesis, Photoelectronic, and Electrochemical Properties of Poly [(1, 1‐dihexyl‐3, 4‐diphenyl‐2, 5‐silolene)‐co‐(disubstitutedsilylene)] s
JP2956560B2 (en) Polythiophene compound and method for producing the same
JPH0959355A (en) Multi-branched polymer and its production
JP2003073475A (en) Copolymer with 9-silafluorene-9,9-diyl skeleton, production method thereof and light emitting material having the same as constituent
Hengge New ways to polysilanes
JP2725535B2 (en) Method for producing hydropolysilane at both ends
Mei et al. A novel way to prepare luminescent hybrid materials derived from 5-chloromehtyl-8-hydroxyquinoline and silylated monomer with coordination to aluminum ion
JP3951479B2 (en) Photoconductive silicon polymer and process for producing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees