JPH09155353A - Water supply apparatus - Google Patents

Water supply apparatus

Info

Publication number
JPH09155353A
JPH09155353A JP31680995A JP31680995A JPH09155353A JP H09155353 A JPH09155353 A JP H09155353A JP 31680995 A JP31680995 A JP 31680995A JP 31680995 A JP31680995 A JP 31680995A JP H09155353 A JPH09155353 A JP H09155353A
Authority
JP
Japan
Prior art keywords
water
water supply
chlorine
pair
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31680995A
Other languages
Japanese (ja)
Inventor
Etsuko Nakamura
悦子 中村
Kazushige Watanabe
一重 渡邊
Motoharu Sato
元春 佐藤
Isao Kato
功 加藤
Hideo Kashima
秀雄 加島
Makoto Nakamura
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP31680995A priority Critical patent/JPH09155353A/en
Priority to MYPI9604919 priority patent/MY120510A/en
Priority to KR1019960061587A priority patent/KR970042295A/en
Publication of JPH09155353A publication Critical patent/JPH09155353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To supply water containing effective chlorine in specified concn. and prevent the water pollution caused by the transpiration of effective chlorine and the penetration of bacteria. SOLUTION: Since the electrolytic current value applied to a pair of opposed electrode plates is corrected corresponding to the temp. of tap water sent into a hermetically closed electrolytic cell, even when the temp. of tap water is changed, water containing effective chlorine in a specified concn. can be stably obtained to be supplied. Further, since tap water is electrolyzed on the way of water supply in the non-contact state with the open air within a hermetically closed electrolytic cell, effective chlorine produced by electrolysis can be effectively utilized to perform expected sterilization and the penetration of bacteria from the outside can be prevented to accurately avoid water pollution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、殺菌作用を受けた
衛生的な水を供給する水供給装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water supply device for supplying sanitary water that has been sterilized.

【0002】[0002]

【従来の技術】図12はこの種従来の水供給装置を示す
もので、図中、101は貯水タンク、102は第1ポン
プ、103はシスターン、104は一対の電極板、10
5はフロートスイッチ、106はオーバーフロー管、1
07は第2ポンプである。
2. Description of the Related Art FIG. 12 shows a conventional water supply device of this kind. In FIG. 12, 101 is a water storage tank, 102 is a first pump, 103 is a cistern, 104 is a pair of electrode plates, and 10 is a pair of electrode plates.
5 is a float switch, 106 is an overflow pipe, 1
Reference numeral 07 is a second pump.

【0003】この装置では、シスターン103内の水位
降下をフロートスイッチ105で検出して貯水タンク1
01内の水道水Fを第1ポンプ102によってシスター
ン103内に自動補給できると共に、一対の電極板10
4に電解電流を流すことによりシスターン103内の水
道水Fを電気分解して、電解後の水道水Fを第2ポンプ
107によって給水口から送出することができる。
In this device, the water level drop in the systern 103 is detected by the float switch 105 to detect the water storage tank 1.
The tap water F in 01 can be automatically replenished in the cistern 103 by the first pump 102, and the pair of electrode plates 10
The tap water F in the cistern 103 can be electrolyzed by passing an electrolysis current to the electroless electrolyte 4, and the tap water F after electrolysis can be delivered from the water supply port by the second pump 107.

【0004】貯水タンク101に蓄えられる水道水Fに
は含有イオンの1つとして塩素イオン(Cl- )が存在
するため、シスターン13内における電気分解では2C
-→Cl2 +2eの反応によって塩素(Cl2 )が発
生し、そしてこの塩素が水(H2O )に溶けて、Cl2
+H2O →HClO+HClの反応によって次亜塩素酸
(HClO)が生成される。つまり、シスターン13内
の水道水Fはこの次亜塩素酸(有効塩素)によって殺菌
作用を受けることになる。
[0004] chloride ions as one containing ions in tap water F which is stored in the water storage tank 101 (Cl -) for the presence, 2C in the electrolysis in the cistern 13
Chlorine (Cl 2 ) is generated by the reaction of l → Cl 2 + 2e, and this chlorine is dissolved in water (H 2 O) to generate Cl 2
The reaction of + H 2 O → HClO + HCl produces hypochlorous acid (HClO). That is, the tap water F in the cistern 13 is sterilized by the hypochlorous acid (effective chlorine).

【0005】[0005]

【発明が解決しようとする課題】ところで、電気分解に
より発生する有効塩素量は、電気分解される塩素イオン
含有水の温度と密接な関係がある。つまり、使用する塩
素イオン含有水の塩素イオン濃度に合わせて電解電流値
を予め設定しておいても、該塩素イオン含有水の温度が
変化すると、発生する有効塩素と自然分解する有効塩素
とのバランスが崩れて所期の有効塩素濃度の水が得られ
なくなる。
The amount of available chlorine produced by electrolysis is closely related to the temperature of the electrolyzed chlorine ion-containing water. That is, even if the electrolytic current value is preset according to the chlorine ion concentration of the chlorine ion-containing water to be used, when the temperature of the chlorine ion-containing water changes, the effective chlorine generated and the effective chlorine that spontaneously decomposes The balance will be lost and it will not be possible to obtain water with the desired effective chlorine concentration.

【0006】しかも、電気分解を行うためのシスターン
が開放或いはこれに近い状態にあるため、発生した有効
塩素が外部に蒸散し易く、また外部からバクテリア等が
侵入して水質汚染を生じる問題もある。
Moreover, since the cistern for electrolysis is open or in a state close to this, there is a problem that the generated effective chlorine easily evaporates to the outside, and bacteria and the like enter from the outside to cause water pollution. .

【0007】本発明は上記問題点に鑑みてなされたもの
で、その目的とするところは、所定濃度の有効塩素を含
む水を供給できると共に、有効塩素の蒸散とバクテリア
等の侵入による水質汚染を防止できる水供給装置を提供
することにある。
The present invention has been made in view of the above problems, and an object thereof is to supply water containing a predetermined concentration of effective chlorine and to prevent water pollution due to evaporation of effective chlorine and invasion of bacteria and the like. An object of the present invention is to provide a water supply device which can be prevented.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明は、水道水等の塩素イオン含有水を
電気分解して、所定濃度の有効塩素を含む水を供給する
水供給装置において、入口から流入し一対の対向電極間
を流れる塩素イオン含有水をその通過過程で電気分解し
て出口から流出可能な密閉式電解槽と、給水開始指令に
基づいて密閉式電解槽内への塩素イオン含有水の送り込
みを開始し、給水停止指令に基づいて或いは給水開始か
ら設定給水時間経過後に密閉式電解槽内への塩素イオン
含有水の送り込みを停止する給水制御手段と、密閉式電
解槽内への塩素イオン含有水の送り込みに合わせて所定
の電解電流を一対の対向電極に与える電解制御手段と、
密閉式電解槽内に送り込まれる塩素イオン含有水の温度
を検出する水温検出手段と、所定濃度の有効塩素を含む
水が給水されるように密閉式電解槽内に送り込まれる塩
素イオン含有水の温度に応じて一対の対向電極に与える
電解電流値を補正する電解電流値補正手段とを具備し
た、ことをその特徴としている。
In order to achieve the above object, the invention of claim 1 is a water supply for electrolyzing chlorine ion-containing water such as tap water to supply water containing effective chlorine at a predetermined concentration. In the device, a chlorine-containing water that flows in from the inlet and flows between a pair of opposing electrodes is electrolyzed in the course of passage and can flow out from the outlet, and into the closed electrolytic cell based on the water supply start command. The water supply control means for starting the feeding of the chlorine ion-containing water and stopping the feeding of the chlorine ion-containing water into the sealed electrolytic cell based on the water supply stop command or after the lapse of the set water supply time from the start of the water supply, and the closed electrolysis Electrolysis control means for applying a predetermined electrolytic current to the pair of counter electrodes in accordance with the feeding of chlorine ion-containing water into the tank,
Water temperature detection means for detecting the temperature of the chlorine ion-containing water sent into the closed electrolytic cell, and the temperature of the chloride ion-containing water sent into the closed electrolytic cell so that water containing a specified concentration of available chlorine is supplied. And an electrolytic current value correcting means for correcting the electrolytic current value applied to the pair of counter electrodes according to the above.

【0009】本請求項1の発明に係る水供給装置では、
密閉式電解槽内に送り込まれる塩素イオン含有水の温度
を検出し、該塩素イオン含有水の温度に応じて一対の対
向電極に与える電解電流値を補正しているので、塩素イ
オン含有水の温度が変化した場合でも、所定濃度の有効
塩素を含む水を的確に給水できる。また、密閉式電解槽
によって給水途中の水を外気と非接触状態で電気分解し
ているので、発生した有効塩素が外部に蒸散することが
なく、また外部からバクテリア等が侵入することによる
水質汚染を防止できる。
In the water supply device according to the invention of claim 1,
The temperature of the chlorine ion-containing water is detected by detecting the temperature of the chlorine ion-containing water fed into the closed electrolytic cell, and the temperature of the chlorine ion-containing water is corrected according to the temperature of the chlorine ion-containing water. Even when the water temperature changes, water containing a predetermined concentration of available chlorine can be accurately supplied. In addition, since the closed electrolyzer electrolyzes the water in the course of water supply without contact with the outside air, the generated effective chlorine does not evaporate to the outside, and water pollution due to bacteria invading from the outside Can be prevented.

【0010】請求項2の発明は、水道水等の塩素イオン
含有水を電気分解して、所定濃度の有効塩素を含む水を
供給する水供給装置において、入口から流入し一対の対
向電極間を流れる塩素イオン含有水をその通過過程で電
気分解して出口から流出可能な密閉式電解槽と、給水開
始指令に基づいて密閉式電解槽内への塩素イオン含有水
の送り込みを開始し、給水停止指令に基づいて或いは給
水開始から設定給水時間経過後に密閉式電解槽内への塩
素イオン含有水の送り込みを停止する給水制御手段と、
密閉式電解槽内への塩素イオン含有水の送り込みに合わ
せて所定の電解電流を一対の対向電極に与える電解制御
手段と、電気分解中に一対の対向電極における極間電圧
を検出する電圧検出手段と、所定濃度の有効塩素を含む
水が給水されるように上記極間電圧に応じて一対の対向
電極に与える電解電流値を補正する電解電流値補正手段
とを具備した、ことをその特徴としている。
According to a second aspect of the present invention, in a water supply device which electrolyzes chlorine ion-containing water such as tap water to supply water containing a predetermined concentration of available chlorine, the water is introduced from an inlet to a space between a pair of opposing electrodes. A closed electrolyzer that can electrolyze flowing chlorine ion-containing water during its passage and flow out from the outlet, and starts feeding the chlorine ion-containing water into the closed electrolyzer based on the water supply start command, and stops water supply. Water supply control means for stopping the feeding of chlorine ion-containing water into the closed electrolyzer after a lapse of a set water supply time based on a command or from the start of water supply,
Electrolysis control means for applying a predetermined electrolysis current to the pair of counter electrodes in accordance with the feeding of chlorine ion-containing water into the closed electrolytic cell, and voltage detection means for detecting the inter-electrode voltage at the pair of counter electrodes during electrolysis. And an electrolytic current value correcting means for correcting the electrolytic current value given to the pair of counter electrodes according to the inter-electrode voltage so that water containing a predetermined concentration of available chlorine is supplied. There is.

【0011】本請求項2の発明に係る水供給装置では、
水温に応じて塩素イオン含有水の電気抵抗が反比例的に
変化する特性を利用して、電気分解される塩素イオン含
有水の温度を一対の対向電極における極間電圧によって
代替的に検出している。同装置では、電気分解中に一対
の対向電極における極間電圧を検出し、該極間電圧に応
じて一対の対向電極に与える電解電流値を補正している
ので、塩素イオン含有水の温度が変化した場合でも、所
定濃度の有効塩素を含む水を的確に給水できる。他の作
用は請求項1の発明と同様である。
In the water supply device according to the invention of claim 2,
By utilizing the characteristic that the electric resistance of chlorine ion-containing water changes in inverse proportion to the water temperature, the temperature of the electrolyzed chlorine ion-containing water is alternatively detected by the inter-electrode voltage at a pair of opposing electrodes. . In this device, the voltage between the electrodes at the pair of opposing electrodes is detected during electrolysis, and the electrolytic current value given to the pair of opposing electrodes is corrected according to the voltage between the electrodes, so that the temperature of the chlorine-containing water is Even if the water content changes, it is possible to accurately supply water containing a predetermined concentration of available chlorine. Other functions are similar to those of the invention of claim 1.

【0012】請求項3の発明は、水道水等の塩素イオン
含有水を電気分解して、所定濃度の有効塩素を含む水を
供給する水供給装置において、入口から流入し一対の対
向電極間を流れる塩素イオン含有水をその通過過程で電
気分解して出口から流出可能な密閉式電解槽と、給水開
始指令に基づいて密閉式電解槽内への塩素イオン含有水
の送り込みを開始し、給水開始から設定給水時間経過後
に密閉式電解槽内への塩素イオン含有水の送り込みを停
止する給水制御手段と、密閉式電解槽内への塩素イオン
含有水の送り込みに合わせて所定の電解電流を一対の対
向電極に与える電解制御手段と、密閉式電解槽内に送り
込まれる塩素イオン含有水の温度を検出する水温検出手
段と、上記設定給水時間で給水された水に所定濃度の有
効塩素が含まれるように密閉式電解槽内に送り込まれる
塩素イオン含有水の温度に応じて一対の対向電極への通
電時間を補正する通電時間補正手段とを具備した、こと
をその特徴としている。
According to a third aspect of the present invention, in a water supply device which electrolyzes chlorine ion-containing water such as tap water to supply water containing a predetermined concentration of available chlorine, the water is introduced from an inlet to a space between a pair of opposing electrodes. A closed electrolyzer that can electrolyze flowing chlorine-ion-containing water in the course of its passage and flow out from the outlet, and starts feeding the chlorine-ion-containing water into the closed electrolyzer based on the water supply start command, and starts water supply. From the water supply control means for stopping the feeding of chlorine ion-containing water into the closed electrolytic cell after the set water supply time has passed, and a predetermined electrolysis current in accordance with the feeding of the chlorine ion-containing water into the closed electrolytic cell. Electrolysis control means applied to the counter electrode, water temperature detection means for detecting the temperature of chlorine ion-containing water fed into the closed electrolytic cell, and water supplied at the set water supply time contains effective chlorine of a predetermined concentration. Equipped with a energizing time correction means for correcting the energization time of the pair of opposed electrodes in accordance with the temperature of the chlorine ion-containing water is fed into the sea urchin sealed electrolytic cell, and its characterized by.

【0013】本請求項3の発明に係る水供給装置では、
密閉式電解槽内に送り込まれる塩素イオン含有水の温度
を検出し、該塩素イオン含有水の温度に応じて一対の対
向電極への通電時間を補正しているので、塩素イオン含
有水の温度が変化した場合でも、設定給水時間で給水さ
れた水に所定濃度の有効塩素を含ませることができる。
また、密閉式電解槽によって給水途中の水を外気と非接
触状態で電気分解しているので、発生した有効塩素が外
部に蒸散することがなく、また外部からバクテリア等が
侵入することによる水質汚染を防止できる。
In the water supply device according to the invention of claim 3,
The temperature of the chlorine ion-containing water is detected by detecting the temperature of the chlorine ion-containing water fed into the sealed electrolytic cell, and the temperature of the chlorine ion-containing water is corrected because the energizing time to the pair of counter electrodes is corrected according to the temperature of the chlorine ion-containing water. Even when the water content changes, it is possible to make the water supplied at the set water supply time contain a predetermined concentration of available chlorine.
In addition, since the closed electrolyzer electrolyzes the water in the course of water supply without contact with the outside air, the generated effective chlorine does not evaporate to the outside, and water pollution due to bacteria invading from the outside Can be prevented.

【0014】請求項4の発明は、水道水等の塩素イオン
含有水を電気分解して、所定濃度の有効塩素を含む水を
供給する水供給装置において、入口から流入し一対の対
向電極間を流れる塩素イオン含有水をその通過過程で電
気分解して出口から流出可能な密閉式電解槽と、給水開
始指令に基づいて密閉式電解槽内への塩素イオン含有水
の送り込みを開始し、給水開始から設定給水時間経過後
に密閉式電解槽内への塩素イオン含有水の送り込みを停
止する給水制御手段と、密閉式電解槽内への塩素イオン
含有水の送り込みに合わせて所定の電解電流を一対の対
向電極に与える電解制御手段と、電気分解中に一対の対
向電極における極間電圧を検出する電圧検出手段と、上
記設定給水時間で給水された水に所定濃度の有効塩素が
含まれるように上記極間電圧に応じて一対の対向電極へ
の通電時間を補正する通電時間補正手段とを具備した、
ことをその特徴としている。
According to a fourth aspect of the present invention, in a water supply device which electrolyzes chlorine ion-containing water such as tap water to supply water containing a predetermined concentration of available chlorine, the water is introduced from an inlet to a space between a pair of opposing electrodes. A closed electrolyzer that can electrolyze flowing chlorine-ion-containing water in the course of its passage and flow out from the outlet, and starts feeding the chlorine-ion-containing water into the closed electrolyzer based on the water supply start command, and starts water supply. From the water supply control means for stopping the feeding of chlorine ion-containing water into the closed electrolytic cell after the set water supply time has passed, and a predetermined electrolysis current in accordance with the feeding of the chlorine ion-containing water into the closed electrolytic cell. Electrolysis control means applied to the counter electrode, voltage detection means for detecting the inter-electrode voltage at the pair of counter electrodes during electrolysis, and water so supplied at the set water supply time to have a predetermined concentration of available chlorine. Equipped with a energizing time correction means for correcting the energization time of the pair of opposed electrodes in accordance with the inter-electrode voltage,
That is the feature.

【0015】本請求項4の発明に係る水供給装置では、
水温に応じて塩素イオン含有水の電気抵抗が反比例的に
変化する特性を利用して、電気分解される塩素イオン含
有水の温度を一対の対向電極における極間電圧によって
代替的に検出している。同装置では、電気分解中に一対
の対向電極における極間電圧を検出し、該極間電圧に応
じて一対の対向電極への通電時間を補正しているので、
塩素イオン含有水の温度が変化した場合でも、設定給水
時間で給水された水に所定濃度の有効塩素を含ませるこ
とができる。他の作用は請求項3の発明と同様である。
In the water supply device according to the invention of claim 4,
By utilizing the characteristic that the electric resistance of chlorine ion-containing water changes in inverse proportion to the water temperature, the temperature of the electrolyzed chlorine ion-containing water is alternatively detected by the inter-electrode voltage at a pair of opposing electrodes. . In this device, the voltage between electrodes at the pair of counter electrodes is detected during electrolysis, and the energization time to the pair of counter electrodes is corrected according to the voltage between the electrodes, so that
Even if the temperature of the chlorine ion-containing water changes, the water supplied at the set water supply time can contain effective chlorine of a predetermined concentration. The other operation is the same as that of the invention of claim 3.

【0016】[0016]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

[第1の実施形態]図1乃至図4は本発明の第1の実施
形態に係るもので、図1は水供給装置の回路図、図2は
密閉式電解槽の断面図、図3は制御系の構成図、図4は
給水処理のプログラムフローである。
[First Embodiment] FIGS. 1 to 4 relate to a first embodiment of the present invention. FIG. 1 is a circuit diagram of a water supply device, FIG. 2 is a sectional view of a sealed electrolytic cell, and FIG. The configuration diagram of the control system, FIG. 4 is a program flow of the water supply treatment.

【0017】まず、図1及び図2を参照して水供給装置
の回路構成について説明する。同図において、1は半密
閉式の貯水タンクで、塩素イオン含有水として水道水F
を貯留している。また、貯水タンク1の上面には、内外
圧を均等に保つための微細な通気孔1aが形成されてい
る。
First, the circuit configuration of the water supply device will be described with reference to FIGS. 1 and 2. In the figure, 1 is a semi-enclosed water storage tank, and tap water F is used as chlorine ion-containing water.
Is stored. In addition, on the upper surface of the water storage tank 1, fine ventilation holes 1a for keeping the inner and outer pressures even are formed.

【0018】2は浄水器で、内部に活性炭等から成る浄
化フィルタ2aを有している。図示例の浄水器2は上面
に入口2bと出口2cを有しており、入口2bから内部
に流入した水道水Fは浄化フィルタ2aによって臭気や
不純物等を取り除かれ、出口2cから外部に流出する。
A water purifier 2 has a purifying filter 2a made of activated carbon or the like inside. The water purifier 2 of the illustrated example has an inlet 2b and an outlet 2c on the upper surface. The tap water F that has flowed in from the inlet 2b has its odor and impurities removed by the purification filter 2a, and flows out to the outside from the outlet 2c. .

【0019】3は密閉式電解槽で、図2にも示すよう
に、槽本体3aの内部に扁平状の通路3bを有し、該通
路3bの一端に入口3cを、また他端に2つの出口3
d,3eを対向して有している。また、通路3bの対向
面それぞれには各面を覆うようにして陰極板3fと陽極
板3gとが所定の極間距離をおいて設けられ、該通路3
bの他端位置には各電解水を各出口側に分ける分流器3
hが設けられている。更に、入口3cの内側には、密閉
式電解槽3内に送り込まれる水道水Fの温度を検出する
サーミスタ等の水温センサ3iが設けられている。
As shown in FIG. 2, a closed type electrolytic cell 3 has a flat passage 3b inside the cell body 3a, an inlet 3c at one end of the passage 3b, and two at the other end. Exit 3
It has d and 3e facing each other. Further, a cathode plate 3f and an anode plate 3g are provided on each of the opposing surfaces of the passage 3b so as to cover the respective surfaces with a predetermined distance between the electrodes.
At the other end position of b, a flow divider 3 for dividing each electrolyzed water into each outlet side
h is provided. Further, inside the inlet 3c, a water temperature sensor 3i such as a thermistor for detecting the temperature of the tap water F fed into the closed electrolytic bath 3 is provided.

【0020】この密閉式電解槽3では、入口3cに浄化
後の水道水Fを送り込みながら、陰極板3fと陽極板3
gに所定の電解電流を流すことにより、通路3bを流れ
る水道水Fをその通過過程で電気分解して、陰極板3f
側にH+ ,Ca2+,Mg2+,Na+ 等を多く含んだアル
カリイオン水(以下、単にアルカリ水と言う)を、また
陽極板3g側にOH- ,ClO- 等を多く含んだ酸性イ
オン水(以下、単に酸性水と言う)をそれぞれ生成し、
これらを分流器3hを経て出口3d,3eから別々に送
出できる。
In this closed electrolyzer 3, while feeding purified tap water F into the inlet 3c, the cathode plate 3f and the anode plate 3 are fed.
By flowing a predetermined electrolytic current to g, the tap water F flowing through the passage 3b is electrolyzed in the course of passing through the cathode water 3f.
Alkaline ionized water containing a large amount of H + , Ca 2+ , Mg 2+ , Na +, etc. (hereinafter simply referred to as alkaline water) was included on the side, and OH , ClO −, etc. were included on the side of the anode plate 3 g. Generates acidic ionized water (hereinafter simply referred to as acidic water),
These can be separately delivered from the outlets 3d and 3e via the flow divider 3h.

