JPH09157313A - Production of highly water-absorbing resin - Google Patents

Production of highly water-absorbing resin

Info

Publication number
JPH09157313A
JPH09157313A JP34532495A JP34532495A JPH09157313A JP H09157313 A JPH09157313 A JP H09157313A JP 34532495 A JP34532495 A JP 34532495A JP 34532495 A JP34532495 A JP 34532495A JP H09157313 A JPH09157313 A JP H09157313A
Authority
JP
Japan
Prior art keywords
polymerization reactor
water
polymerizer
polymerization
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34532495A
Other languages
Japanese (ja)
Other versions
JP3387717B2 (en
Inventor
Hiroshi Aoyama
弘志 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP34532495A priority Critical patent/JP3387717B2/en
Publication of JPH09157313A publication Critical patent/JPH09157313A/en
Application granted granted Critical
Publication of JP3387717B2 publication Critical patent/JP3387717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a highly water-absorbing resin with a narrower particle size distribution. SOLUTION: A water soln. is subjected to a reversed-phase suspension polymn. while continuously supplying the soln. to a polymerizer 1 from a water soln. supply port. In the polymerizer 1, a stirrer shaft 5 rotatable from the outside of the polymerizer 1 is installed at the center of the upper part of the polymerizer 1; a bottom paddle 2 which is arranged at the lower part of the polymerizer 1 with its lower end kept near the bottom of the polymerizer 1 is attached to the shaft 5; a lattice blade comprising arm parts 3 and strips 4 extending vertically thereto is attached to the shaft 5 at above the bottom paddle 2; baffle plates 6 extending from the lower part to the upper part of the polymerizer 1 are installed with some distances in a parallel to the shaft 5 on the side wall of the polymerizer 1; and the supply port of a water soln. is installed on the side wall of the polymerizer 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高吸水性樹脂の製造法
に関し、更に詳しくは粒度分布性に優れた高吸水性樹脂
の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a super absorbent polymer, and more particularly to a method for producing a super absorbent resin having excellent particle size distribution.

【0002】[0002]

【従来の技術】多量の水を吸収する樹脂として、澱粉−
アクリロニトリルグラフト重合体の部分加水分解物、ポ
リアクリル酸部分中和塩、ポリエチレンオキサイド系、
ポリアクリロニトリル系、ポリビニルアルコール系、ま
たはこれらの架橋体系などの高吸水性樹脂が知られてい
る。これらの中でも、(メタ)アクリル酸と(メタ)ア
クリル酸水溶性塩とを炭化水素溶媒中で逆相懸濁重合し
たポリアクリル酸部分中和塩は特に有用である。
2. Description of the Related Art Starch is a resin that absorbs a large amount of water.
Acrylonitrile graft polymer partial hydrolyzate, polyacrylic acid partially neutralized salt, polyethylene oxide type,
Super water-absorbent resins such as polyacrylonitrile-based, polyvinyl alcohol-based, and cross-linked systems thereof are known. Among these, a partially neutralized polyacrylic acid salt obtained by reverse-phase suspension polymerization of (meth) acrylic acid and a water-soluble salt of (meth) acrylic acid in a hydrocarbon solvent is particularly useful.

【0003】これらの高吸水性樹脂は、生理用品や衛生
用品において体液を吸収し漏出を防止する体液吸収剤と
して有用であり、そのほか、土壌の保水剤、種子コーテ
ィング剤、止水剤、増粘剤、結露防止剤、汚泥凝固剤、
乾燥剤、調湿剤などの用途に使用されている。
These highly water-absorbent resins are useful as a body fluid absorbent for absorbing body fluids and preventing leakage in sanitary and hygiene products, and also as a water retention agent for soil, a seed coating agent, a water blocking agent, and a thickener. Agent, anti-condensation agent, sludge coagulant,
It is used in applications such as desiccant and humidity control agent.

【0004】そして、これらの高吸水性樹脂に要求され
る性能としては、吸水能に優れることは勿論であるが、
該樹脂の粒度分布性(平均粒子径が比較的大きく、粒度
分布が狭い)に優れることも重要な性能で、平均粒子径
が小さい所謂微粉が多量含まれると該樹脂のハンドリン
グや該樹脂を用いた生理用品、衛生用品等の製造効率の
低下を招き、更には吸水能力にも多大な影響を与えるこ
とが予想され、高吸水性樹脂においては、粒度分布性も
大変重要である。
The performance required of these superabsorbent resins is, of course, excellent in water absorption capacity.
It is also important that the resin has excellent particle size distribution (average particle size is relatively large and particle size distribution is narrow). If a large amount of so-called fine powder with a small average particle size is included, handling of the resin and use of the resin It is expected that the manufacturing efficiency of sanitary products and sanitary products will decrease, and the water absorption capacity will also be greatly affected. Therefore, the particle size distribution is also very important in superabsorbent resins.

【0005】かかる粒度分布性の改善を目的として、特
公平1−37173号公報に記載されるが如き特定の撹
拌翼及び邪魔板を有する撹拌機を用いて高吸水性樹脂の
製造、すなわちα,β−不飽和カルボン酸及びこれらの
塩からなる水溶性モノマーを懸濁重合することが提案さ
れている。(特開平7−25917号公報)
For the purpose of improving the particle size distribution, a superabsorbent resin is produced by using a stirrer having a specific stirring blade and a baffle as described in JP-B-1-37173, that is, α, It has been proposed to suspension polymerize water-soluble monomers consisting of β-unsaturated carboxylic acids and their salts. (JP-A-7-25917)

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
製造法においては、特定の撹拌機を用いることで得られ
る高吸水性樹脂の粒度分布性はかなり改善されたもの
の、粒度分布の幅は100〜1000(μm)とまだま
だ広く、特に吸収速度の遅い500μmの粒子を多量に
含んでいるという問題点が残されており、粒度分布がよ
りシャープな高吸水性樹脂を得ることのできる製造法が
望まれているのである。
However, in the above-mentioned production method, although the particle size distribution of the superabsorbent resin obtained by using a specific stirrer has been considerably improved, the width of the particle size distribution is from 100 to 100. There is still a problem that it contains a large amount of particles of 500 μm, which is still as wide as 1000 (μm) and has a slow absorption rate, and a manufacturing method capable of obtaining a super absorbent polymer having a sharper particle size distribution is desired. It is rare.

【0007】[0007]

【課題を解決するための手段】本発明者は、かかる事情
に鑑みて鋭意研究した結果、上記の撹拌機を用いて懸濁
重合を行って高吸水性樹脂の製造をするに当たり、更に
水溶性モノマーの供給方法を検討することにより上記の
課題を解決することを見いだした。すなわち、(メタ)
アクリル酸と(メタ)アクリル酸水溶性塩を主成分とす
る水溶性不飽和モノマーの水溶液を架橋剤の存在下また
は不存在下にラジカル重合開始剤を用いて炭化水素溶媒
中で撹拌下に逆相懸濁重合させて高吸水性樹脂を製造す
るに当たり、重合反応器内上部中心部に重合反応器外か
ら回転可能な撹拌軸を配設し、該軸に、重合反応器の底
壁面に下端部を摺接させて重合反応器底部に配置される
ボトムパドルを装着し、該撹拌軸のボトムパドルより上
位部分にアーム部分と該アーム部分と直角方向に延びる
ストリップから構成される格子翼を装着すると共に重合
反応器の側壁面に下部から上部まで軸方向に沿う複数本
の邪魔板を間隔をおいて配設し、かつ側壁面に上記の水
溶液の供給口を設けた重合反応器を用いて、該供給口よ
り該水溶液を重合反応器内の炭化水素溶媒中に連続的に
供給しながら逆相懸濁重合を行うことを特徴とするもの
である。
Means for Solving the Problems As a result of intensive studies in view of such circumstances, the present inventor has found that when the suspension polymerization is carried out using the above-mentioned stirrer to produce a highly water-absorbent resin, it is further water-soluble. It has been found that the above-mentioned problems can be solved by examining the monomer supply method. That is, (meta)
Reverse the stirring of an aqueous solution of acrylic acid and a water-soluble unsaturated monomer containing (meth) acrylic acid as a main component in a hydrocarbon solvent using a radical polymerization initiator in the presence or absence of a cross-linking agent. In producing superabsorbent resin by phase suspension polymerization, a stirring shaft rotatable from outside the polymerization reactor is provided in the upper center of the polymerization reactor, and the lower end is attached to the bottom wall of the polymerization reactor. The bottom paddle placed on the bottom of the polymerization reactor by sliding the parts into contact with each other is mounted, and the upper part of the stirring shaft above the bottom paddle is equipped with a lattice blade composed of an arm portion and a strip extending in a direction perpendicular to the arm portion. Along with the side wall surface of the polymerization reactor, a plurality of baffle plates along the axial direction from the lower part to the upper part are arranged at intervals, and the side wall surface is provided with the above-mentioned aqueous solution supply port. , Polymerize the aqueous solution from the supply port While continuously fed in a hydrocarbon solvent in 応器 it is characterized in carrying out the reversed phase suspension polymerization.

【0008】[0008]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明においては、モノマーとして、(メタ)アクリル
酸と(メタ)アクリル酸水溶性塩を主成分とする水溶性
不飽和モノマーを用いる。このモノマーは、(メタ)ア
クリル酸を、水酸化ナトリウム、水酸化カリウム、炭酸
ナトリウム、炭酸カリウム等のアルカリ金属の水酸化
物、水酸化アンモニウム、アミン類等で部分中和するこ
とにより取得できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
In the present invention, a water-soluble unsaturated monomer containing (meth) acrylic acid and a water-soluble salt of (meth) acrylic acid as main components is used as the monomer. This monomer can be obtained by partially neutralizing (meth) acrylic acid with a hydroxide of an alkali metal such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate, ammonium hydroxide, amines and the like.

【0009】(メタ)アクリル酸と(メタ)アクリル酸
水溶性塩との混合比は、重量比で30:70〜10:9
0であることが好ましい。つまり(メタ)アクリル酸の
部分中和の程度は、全(メタ)アクリル酸の70〜90
モル%であることが好ましい。部分中和の程度が小さす
ぎるときは、吸水倍率や吸水速度が低下する上、製品が
酸性を呈する難があり、部分中和の程度が大きすぎると
きは、やはり吸水倍率や吸水速度が低下する難がある。
The mixing ratio of (meth) acrylic acid and the water-soluble salt of (meth) acrylic acid is 30:70 to 10: 9 by weight.
It is preferably 0. That is, the degree of partial neutralization of (meth) acrylic acid is 70 to 90 of the total (meth) acrylic acid.
Preferably it is mol%. If the degree of partial neutralization is too small, the water absorption capacity and water absorption rate will decrease, and the product will be difficult to exhibit acidity.If the degree of partial neutralization is too large, the water absorption capacity and water absorption rate will also decrease. There are difficulties.

【0010】架橋剤は存在させても存在させなくてもよ
い。架橋剤を用いるときの架橋剤としては、エチレング
リコールジ(メタ)アクリレート、ジエチレングリコー
ルジ(メタ)アクリレート、トリエチレングリコールジ
(メタ)アクリレート、ポリエチレングリコールジ(メ
タ)アクリレート、トリメチロールプロパントリ(メ
タ)アクリレート、ペンタエリスリトールジ(メタ)ア
クリレート、ペンタエリスリトールトリ(メタ)アクリ
レート、N,N′−メチレンビス(メタ)アクリルアミ
ド、トリアリルイソシアヌレート、(ポリ)エチレング
リコールジグリシジルエーテル、グリセリンポリグリシ
ジルエーテル、ソルビトールポリグリシジルエーテル、
ペンタエリスリトールポリグリシジルエーテル等が挙げ
られる。架橋剤の使用量は、モノマー成分に対し0.0
001〜0.5重量%程度とすることが多い。
The crosslinker may or may not be present. When a crosslinking agent is used, examples of the crosslinking agent include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and trimethylolpropane tri (meth) acrylate. Acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, N, N'-methylenebis (meth) acrylamide, triallyl isocyanurate, (poly) ethylene glycol diglycidyl ether, glycerin polyglycidyl ether, sorbitol poly Glycidyl ether,
Examples thereof include pentaerythritol polyglycidyl ether. The amount of the crosslinking agent used is 0.0 with respect to the monomer component.
It is often about 001 to 0.5% by weight.

【0011】ラジカル重合開始剤としては、アゾビスイ
ソブチロニトリル、t−ブチルパーオキサイド、クメン
ハイドロパーオキサイド、ジ−t−ブチルパーオキサイ
ド、アセチルパーオキサイド、ラウロイルパーオキサイ
ド、ステアロイルパーオキサイド、ベンゾイルパーオキ
サイド、t−ブチルパーオキシアセテート、t−ブチル
パーオキシイソブチレート、t−ブチルパーオキシピバ
レート、メチルエチルケトンパーオキサイド、シクロヘ
キサノンパーオキサイド、過酸化水素、過硫酸アンモニ
ウム、過硫酸カリウム、セリウム塩等が例示され、特に
水溶性であるものが好ましい。ラジカル重合開始剤の使
用量は、モノマー成分に対して0.01〜1重量%程度
とすることが多い。
Examples of the radical polymerization initiator include azobisisobutyronitrile, t-butyl peroxide, cumene hydroperoxide, di-t-butyl peroxide, acetyl peroxide, lauroyl peroxide, stearoyl peroxide and benzoyl peroxide. Examples include oxide, t-butyl peroxyacetate, t-butyl peroxyisobutyrate, t-butyl peroxypivalate, methyl ethyl ketone peroxide, cyclohexanone peroxide, hydrogen peroxide, ammonium persulfate, potassium persulfate, and cerium salt. Those that are water-soluble are particularly preferable. The amount of the radical polymerization initiator used is often about 0.01 to 1% by weight with respect to the monomer component.

【0012】炭化水素溶媒としては、シクロヘキサン、
シクロペンタン、メチルシクロヘキサン等の脂環式炭化
水素、n−ペンタン、n−ヘキサン、n−ヘプタン、n
−オリタン、リグロイン等の脂肪族炭化水素、ベンゼ
ン、トルエン、キシレン、エチルベンゼン等の芳香族炭
化水素、クロルベンゼン、四塩化炭素等のハロゲン化炭
化水素が例示され、溶媒の沸点、融点、コスト、工業的
入手の容易性などを総合考慮すると、n−ヘプタン及び
シクロヘキサンが特に重要である。
As the hydrocarbon solvent, cyclohexane,
Alicyclic hydrocarbons such as cyclopentane and methylcyclohexane, n-pentane, n-hexane, n-heptane, n
-Oritan, aliphatic hydrocarbons such as ligroin, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, halogenated hydrocarbons such as chlorobenzene and carbon tetrachloride are exemplified, and the boiling point of the solvent, melting point, cost, industrial Considering the comprehensive availability, n-heptane and cyclohexane are particularly important.

【0013】(メタ)アクリル酸と(メタ)アクリル酸
水溶性塩とを主成分とする水溶性不飽和モノマーを架橋
剤の存在下または不存在下にラジカル重合開始剤を用い
て炭化水素溶媒中で逆相懸濁重合させる。重合温度は5
0〜90℃、重合時間は0.5〜5時間程度が適当であ
る。
A water-soluble unsaturated monomer containing (meth) acrylic acid and a water-soluble (meth) acrylic acid as a main component is used in a hydrocarbon solvent in the presence or absence of a cross-linking agent using a radical polymerization initiator. Reverse phase suspension polymerization is performed. Polymerization temperature is 5
It is suitable that the polymerization time is 0 to 90 ° C. and the polymerization time is about 0.5 to 5 hours.

【0014】そして、本発明においては、上記逆相懸濁
重合を特公平1−37173号公報や特開平7−259
17号公報に記載の如き重合反応器内上部中心部に重合
反応器外から回転可能な撹拌軸を配設し、該軸に、重合
反応器の底壁面に下端部を摺接させて重合反応器底部に
配置されるボトムパドルを装着し、該撹拌軸のボトムパ
ドルより上位部分にアーム部分と該アーム部分と直角方
向に延びるストリップから構成される格子翼を装着する
と共に重合反応器の側壁面に下部から上部まで軸方向に
沿う複数本の邪魔板を間隔をおいて配設した重合反応器
に、更にその重合反応器の側壁面に不飽和モノマー水溶
液の供給口を設けた図1及び2に示されるような重合反
応器を用いて、その供給口より該モノマー水溶液を重合
反応器内の炭化水素溶媒中に連続的に供給しながら行う
ことを最大の特徴とするものであり、かかる撹拌機の形
状としては、上記の如く撹拌軸の下部に(ボトム)パド
ルが設けられ、該パドルからなる格子翼を装着したもの
であれば特に限定はされないが、好適には格子部分が複
数本のストリップ及び1本または2本以上のアームを備
え、パドル部分の縦方向の長さが翼全体の長さの15〜
40%を占めるものが用いられる。また、邪魔板は重合
反応器の側壁に設けられるもので、その枚数は通常4枚
で、邪魔板と該格子状のパドルとのクリアランスは通常
重合反応器の直径の10〜30%(特に10〜20%)
である。
In the present invention, the above-mentioned reverse phase suspension polymerization is carried out in Japanese Patent Publication No. 37173/1989 and Japanese Patent Application Laid-Open No. 7-259.
As described in Japanese Patent Publication No. 17, a stirring shaft rotatable from the outside of the polymerization reactor is provided in the center of the upper part of the polymerization reactor, and the lower end of the stirring shaft is slidably contacted with the bottom wall surface of the polymerization reactor. A bottom paddle arranged at the bottom of the vessel is attached, and a lattice blade composed of an arm portion and a strip extending in a direction perpendicular to the arm portion is attached to a portion above the bottom paddle of the stirring shaft and a side wall surface of the polymerization reactor. 1 and 2 in which a plurality of baffles along the axial direction from the lower part to the upper part are arranged at intervals in the polymerization reactor, and a side wall of the polymerization reactor is provided with a supply port for the unsaturated monomer aqueous solution. It is the greatest feature to carry out while continuously supplying the aqueous monomer solution from the supply port to the hydrocarbon solvent in the polymerization reactor by using the polymerization reactor as shown in FIG. As for the shape of the machine, As described above, there is no particular limitation as long as a (bottom) paddle is provided at the lower part of the stirring shaft and a lattice blade made of the paddle is mounted, but preferably, the lattice portion has a plurality of strips and one or more strips. The length of the paddle part in the vertical direction is 15 ~
Those occupying 40% are used. Further, the baffle plate is provided on the side wall of the polymerization reactor, and the number of baffle plates is usually 4, and the clearance between the baffle plate and the grid-shaped paddle is usually 10 to 30% (particularly 10%) of the diameter of the polymerization reactor. ~ 20%)
It is.

【0015】また、重合反応器の側面より水溶性不飽和
モノマーを重合反応器内に供給する方法としては、該反
応器の側面に供給(仕込み)口を設けてそこから反応器
内に水溶性不飽和モノマーを供給することができる。か
かる供給(仕込み)口の設置位置は重合反応器の側面で
あれば特に限定されないが、実際には炭化水素溶媒液中
に直接水溶性不飽和モノマーを供給することができるよ
うに、炭化水素溶媒液面(撹拌時の最高液面も含む)下
となる位置に設置されることが好ましく、該供給(仕込
み)口の形状や大きさは水溶性不飽和モノマー供給量や
撹拌条件により任意に選定することができる。また、か
かる供給(仕込み)口は2カ所以上設けて同時に2カ所
以上から水溶性不飽和モノマーを供給することもでき、
更には各々の供給(仕込み)口から順番に連続的途切れ
ることなく水溶性不飽和モノマーを供給することも可能
である。かかる水溶性不飽和モノマーの供給速度は、撹
拌条件などにより一概に言えないが、供給(仕込み)口
の断面積に対して0.1〜100m3/分/m2(更には
1〜50m3/分/m2)が好ましい。
As a method of supplying the water-soluble unsaturated monomer from the side surface of the polymerization reactor into the polymerization reactor, a supply (charging) port is provided on the side surface of the reactor and the water-soluble unsaturated monomer is introduced into the reactor from there. Unsaturated monomers can be fed. The installation position of the supply (charging) port is not particularly limited as long as it is on the side of the polymerization reactor, but in practice, the hydrocarbon solvent can be directly supplied to the hydrocarbon solvent liquid so that the hydrocarbon solvent can be directly supplied. It is preferable to install it at a position below the liquid level (including the highest liquid level at the time of stirring), and the shape and size of the supply (charge) port are arbitrarily selected depending on the amount of water-soluble unsaturated monomer supplied and the stirring conditions. can do. Further, it is also possible to provide two or more such supply (charge) ports and simultaneously supply the water-soluble unsaturated monomer from two or more places,
Further, it is also possible to supply the water-soluble unsaturated monomer from each supply (charge) port in order without continuous interruption. Feed rate of such water-soluble unsaturated monomer, can not be said categorically due stirring conditions, 0.1 to 100 m 3 / min / m 2 (even 1 to 50 m 3 with respect to the cross-sectional area of the supply (feed) the mouth / Min / m 2 ) is preferred.

【0016】上記の重合終了後は、常法に従って、生成
粒子を濾別し、洗浄、乾燥すれば、目的とする高吸水性
樹脂が得られる。
After completion of the above-mentioned polymerization, the intended superabsorbent resin can be obtained by filtering the produced particles, washing and drying according to a conventional method.

【0017】本発明の方法により得られる高吸水性樹脂
は、生理用品や衛生用品において体液や排泄物を吸収し
漏出を防止する体液吸収剤として特に有用である。その
ほか、土壌の保水剤、種子コーティング剤、止水剤、増
粘剤、結露防止剤、脱水剤、乾燥剤、調湿剤、汚泥・液
状廃棄物の凝固剤、重金属吸着材、薬剤・芳香剤の徐放
剤、パップ剤などの用途にも使用できる。
The highly water-absorbent resin obtained by the method of the present invention is particularly useful as a body fluid absorbent for absorbing body fluids and excretions and preventing leakage in sanitary products and sanitary products. In addition, soil water retention agent, seed coating agent, water blocking agent, thickener, anti-condensation agent, dehydrating agent, drying agent, humidity control agent, coagulant for sludge and liquid waste, heavy metal adsorbent, chemicals and fragrances It can also be used for applications such as sustained release agents and poultices.

【0018】[0018]

【実施例】次に実施例をあげて本発明をさらに説明す
る。以下「%」とあるのは重量%である。 実施例1 図1に示される如き撹拌翼、還流冷却器、窒素ガス導入
口及びその側面にモノマーの供給口(形状;直径25.
4mmの円形)を設けた200lの重合反応器に、シク
ロヘキサン105l、重合分散剤としてソルビタンモノ
ステアレート370gを仕込み、窒素バブリングを30
分間行って、溶存空気を追い出し70℃まで昇温した。
別の150lの反応器に80%アクリル酸水溶液34.
1kgを仕込み、冷却しながら28%水酸化ナトリウム
水溶液40.8kgを加えて中和した。この水溶液に架
橋剤として10%エチレングリコールジグリシジルエー
テル水溶液74g及び重合開始剤として過硫酸アンモニ
ウム583gを添加後、窒素バブリングを行い、溶存空
気を追い出しモノマー水溶液を得た。
The present invention will be further described with reference to the following examples. Hereinafter, "%" is% by weight. Example 1 As shown in FIG. 1, a stirring blade, a reflux condenser, a nitrogen gas inlet and a monomer supply port (shape; diameter 25.
In a 200 l polymerization reactor equipped with a 4 mm circle), 105 l of cyclohexane and 370 g of sorbitan monostearate as a polymerization dispersant were charged, and nitrogen bubbling was performed at 30
After a minute, the dissolved air was expelled and the temperature was raised to 70 ° C.
In another 150 l reactor, 80% aqueous acrylic acid solution 34.
1 kg was charged, and while cooling, 40.8 kg of 28% sodium hydroxide aqueous solution was added to neutralize. After adding 74 g of a 10% aqueous solution of ethylene glycol diglycidyl ether as a cross-linking agent and 583 g of ammonium persulfate as a polymerization initiator to this aqueous solution, nitrogen bubbling was carried out to expel the dissolved air to obtain an aqueous monomer solution.

【0019】得られたモノマー水溶液を上記の重合反応
器側面のモノマー供給口より600ml/分(供給口の
断面積に対して約1.18m3/分/m2となる)の割合
で連続的に重合反応器内の撹拌中(撹拌速度は60rp
m)のシクロヘキサン液中に約1.5時間かけて供給し
てシクロヘキサン還流下で重合を行った。(モノマーの
供給口の中心は撹拌中のシクロヘキサン液面下約20c
mとなる) 次に共沸脱水によって30.6kgの水を抜き出した
後、ポリマーを取り出し、更に105℃で3時間乾燥し
て高吸水性樹脂を得た。得られた高吸水性樹脂の平均粒
子径は120μmで、粒子度分布は350μm以上が0
%、350〜74μmが83.9%、74〜45μmが
11.4%、45μm未満が4.7%であった。
The resulting aqueous monomer solution was continuously fed at a rate of 600 ml / min (approximately 1.18 m 3 / min / m 2 with respect to the cross-sectional area of the feed port) from the monomer feed port on the side of the above-mentioned polymerization reactor. During stirring in the polymerization reactor (the stirring speed is 60 rp
m) was supplied into the cyclohexane solution for about 1.5 hours to carry out polymerization under reflux of cyclohexane. (The center of the monomer supply port is about 20c below the liquid surface of cyclohexane during stirring.
Next, 30.6 kg of water was extracted by azeotropic dehydration, the polymer was taken out, and further dried at 105 ° C. for 3 hours to obtain a highly water-absorbent resin. The obtained super absorbent polymer has an average particle size of 120 μm and a particle size distribution of 0
%, 350-74 μm was 83.9%, 74-45 μm was 11.4%, and less than 45 μm was 4.7%.

【0020】実施例2 実施例1においてモノマー水溶液の供給速度を900m
l/分(供給口の断面積に対して約1.77m3/分/
2となる)として重合時間を1時間とした以外は同様
に行って高吸水性樹脂を得た。得られた高吸水性樹脂の
平均粒子径は100μmで、粒子度分布は350μm以
上が0%、350〜74μmが74.3%、74〜45
μmが20.6%、45μm未満が5.1%であった。
Example 2 In Example 1, the feed rate of the aqueous monomer solution was set to 900 m.
l / min (about 1.77 m 3 / min / min.
m 2 ) and the polymerization time was 1 hour to obtain a super absorbent polymer. The average particle size of the resulting super absorbent polymer is 100 μm, and the particle size distribution is 0% for 350 μm or more, 74.3% for 350 to 74 μm, and 74 to 45.
μm was 20.6%, and less than 45 μm was 5.1%.

【0021】実施例3 実施例1において撹拌速度を70rpmとした以外は同
様に行って高吸水性樹脂を得た。得られた高吸水性樹脂
の平均粒子径は105μmで、粒子度分布は350μm
以上が0%、350〜74μmが72.3%、74〜4
5μmが19.9%、45μm未満が7.8%であっ
た。
Example 3 A highly water-absorbent resin was obtained in the same manner as in Example 1 except that the stirring speed was 70 rpm. The average particle size of the obtained super absorbent polymer is 105 μm, and the particle size distribution is 350 μm.
0% above, 350-74 μm 72.3%, 74-4
5 μm was 19.9%, and less than 45 μm was 7.8%.

【0022】比較例1 実施例1においてモノマー水溶液の供給口を重合反応器
の上面に設けて、モノマー液を上方より連続的に滴下し
た以外は同様に行って高吸水性樹脂を得た。得られた高
吸水性樹脂の平均粒子径は100μmで、粒子度分布は
350μm以上が0%、350〜74μmが68.0
%、74〜45μmが10.5%、45μm未満が2
1.5%であった。
Comparative Example 1 A highly water-absorbent resin was obtained in the same manner as in Example 1 except that the monomer aqueous solution supply port was provided on the upper surface of the polymerization reactor and the monomer liquid was continuously added dropwise from above. The average particle size of the obtained super absorbent polymer is 100 μm, and the particle size distribution is 0% at 350 μm or more and 68.0 at 350 to 74 μm.
%, 74-45 μm is 10.5%, less than 45 μm is 2
It was 1.5%.

【0023】比較例2 実施例1においてモノマー水溶液の供給を一括供給とし
た以外は同様に行って高吸水性樹脂を得た。得られた高
吸水性樹脂の平均粒子径は70μmで、粒子度分布は3
50μm以上が0%、350〜74μmが49.7%、
74〜45μmが35.0%、45μm未満が15.3
%であった。
Comparative Example 2 A highly water-absorbent resin was obtained in the same manner as in Example 1 except that the aqueous monomer solution was supplied all at once. The superabsorbent resin thus obtained had an average particle size of 70 μm and a particle size distribution of 3
50% or more is 0%, 350 to 74 μm is 49.7%,
74-45 μm 35.0%, less than 45 μm 15.3
%Met.

【0024】比較例3 実施例1において図3及び4に示される如きパドル形状
の撹拌翼を有する重合反応器を用いた以外は同様に行っ
て高吸水性樹脂を得た。得られた高吸水性樹脂の平均粒
子径は100μmで、粒子度分布は350μm以上が0
%、350〜74μmが66.8%、74〜45μmが
20.5%、45μm未満が12.7%であった。
Comparative Example 3 A highly water-absorbent resin was obtained in the same manner as in Example 1 except that a polymerization reactor having paddle-shaped stirring blades as shown in FIGS. 3 and 4 was used. The average particle size of the resulting superabsorbent resin is 100 μm, and the particle size distribution is 0 μm when 350 μm or more.
%, 350-74 μm was 66.8%, 74-45 μm was 20.5%, and less than 45 μm was 12.7%.

【0025】[0025]

【発明の効果】本発明においては、特定の撹拌翼を有
し、かつ側面にモノマーの供給口を設けた重合反応器を
用いてその供給口よりモノマーを連続的に供給しながら
重合反応を行っているため、粒度分布がよりシャープな
高吸水性樹脂を得ることができる。
INDUSTRIAL APPLICABILITY In the present invention, the polymerization reaction is carried out while continuously supplying the monomer from the supply port using a polymerization reactor having a specific stirring blade and having a side face provided with the monomer supply port. Therefore, a highly water-absorbent resin having a sharper particle size distribution can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の格子型撹拌翼及びモノマー供給口を有
する重合反応器の側面の断面図
FIG. 1 is a side sectional view of a polymerization reactor having a lattice type stirring blade and a monomer supply port of the present invention.

【図2】本発明の格子型撹拌翼及びモノマー供給口を有
する重合反応器の平面の断面図
FIG. 2 is a cross-sectional plan view of a polymerization reactor having a lattice-type stirring blade and a monomer supply port of the present invention.

【図3】従来のパドル型撹拌翼を有する重合反応器の側
面の断面図
FIG. 3 is a side sectional view of a polymerization reactor having a conventional paddle type stirring blade.

【図4】従来のパドル型撹拌翼を有する重合反応器の平
面の断面図
FIG. 4 is a plan sectional view of a polymerization reactor having a conventional paddle type stirring blade.

【符号の説明】 ・・・重合反応器 ・・・ボトムパドル ・・・アーム部分 ・・・ストリップ ・・・撹拌軸 ・・・邪魔板 ・・・モノマー供給(仕込み)口 ・・・モノマー供給(仕込み)パイプ ・・・炭化水素溶媒液面 (10)・・・ボトムパドルとアーム部分とストリップから
なる撹拌翼 (11)・・・傾斜パドル
[Explanation of symbols] ・ ・ ・ Polymerization reactor ・ ・ ・ Bottom paddle ・ ・ ・ Arm part ・ ・ ・ Strip ・ ・ ・ Stirring shaft ・ ・ ・ Baffle plate ・ ・ ・ Monomer supply (preparation) port ・ ・ ・ Monomer supply ( (Preparation) Pipe ・ ・ ・ Liquid level of hydrocarbon solvent (10) ・ ・ ・ Stirrer consisting of bottom paddle, arm and strip (11) ・ ・ ・ Inclined paddle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (メタ)アクリル酸と(メタ)アクリル
酸水溶性塩を主成分とする水溶性不飽和モノマーの水溶
液を架橋剤の存在下または不存在下にラジカル重合開始
剤を用いて炭化水素溶媒中で撹拌下に逆相懸濁重合させ
て高吸水性樹脂を製造するに当たり、重合反応器内上部
中心部に重合反応器外から回転可能な撹拌軸を配設し、
該軸に、重合反応器の底壁面に下端部を摺接させて重合
反応器底部に配置されるボトムパドルを装着し、該撹拌
軸のボトムパドルより上位部分にアーム部分と該アーム
部分と直角方向に延びるストリップから構成される格子
翼を装着すると共に重合反応器の側壁面に下部から上部
まで軸方向に沿う複数本の邪魔板を間隔をおいて配設
し、かつ側壁面に上記の水溶液の供給口を設けた重合反
応器を用いて、該供給口より該水溶液を重合反応器内の
炭化水素溶媒中に連続的に供給しながら逆相懸濁重合を
行うことを特徴とする高吸水性樹脂の製造法。
1. An aqueous solution of a water-soluble unsaturated monomer containing (meth) acrylic acid and a water-soluble salt of (meth) acrylic acid as main components is carbonized by using a radical polymerization initiator in the presence or absence of a crosslinking agent. In producing a highly water-absorbent resin by reverse-phase suspension polymerization in a hydrogen solvent with stirring, a stirring shaft rotatable from the outside of the polymerization reactor is disposed in the upper center of the polymerization reactor.
A bottom paddle, which is disposed at the bottom of the polymerization reactor by sliding its lower end to the bottom wall of the polymerization reactor, is attached to the shaft, and an arm portion and a right angle to the arm portion are provided above the bottom paddle of the stirring shaft. Is installed on the side wall surface of the polymerization reactor, and a plurality of baffle plates along the axial direction from the lower part to the upper part are arranged at intervals, and the aqueous solution is formed on the side wall surface. Using a polymerization reactor provided with a supply port for the above, a reversed phase suspension polymerization is carried out while continuously supplying the aqueous solution from the supply port into a hydrocarbon solvent in the polymerization reactor. Method for making flexible resin.
JP34532495A 1995-12-06 1995-12-06 Manufacturing method of super absorbent resin Expired - Lifetime JP3387717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34532495A JP3387717B2 (en) 1995-12-06 1995-12-06 Manufacturing method of super absorbent resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34532495A JP3387717B2 (en) 1995-12-06 1995-12-06 Manufacturing method of super absorbent resin

Publications (2)

Publication Number Publication Date
JPH09157313A true JPH09157313A (en) 1997-06-17
JP3387717B2 JP3387717B2 (en) 2003-03-17

Family

ID=18375826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34532495A Expired - Lifetime JP3387717B2 (en) 1995-12-06 1995-12-06 Manufacturing method of super absorbent resin

Country Status (1)

Country Link
JP (1) JP3387717B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1066156C (en) * 1998-09-11 2001-05-23 化学工业部北京化工研究院 Method for preparing water absorbent resin and stirrer
JP2010511759A (en) * 2006-12-06 2010-04-15 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing water-absorbing polymer particles by suspension polymerization
WO2020067310A1 (en) * 2018-09-27 2020-04-02 株式会社日本触媒 Method for producing water-absorbing resin
JPWO2020184393A1 (en) * 2019-03-08 2020-09-17
JPWO2020218164A1 (en) * 2019-04-23 2020-10-29
JPWO2020184392A1 (en) * 2019-03-08 2021-10-28 住友精化株式会社 Water-absorbent resin particles and their manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1066156C (en) * 1998-09-11 2001-05-23 化学工业部北京化工研究院 Method for preparing water absorbent resin and stirrer
JP2010511759A (en) * 2006-12-06 2010-04-15 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing water-absorbing polymer particles by suspension polymerization
WO2020067310A1 (en) * 2018-09-27 2020-04-02 株式会社日本触媒 Method for producing water-absorbing resin
JPWO2020067310A1 (en) * 2018-09-27 2021-08-30 株式会社日本触媒 Manufacturing method of water-absorbent resin
JPWO2020184393A1 (en) * 2019-03-08 2020-09-17
JPWO2020184392A1 (en) * 2019-03-08 2021-10-28 住友精化株式会社 Water-absorbent resin particles and their manufacturing method
EP3936529A4 (en) * 2019-03-08 2022-12-21 Sumitomo Seika Chemicals Co., Ltd. Water absorbent resin particles, absorber and absorbent article
JPWO2020218164A1 (en) * 2019-04-23 2020-10-29

Also Published As

Publication number Publication date
JP3387717B2 (en) 2003-03-17

Similar Documents

Publication Publication Date Title
KR970009231B1 (en) Process for the preparation of water-absorptive resin
JP5378790B2 (en) Method for producing water absorbent resin
EP0289338B1 (en) Hydrophilic polymer and method for production
JPH06345819A (en) Production of highly water absorbing resin
JPH0249002A (en) Production of hydrophilic polymer
JP2005213523A (en) Method for producing water-absorptive resin and water-absorptive resin
JPS62227904A (en) Discontinuous production of crosslinked fine particulate polymer
JPH01207327A (en) Surface treating method of water absorbing resin
WO2001098382A1 (en) Process for production of water-absorbent resin
JP5855012B2 (en) Method for producing water absorbent resin
JP5730194B2 (en) Method for producing water-absorbing polymer particles
JP4884009B2 (en) Method for producing water absorbent resin
JPH0770245A (en) Production of resin having high water absorption property
JP3387717B2 (en) Manufacturing method of super absorbent resin
JP4839835B2 (en) Reversed phase suspension polymerization apparatus and polymer production method
JP4976679B2 (en) Water absorbent resin and method for producing the same
JP5972628B2 (en) HEAT EXCHANGE STRUCTURE AND WATER ABSORBING RESIN MANUFACTURING APPARATUS PROVIDED WITH THE HEAT EXCHANGE STRUCTURE
JP6441211B2 (en) Water-absorbing resin production equipment
JPH01249808A (en) Production of salt-resistant water-absorbable resin particle
JPH02138306A (en) Preparation of water-absorbing resin
JP2642436B2 (en) Manufacturing method of water absorbent resin
JPS6136309A (en) Water-absorbent resistant to salt and light
WO2004078796A1 (en) Method of manufacturing water absorbing resin and drying apparatus used for the method
JP2678067B2 (en) Method for producing hydrophilic polymer
JP2005132957A (en) Method for producing water-absorbing resin

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080110

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140110

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term