【0021】4は合流器で、密閉式電解槽3のアルカリ
水出口3dと酸性水出口3eのそれぞれから流出するア
ルカリ水と酸性水を合流させる役割を果たす。ちなみ
に、上記の密閉式電解槽3では、有効塩素を効果的に発
生させるためにアルカリ水と酸性水を一旦別々に流出さ
せて合流器4で合流させるようにしたが、出口を1つに
して該出口からアルカリ水と酸性水を合流させながら流
出させるようにすれば合流器4は不要となる。
A combiner 4 serves to combine the alkaline water and the acidic water flowing out from the alkaline water outlet 3d and the acidic water outlet 3e of the sealed electrolytic cell 3, respectively. By the way, in the above-mentioned closed type electrolyzer 3, the alkaline water and the acidic water were once separately made to flow out and combined by the combiner 4 in order to effectively generate available chlorine, but one outlet was used. If the alkaline water and the acidic water are allowed to flow out while being combined with each other from the outlet, the combiner 4 becomes unnecessary.

【0022】5は電動ポンプ、6は冷却コイル、7は電
動バルブ、8は流量調節器、A1は貯水タンク1と浄水
器2の入口2bを結ぶ管路、A2は浄水器2の出口2c
と密閉式電解槽3の入口3cを結ぶ管路、A3は密閉式
電解槽3のアルカリ水出口3dと合流器4を結ぶ管路、
A4は密閉式電解槽3の酸性水出口3eと合流器4を結
ぶ管路、A5は合流器4とポンプ5を結ぶ管路、A6は
ポンプ5と冷却コイル6を結ぶ管路、A7は冷却コイル
6とバルブ7を結ぶ管路、A8はバルブ7と流量調節器
8を結ぶ管路、A9は流量調節器8と給水口(図示省
略)を結ぶ管路である。
5 is an electric pump, 6 is a cooling coil, 7 is an electric valve, 8 is a flow rate controller, A1 is a pipe line connecting the water storage tank 1 and the inlet 2b of the water purifier 2, and A2 is an outlet 2c of the water purifier 2.
And a conduit connecting the inlet 3c of the closed electrolytic bath 3, A3 is a conduit connecting the alkaline water outlet 3d of the closed electrolytic bath 3 and the confluent unit 4,
A4 is a conduit connecting the acidic water outlet 3e of the closed electrolyzer 3 and the confluence unit 4, A5 is a conduit connecting the confluence unit 4 and the pump 5, A6 is a conduit connecting the pump 5 and the cooling coil 6, and A7 is cooling. A pipe connecting the coil 6 and the valve 7, A8 connecting the valve 7 and the flow rate controller 8, and A9 connecting the flow rate controller 8 and the water supply port (not shown).

【0023】次に、図3を参照して上記水供給装置の制
御系構成について説明する。同図において、11はマイ
コンで、CPU,メモリ,入出力装置等を具備し、後述
する給水処理のプログラムをメモリに格納している。こ
のマイコン11は格納プログラムに従って、後述する電
解制御回路12及び給水制御回路13のそれぞれに制御
信号を送出する。
Next, the control system configuration of the water supply device will be described with reference to FIG. In the figure, reference numeral 11 denotes a microcomputer, which includes a CPU, a memory, an input / output device, etc., and stores a program for water supply processing, which will be described later, in the memory. The microcomputer 11 sends a control signal to each of the electrolytic control circuit 12 and the water supply control circuit 13, which will be described later, according to the stored program.

【0024】3iは先に説明した水温センサで、密閉式
電解槽3内に送り込まれる水道水Fの温度を検出し、該
検出信号をマイコン11に送出する。
Reference numeral 3i is the water temperature sensor described above, which detects the temperature of the tap water F fed into the closed electrolytic bath 3 and sends the detection signal to the microcomputer 11.

【0025】12は電解制御回路で、電流可変の直流電
源から成り、マイコン11からの制御信号に基づいて密
閉式電解槽3の一対の対向電極板3f,3gに与える電
解電流値を可変し、これを一対の対向電極板3f,3g
に与える。
Reference numeral 12 denotes an electrolysis control circuit, which is composed of a direct current power source with variable current, and varies the electrolysis current value given to the pair of opposed electrode plates 3f and 3g of the sealed electrolytic cell 3 based on a control signal from the microcomputer 11. This is a pair of counter electrode plates 3f, 3g
Give to.

【0026】13は給水制御回路で、マイコン11から
の制御信号に基づいてポンプ5及びバルブ7への駆動電
力供給を制御し、ポンプ5の運転及び停止とバルブ7の
開放及び閉鎖を行う。
Reference numeral 13 denotes a water supply control circuit which controls the drive power supply to the pump 5 and the valve 7 based on a control signal from the microcomputer 11 to operate and stop the pump 5 and open and close the valve 7.

【0027】以下、図4を参照して本実施形態に係る水
供給装置の動作を説明する。電源投入後は、待機状態に
入り、外部からの給水開始指令を待つ(図4のステップ
SA1)。
The operation of the water supply apparatus according to this embodiment will be described below with reference to FIG. After the power is turned on, a standby state is entered, and an external water supply start command is waited for (step SA1 in FIG. 4).

【0028】外部から給水開始指令を受けたときには、
使用する水道水Fの塩素イオン濃度に基づき予め定めた
電解電流値を読み込み、そして、ポンプ5の運転を開始
しバルブ7を開放すると共に、読み込んだ電解電流値を
一対の対向電極板3f,3gに付与する(図4のステッ
プSA2,SA3)。
When a water supply start command is received from the outside,
A predetermined electrolytic current value is read based on the chlorine ion concentration of the tap water F to be used, and the pump 5 is started to open the valve 7, and the read electrolytic current value is read as a pair of counter electrode plates 3f, 3g. (Steps SA2 and SA3 in FIG. 4).

【0029】これにより、貯水タンク1内の水道水Fが
浄水器2を介して密閉式電解槽3内に送り込まれ、通路
3bを通過する過程で電気分解される。電解後のアルカ
リ水と酸性水は各出口3d,3eから一旦別々に流出し
てから合流器4で合流され、冷却コイル6を通過する過
程で自然放熱によって冷却され、そしてバルブ7と流量
調節器8を順に介して給水口から一定流量で送出され
る。
As a result, the tap water F in the water storage tank 1 is sent into the closed electrolytic cell 3 through the water purifier 2 and is electrolyzed in the process of passing through the passage 3b. The alkaline water and the acidic water after electrolysis are separately discharged from the outlets 3d and 3e and then merged in the merger 4, cooled by natural heat dissipation in the process of passing through the cooling coil 6, and then the valve 7 and the flow controller. It is delivered at a constant flow rate from the water supply port via 8 in sequence.

【0030】この給水時は、外部から給水停止指令を受
けるまで密閉式電解槽3内に送り込まれる水道水Fの温
度を検出して監視し、該検出温度が予め定めた基準温度
から外れているときには、一対の対向電極板3f,3g
に付与する電解電流値を補正する(図4のステップSA
4,SA5,SA6)。
During this water supply, the temperature of the tap water F fed into the closed electrolyzer 3 is detected and monitored until a water supply stop command is received from the outside, and the detected temperature deviates from a predetermined reference temperature. Sometimes, a pair of counter electrode plates 3f, 3g
The value of the electrolysis current applied to is corrected (step SA in FIG. 4).
4, SA5, SA6).

【0031】ここで、水温による電解電流値の補正方法
について説明する。電解開始直後に付与される電解電流
の基準値は、合流器4の出口側において例えば飲料用水
として使用可能な1ppmの有効塩素濃度が確保できる
ように、使用する水道水Fに含有される塩素イオン濃度
に基づいて例えば1.2Aというように予め設定され
る。
Here, a method of correcting the electrolytic current value depending on the water temperature will be described. The reference value of the electrolysis current applied immediately after the start of electrolysis is a chlorine ion contained in the tap water F to be used so that an effective chlorine concentration of 1 ppm that can be used as drinking water, for example, can be secured at the outlet side of the combiner 4. For example, 1.2 A is preset based on the density.

【0032】密閉式電解槽3内に送り込まれる水道水F
の温度tが例えば12℃≦t≦28℃の範囲にあるとき
は特段補正を行わず、基準値通りの電解電流を一対の対
向電極板3f,3gに付与する。また、水道水Fの温度
tがt<12℃のときには有効塩素の自然分解力が弱ま
り、基準値通りの電解電流を付与しても有効塩素濃度が
所期の値よりも高くなるため、このときには電解電流値
を例えば0.8Aに補正して電気分解による有効塩素の
発生を抑制する。一方、水道水Fの温度tが28℃<t
のときには有効塩素の自然分解力が強まり、基準値通り
の電解電流を付与しても有効塩素濃度が所期の値よりも
低くなるため、このときには電解電流値を例えば2Aに
補正して電気分解による有効塩素の発生を向上させる。
Tap water F fed into the closed electrolyzer 3
When the temperature t is in the range of 12 ° C. ≦ t ≦ 28 ° C., no particular correction is performed and the electrolytic current according to the reference value is applied to the pair of opposing electrode plates 3f and 3g. Further, when the temperature t of the tap water F is t <12 ° C., the natural decomposing power of effective chlorine is weakened, and the effective chlorine concentration becomes higher than the desired value even if the electrolytic current according to the standard value is applied. Occasionally, the electrolytic current value is corrected to, for example, 0.8 A to suppress the generation of available chlorine due to electrolysis. On the other hand, the temperature t of the tap water F is 28 ° C <t
At this time, the natural decomposing power of available chlorine becomes stronger, and the effective chlorine concentration becomes lower than the desired value even if an electrolytic current according to the standard value is applied. At this time, the electrolytic current value is corrected to, for example, 2 A, and electrolysis is performed. To improve the generation of available chlorine.

【0033】勿論、電解電流値の補正は上記以外の方
法、例えば基準温度と検出温度の差を変数とした関数
や、検出温度毎に予め用意したデータを用いて行うよう
にしてもよい。
Of course, the electrolytic current value may be corrected by a method other than the above, for example, a function using the difference between the reference temperature and the detected temperature as a variable, or data prepared in advance for each detected temperature.

【0034】給水時に外部から給水停止指令を受けたと
きには、ポンプ5の運転を停止しバルブ7を閉塞すると
共に、一対の対向電極板3f,3gへの電流付与を停止
する(図4のステップSA7)。
When a water supply stop command is received from the outside during water supply, the pump 5 is stopped, the valve 7 is closed, and the application of current to the pair of counter electrode plates 3f, 3g is stopped (step SA7 in FIG. 4). ).

【0035】電気分解によって得られる有効塩素含有水
はその濃度によって様々な用途があり、例えば有効塩素
濃度を1ppm前後に設定しておけば通常の飲料水やポ
ストミックス式ディスペンサーの飲料用水として用いる
ことができ、また濃度を高く設定すれば医療用器具等の
殺菌水として用いることができる。
The effective chlorine-containing water obtained by electrolysis has various uses depending on its concentration. For example, if the effective chlorine concentration is set to around 1 ppm, it can be used as ordinary drinking water or drinking water for post-mix type dispensers. When the concentration is set high, it can be used as sterilizing water for medical instruments and the like.

【0036】このように、本実施形態の水供給装置によ
れば、密閉式電解槽3内に送り込まれる水道水Fの温度
に応じて一対の対向電極板3f,3gに与える電解電流
値を補正しているので、電気分解される水道水Fの温度
が変化した場合でも、所定濃度の有効塩素が含まれる水
を安定して得てこれを供給できる。
As described above, according to the water supply apparatus of the present embodiment, the electrolytic current value given to the pair of counter electrode plates 3f, 3g is corrected according to the temperature of the tap water F fed into the closed electrolytic bath 3. Therefore, even if the temperature of the electrolyzed tap water F changes, it is possible to stably obtain and supply water containing a predetermined concentration of available chlorine.

【0037】また、密閉式電解槽3によって給水途中の
水道水Fを外気と非接触状態で電気分解しているので、
電気分解により発生した有効塩素を効果的に利用して所
期の殺菌を行うことができ、しかも外部からバクテリア
等が侵入することを防止して水質汚染を的確に回避する
ことができる。
Further, since the tap water F which is being supplied with water is electrolyzed in the non-contact state with the outside air by the closed electrolytic cell 3,
The effective chlorine generated by the electrolysis can be effectively used for the desired sterilization, and further, the invasion of bacteria and the like from the outside can be prevented, and the water pollution can be appropriately avoided.

【0038】[第2の実施形態]図5及び図6は本発明
の第2の実施形態に係るもので、図5は水供給装置の制
御系構成図、図6は給水処理のプログラムフローであ
る。
[Second Embodiment] FIGS. 5 and 6 relate to a second embodiment of the present invention. FIG. 5 is a control system configuration diagram of a water supply apparatus, and FIG. 6 is a program flow of water supply processing. is there.

【0039】本実施形態が第1の実施形態と異なるとこ
ろは、給水時間を任意に設定するための給水時間設定器
14を設けて、ここで設定された給水時間だけ給水を行
うようにした点にある。
The present embodiment differs from the first embodiment in that a water supply time setting device 14 for arbitrarily setting the water supply time is provided, and water is supplied only during the water supply time set here. It is in.

【0040】以下、図6を参照して本実施形態に係る水
供給装置の動作を説明する。電源投入後は、待機状態に
入り、外部からの給水開始指令を待つ(図6のステップ
SB1)。
The operation of the water supply apparatus according to this embodiment will be described below with reference to FIG. After the power is turned on, the standby state is entered, and the external water supply start command is waited for (step SB1 in FIG. 6).

【0041】外部から給水開始指令を受けたときには、
使用する水道水Fの塩素イオン濃度に基づき予め定めた
電解電流値を読み込むと共に、給水時間設定器14で設
定されている給水時間を読み込む(図6のステップSB
2)。そして、ポンプ5の運転を開始しバルブ7を開放
すると共に、読み込んだ電解電流値を一対の対向電極板
3f,3gに付与する(図6のステップSB3)。
When a water supply start command is received from the outside,
A predetermined electrolytic current value is read based on the chlorine ion concentration of the tap water F to be used, and the water supply time set by the water supply time setter 14 is read (step SB in FIG. 6).
2). Then, the operation of the pump 5 is started to open the valve 7, and the read electrolytic current value is applied to the pair of opposing electrode plates 3f and 3g (step SB3 in FIG. 6).

【0042】これにより、貯水タンク1内の水道水Fが
浄水器2を介して密閉式電解槽3内に送り込まれ、通路
3bを通過する過程で電気分解される。電解後のアルカ
リ水と酸性水は各出口3d,3eから一旦別々に流出し
てから合流器4で合流され、冷却コイル6を通過する過
程で自然放熱によって冷却され、そしてバルブ7と流量
調節器8を順に介して給水口から一定流量で送出され
る。
As a result, the tap water F in the water storage tank 1 is fed into the closed electrolytic cell 3 via the water purifier 2 and is electrolyzed in the process of passing through the passage 3b. The alkaline water and the acidic water after electrolysis are separately discharged from the outlets 3d and 3e and then merged in the merger 4, cooled by natural heat dissipation in the process of passing through the cooling coil 6, and then the valve 7 and the flow controller. It is delivered at a constant flow rate from the water supply port via 8 in sequence.

【0043】この給水時は、設定された給水時間が経過
するまで密閉式電解槽3内に送り込まれる水道水Fの温
度を検出して監視し、該検出温度が予め定めた基準温度
から外れているときには、一対の対向電極板3f,3g
に付与する電解電流値を補正する(図6のステップSB
4,SB5,SB6)。具体的な補正方法は第1の実施
形態と同様である。
During this water supply, the temperature of the tap water F fed into the sealed electrolytic cell 3 is detected and monitored until the set water supply time elapses, and the detected temperature deviates from the predetermined reference temperature. When there is a pair of counter electrode plates 3f, 3g
The value of the electrolytic current applied to is corrected (step SB in FIG. 6).
4, SB5, SB6). The specific correction method is the same as in the first embodiment.

【0044】設定された給水時間が経過した後は、ポン
プ5の運転を停止しバルブ7を閉塞すると共に、一対の
対向電極板3f,3gへの電流付与を停止する(図6の
ステップSB7)。
After the lapse of the set water supply time, the pump 5 is stopped, the valve 7 is closed, and the current application to the pair of counter electrode plates 3f, 3g is stopped (step SB7 in FIG. 6). .

【0045】このように、本実施形態の水供給装置によ
れば、給水時間によって1回当たりの給水量を規定する
ことが可能であり、決まった量の水を必要とする場合に
極めて有用である。他の作用,効果は第1の実施形態と
同様である。
As described above, according to the water supply apparatus of the present embodiment, it is possible to regulate the water supply amount per time by the water supply time, which is extremely useful when a fixed amount of water is required. is there. Other operations and effects are the same as those of the first embodiment.

【0046】[第3の実施形態]図7及び図8は本発明
の第3の実施形態に係るもので、図7は水供給装置の制
御系構成図、図8は給水処理のプログラムフローであ
る。
[Third Embodiment] FIGS. 7 and 8 relate to a third embodiment of the present invention. FIG. 7 is a block diagram of a control system of a water supply apparatus, and FIG. 8 is a program flow of water supply processing. is there.

【0047】本実施形態が第1の実施形態と異なるとこ
ろは、水温センサ3iを排除した点と、電気分解中に一
対の対向電極板3f,3gの極間電圧を検出する電圧検
出回路15を設けて、その検出信号をマイコン11にフ
ィードバックさせるようにした点にある。
The present embodiment is different from the first embodiment in that the water temperature sensor 3i is eliminated and that a voltage detection circuit 15 for detecting the voltage between electrodes of the pair of counter electrode plates 3f and 3g during electrolysis is provided. It is provided and the detection signal is fed back to the microcomputer 11.

【0048】以下、図8を参照して本実施形態に係る水
供給装置の動作を説明する。電源投入後は、待機状態に
入り、外部からの給水開始指令を待つ(図8のステップ
SC1)。
The operation of the water supply apparatus according to this embodiment will be described below with reference to FIG. After the power is turned on, the standby state is entered, and the external water supply start command is waited for (step SC1 in FIG. 8).

【0049】外部から給水開始指令を受けたときには、
使用する水道水Fの塩素イオン濃度に基づき予め定めた
電解電流値を読み込み、そして、ポンプ5の運転を開始
しバルブ7を開放すると共に、読み込んだ電解電流値を
一対の対向電極板3f,3gに付与する(図8のステッ
プSC2,SC3)。
When a water supply start command is received from the outside,
A predetermined electrolytic current value is read based on the chlorine ion concentration of the tap water F to be used, and the pump 5 is started to open the valve 7, and the read electrolytic current value is read as a pair of counter electrode plates 3f, 3g. (Steps SC2 and SC3 in FIG. 8).

【0050】これにより、貯水タンク1内の水道水Fが
浄水器2を介して密閉式電解槽3内に送り込まれ、通路
3bを通過する過程で電気分解される。電解後のアルカ
リ水と酸性水は各出口3d,3eから一旦別々に流出し
てから合流器4で合流され、冷却コイル6を通過する過
程で自然放熱によって冷却され、そしてバルブ7と流量
調節器8を順に介して給水口から一定流量で送出され
る。
As a result, the tap water F in the water storage tank 1 is sent into the sealed electrolytic cell 3 via the water purifier 2 and is electrolyzed in the process of passing through the passage 3b. The alkaline water and the acidic water after electrolysis are separately discharged from the outlets 3d and 3e and then merged in the merger 4, cooled by natural heat dissipation in the process of passing through the cooling coil 6, and then the valve 7 and the flow controller. It is delivered at a constant flow rate from the water supply port via 8 in sequence.

【0051】この給水時は、外部から給水停止指令を受
けるまで一対の対向電極板3f,3gの極間電圧を検出
して監視し、該検出電圧が予め定めた基準電圧から外れ
ているときには、一対の対向電極板3f,3gに付与す
る電解電流値を補正する(図8のステップSC4,SC
5,SC6)。
During this water supply, the voltage between the electrodes of the pair of opposing electrode plates 3f, 3g is detected and monitored until a water supply stop command is received from the outside. When the detected voltage deviates from a predetermined reference voltage, The electrolytic current value applied to the pair of counter electrode plates 3f and 3g is corrected (steps SC4 and SC in FIG. 8).
5, SC6).

【0052】ここで、極間電圧による電解電流値の補正
方法について説明する。電解開始直後に付与される電解
電流の基準値は、合流器4の出口側において例えば飲料
用水として使用可能な1ppmの有効塩素濃度が確保で
きるように、使用する水道水Fに含有される塩素イオン
濃度に基づいて例えば1.2Aというように予め設定さ
れる。
Here, a method of correcting the electrolytic current value by the voltage between electrodes will be described. The reference value of the electrolysis current applied immediately after the start of electrolysis is a chlorine ion contained in the tap water F to be used so that an effective chlorine concentration of 1 ppm that can be used as drinking water, for example, can be secured at the outlet side of the combiner 4. For example, 1.2 A is preset based on the density.

【0053】本実施形態では、水温に応じて水道水Fの
電気抵抗が反比例的に変化する特性を利用して、電気分
解される塩素イオン含有水の温度を一対の対向電極にお
ける極間電圧によって代替的に検出しており、電気分解
中の極間電圧vが例えば10V≦t≦13Vの範囲にあ
るときは特段補正を行わず、基準値通りの電解電流を一
対の対向電極板3f,3gに付与する。また、極間電圧
vが13V<vのときには有効塩素の自然分解力が弱ま
り、基準値通りの電解電流を付与しても有効塩素濃度が
所期の値よりも高くなるため、このときには電解電流値
を例えば0.8Aに補正して電気分解による有効塩素の
発生を抑制する。一方、極間電圧vがv<10Vのとき
には有効塩素の自然分解力が強まり、基準値通りの電解
電流を付与しても有効塩素濃度が所期の値よりも低くな
るため、このときには電解電流値を例えば2Aに補正し
て電気分解による有効塩素の発生を向上させる。
In this embodiment, the characteristic that the electric resistance of the tap water F changes in inverse proportion to the water temperature is utilized to change the temperature of the electrolyzed chlorine ion-containing water by the voltage between the electrodes between the pair of opposing electrodes. Alternatively, when the inter-electrode voltage v during electrolysis is in the range of 10 V ≤ t ≤ 13 V, no special correction is made and the electrolytic current according to the reference value is applied to the pair of opposing electrode plates 3f, 3g. Given to. Further, when the inter-electrode voltage v is 13 V <v, the natural decomposing power of effective chlorine is weakened, and even if the electrolytic current according to the reference value is applied, the effective chlorine concentration becomes higher than the desired value. The value is corrected to, for example, 0.8 A to suppress generation of available chlorine due to electrolysis. On the other hand, when the inter-electrode voltage v is v <10V, the natural decomposing power of the effective chlorine becomes stronger, and the effective chlorine concentration becomes lower than the desired value even if the electrolytic current according to the reference value is applied. The value is corrected to, for example, 2 A to improve the generation of available chlorine by electrolysis.

【0054】勿論、電解電流値の補正は上記以外の方
法、例えば基準電圧と検出電圧の差を変数とした関数
や、検出電圧毎に予め用意したデータを用いて行うよう
にしてもよい。
Of course, the electrolytic current value may be corrected by a method other than the above, for example, a function using the difference between the reference voltage and the detected voltage as a variable, or data prepared in advance for each detected voltage.

【0055】給水時に外部から給水停止指令を受けたと
きには、ポンプ5の運転を停止しバルブ7を閉塞すると
共に、一対の対向電極板3f,3gへの電流付与を停止
する(図8のステップSC7)。
When a water supply stop command is received from the outside during water supply, the pump 5 is stopped, the valve 7 is closed, and the application of current to the pair of counter electrode plates 3f, 3g is stopped (step SC7 in FIG. 8). ).

【0056】このように、本実施形態の水供給装置によ
れば、電気分解される水道水Fの温度を一対の対向電極
板3f,3gにおける極間電圧によって代替的に検出し
ているので、第1の実施形態のような水温センサ3iを
密閉式電解槽3等に組み込む面倒がなく、簡単な配線で
補正用の信号検出を行える。他の作用,効果は第1の実
施形態と同様である。
As described above, according to the water supply apparatus of the present embodiment, the temperature of the tap water F to be electrolyzed is detected by the voltage between the electrodes of the pair of counter electrode plates 3f and 3g instead. As in the first embodiment, the water temperature sensor 3i is not required to be incorporated in the sealed electrolytic cell 3 or the like, and the signal for correction can be detected with simple wiring. Other operations and effects are the same as those of the first embodiment.

【0057】[第4の実施形態]図9及び図10は本発
明の第4の実施形態に係るもので、図9は水供給装置の
制御系構成図、図10は給水処理のプログラムフローで
ある。
[Fourth Embodiment] FIGS. 9 and 10 relate to a fourth embodiment of the present invention. FIG. 9 is a control system configuration diagram of a water supply apparatus, and FIG. 10 is a program flow of water supply processing. is there.

【0058】本実施形態が第3の実施形態と異なるとこ
ろは、給水時間を任意に設定するための給水時間設定器
14を設けて、ここで設定された給水時間だけ給水を行
うようにした点にある。
The present embodiment is different from the third embodiment in that a water supply time setting device 14 for arbitrarily setting the water supply time is provided and water is supplied only during the water supply time set here. It is in.

【0059】以下、図10を参照して本実施形態に係る
水供給装置の動作を説明する。電源投入後は、待機状態
に入り、外部からの給水開始指令を待つ(図10のステ
ップSD1)。
The operation of the water supply apparatus according to this embodiment will be described below with reference to FIG. After the power is turned on, the standby state is entered, and the external water supply start command is waited for (step SD1 in FIG. 10).

【0060】外部から給水開始指令を受けたときには、
使用する水道水Fの塩素イオン濃度に基づき予め定めた
電解電流値を読み込むと共に、給水時間設定器14で設
定されている給水時間を読み込む(図10のステップS
D2)。そして、ポンプ5の運転を開始しバルブ7を開
放すると共に、読み込んだ電解電流値を一対の対向電極
板3f,3gに付与する(図10のステップSD3)。
When a water supply start command is received from the outside,
A predetermined electrolytic current value is read based on the chlorine ion concentration of the tap water F to be used, and the water supply time set by the water supply time setter 14 is read (step S in FIG. 10).
D2). Then, the operation of the pump 5 is started to open the valve 7, and the read electrolytic current value is applied to the pair of counter electrode plates 3f and 3g (step SD3 in FIG. 10).

【0061】これにより、貯水タンク1内の水道水Fが
浄水器2を介して密閉式電解槽3内に送り込まれ、通路
3bを通過する過程で電気分解される。電解後のアルカ
リ水と酸性水は各出口3d,3eから一旦別々に流出し
てから合流器4で合流され、冷却コイル6を通過する過
程で自然放熱によって冷却され、そしてバルブ7と流量
調節器8を順に介して給水口から一定流量で送出され
る。
As a result, the tap water F in the water storage tank 1 is fed into the closed electrolyzer 3 via the water purifier 2 and is electrolyzed while passing through the passage 3b. The alkaline water and the acidic water after electrolysis are separately discharged from the outlets 3d and 3e and then merged in the merger 4, cooled by natural heat dissipation in the process of passing through the cooling coil 6, and then the valve 7 and the flow controller. It is delivered at a constant flow rate from the water supply port via 8 in sequence.

【0062】この給水時は、設定された給水時間が経過
するまで一対の対向電極板3f,3gの極間電圧を検出
して監視し、該検出電圧が予め定めた基準電圧から外れ
ているときには、一対の対向電極板3f,3gに付与す
る電解電流値を補正する(図10のステップSD4,S
D5,SD6)。具体的な補正方法は第3の実施形態と
同様である。
During this water supply, the voltage between the electrodes of the pair of opposing electrode plates 3f, 3g is detected and monitored until the set water supply time elapses, and when the detected voltage deviates from the predetermined reference voltage. , The electrolytic current value applied to the pair of counter electrode plates 3f, 3g is corrected (steps SD4, S in FIG. 10).
D5, SD6). The specific correction method is the same as in the third embodiment.

【0063】設定された給水時間が経過した後は、ポン
プ5の運転を停止しバルブ7を閉塞すると共に、一対の
対向電極板3f,3gへの電流付与を停止する(図10
のステップSD7)。
After the set water supply time has elapsed, the pump 5 is stopped, the valve 7 is closed, and the application of current to the pair of counter electrode plates 3f and 3g is stopped (FIG. 10).
Step SD7).

【0064】このように、本実施形態の水供給装置によ
れば、給水時間によって1回当たりの給水量を規定する
ことが可能であり、決まった量の水を必要とする場合に
極めて有用である。他の作用,効果は第3の実施形態と
同様である。
As described above, according to the water supply device of the present embodiment, it is possible to regulate the water supply amount per time by the water supply time, which is extremely useful when a fixed amount of water is required. is there. Other actions and effects are similar to those of the third embodiment.

【0065】[第5の実施形態]図11は本発明の第5
の実施形態に係る水供給装置の回路図である。
[Fifth Embodiment] FIG. 11 shows the fifth embodiment of the present invention.
It is a circuit diagram of a water supply apparatus according to the embodiment of.

【0066】本実施形態が第1の実施形態と異なるとこ
ろは、シスターン21を浄水器2と密閉式電解槽3の間
に介装した点と、貯水タンク1からシスターン21側へ
の水供給を制御する電動ポンプ22を設けた点にある。
The present embodiment is different from the first embodiment in that the cistern 21 is interposed between the water purifier 2 and the closed electrolyzer 3 and the water supply from the water storage tank 1 to the cistern 21 side is performed. An electric pump 22 for controlling is provided.

【0067】ちなみに、図中のB1は貯水タンク1と浄
水器2の入口2bを結ぶ管路、B2は浄水器2の出口2
cとポンプ22を結ぶ管路、B3はポンプ22とシスタ
ーン21を結ぶ管路、B4はシスターン21と密閉式電
解槽3の入口3cを結ぶ管路、B5は密閉式電解槽3の
アルカリ水出口3dと合流器4を結ぶ管路、B6は密閉
式電解槽3の酸性水出口3eと合流器4を結ぶ管路、B
7は合流器4とポンプ5を結ぶ管路、B8はポンプ5と
冷却コイル6を結ぶ管路、B9は冷却コイル6とバルブ
7を結ぶ管路、B10はバルブ7と流量調節器8を結ぶ
管路、B11は流量調節器8と給水口(図示省略)を結
ぶ管路である。
By the way, B1 in the figure is a pipe line connecting the water storage tank 1 and the inlet 2b of the water purifier 2, and B2 is the outlet 2 of the water purifier 2.
A pipe connecting c and the pump 22, B3 is a pipe connecting the pump 22 and the cistern 21, B4 is a pipe connecting the cisturn 21 and the inlet 3c of the closed electrolyzer 3, and B5 is an alkaline water outlet of the closed electrolyzer 3. 3d is a pipe connecting the confluence unit 4, B6 is a pipe connecting the acidic water outlet 3e of the closed electrolyzer 3 and the confluence unit 4, B6
Reference numeral 7 is a conduit connecting the confluence unit 4 and the pump 5, B8 is a conduit connecting the pump 5 and the cooling coil 6, B9 is a conduit connecting the cooling coil 6 and the valve 7, and B10 is connecting the valve 7 and the flow controller 8. A pipe line, B11, is a pipe line connecting the flow rate controller 8 and the water supply port (not shown).

【0068】シスターン21は浄化後の水道水Fを一時
的に貯留し混入空気を除去するためのもので、内部水位
を検知するフロートスイッチ21aと、内部圧を大気圧
と等しく保つための均圧管21bを備えている。また、
均圧管21b内には、空気の通過を許容し且つ水やバク
テリア等の通過を阻止する性質を有する通気フィルタ2
1cが配置されており、該通気フィルタ21cにはポリ
エチレンやテフロン等の焼結体またはこれに抗菌処理
(例えばAgコーティング)を施したものが好適に使用
される。このシスターン21内には、フロートスイッチ
21aによって水位降下が検出されたときに貯水タンク
1内の水道水Fがポンプ22によって自動補給される。
The cistern 21 is for temporarily storing the purified tap water F and removing mixed air, and includes a float switch 21a for detecting the internal water level and a pressure equalizing pipe for keeping the internal pressure equal to the atmospheric pressure. 21b is provided. Also,
A ventilation filter 2 having the property of allowing passage of air and blocking passage of water, bacteria, etc. in the pressure equalizing pipe 21b.
1c is disposed, and the ventilation filter 21c is preferably a sintered body of polyethylene, Teflon, or the like or one obtained by subjecting this to an antibacterial treatment (for example, Ag coating). The tap water F in the water storage tank 1 is automatically replenished into the systern 21 by the pump 22 when the water level drop is detected by the float switch 21a.

【0069】このように、本実施形態の水供給装置によ
れば、密閉式電解槽3内に送り込まれる水道水Fに対し
その上流側のシスターン21において空気抜きを実施で
きるので、空気混入によって給水量にバラツキが発生す
ることを防止して安定した給水量を確保できると共に、
密閉式電解槽3内に水道水Fと空気が混在した状態で送
り込まれることによる電気分解の効率低下を確実に防止
することができる。この水供給装置に対しても第1乃至
第4の実施形態で説明した給水処理方法を適用すること
が可能で、同様の作用,効果を得ることができる。
As described above, according to the water supply apparatus of the present embodiment, the tap water F fed into the closed electrolyzer 3 can be deflated at the upstream cistern 21. It is possible to secure a stable water supply by preventing the occurrence of variations in
It is possible to reliably prevent a reduction in the efficiency of electrolysis due to the tap water F and air being sent in a mixed state into the closed electrolytic bath 3. The water supply treatment methods described in the first to fourth embodiments can also be applied to this water supply device, and similar actions and effects can be obtained.

【0070】以上、第1乃至第5の実施形態では、塩素
イオン含有水として水道水を用いたものを例示したが、
塩素イオンを含むものであれば水道水以外の水を原水と
して用いてもよい。
As described above, in the first to fifth embodiments, tap water is used as the chlorine ion-containing water, but
Water other than tap water may be used as raw water as long as it contains chlorine ions.

【0071】また、第1乃至第5の実施形態では、貯水
タンク内の貯留水を密閉式電解槽側に送り込むようにし
たものを例示したが、貯水タンクを排除して管路端を水
道口に接続し、水道口から密閉式電解槽側への水供給を
電動バルブによって制御するようにすれば、回路構成を
コンパクトなものにできると共にポンプ運転時の振動,
騒音を排除できる。
In the first to fifth embodiments, the stored water in the water storage tank is sent to the closed electrolyzer side. However, the water storage tank is eliminated and the pipe end is connected to the water outlet. If the water supply from the tap to the closed electrolyzer is controlled by an electric valve, the circuit structure can be made compact and vibrations during pump operation,
Noise can be eliminated.

【0072】さらに、第1乃至第5の実施形態では、一
対の対向電極板に付与する電解電流値を補正することに
よって、電気分解によって得られる水の有効塩素濃度を
所定値にコントロールするようにしたものを例示した
が、給水時間設定器を備えた第2,第4の実施形態では
電解電流値を変えることなく一対の対応電極板への通電
時間を補正することでも、設定給水時間で給水された水
に所定濃度の有効塩素を含ませることができる。
Further, in the first to fifth embodiments, the effective chlorine concentration of water obtained by electrolysis is controlled to a predetermined value by correcting the electrolytic current value applied to the pair of counter electrode plates. However, in the second and fourth embodiments including the water supply time setting device, the water supply can be performed at the set water supply time by correcting the energization time to the pair of corresponding electrode plates without changing the electrolytic current value. The generated water can contain a predetermined concentration of available chlorine.

【0073】即ち、第2,第4の実施形態では、ポンプ
5の運転とバルブ7の開放と同期して一対の対向電極板
3f,3gに電解電流を付与するようにしているが、ポ
ンプ5の運転とバルブ7の開放の時間(設定された給水
時間)よりも一対の対向電極板3f,3gへの通電時間
を短くすれば、設定給水時間で給水された水における有
効塩素量を低く抑えることができる。具体的には、先に
述べた補正方法と同様に、水道水の温度が基準温度範囲
よりも低いとき、或いは極間電圧が基準電圧範囲よりも
高いときには、通電時間を設定された給水時間よりも短
くなるよう補正して、設定給水時間で給水された水に含
まれる有効塩素量をコントロールする。勿論、基準温度
と検出温度の差または基準電圧と検出電圧の差を変数と
して関数や、検出温度毎または検出電圧毎に予め用意し
たデータを用いて通電時間の補正を行うようにしてもよ
い。
That is, in the second and fourth embodiments, the electrolytic current is applied to the pair of counter electrode plates 3f and 3g in synchronization with the operation of the pump 5 and the opening of the valve 7. If the energization time to the pair of opposing electrode plates 3f and 3g is shorter than the operation time of (1) and the valve 7 opening time (set water supply time), the effective chlorine amount in the water supplied in the set water supply time is kept low. be able to. Specifically, similar to the correction method described above, when the temperature of tap water is lower than the reference temperature range or when the voltage between contacts is higher than the reference voltage range, the energization time is set to be longer than the set water supply time. The amount of available chlorine contained in the water supplied at the set water supply time is controlled by correcting so that it becomes shorter. Of course, the energization time may be corrected using a function with a difference between the reference temperature and the detected temperature or a difference between the reference voltage and the detected voltage as a variable, or using data prepared in advance for each detected temperature or each detected voltage.

【0074】[0074]

【発明の効果】以上詳述したように、請求項1の発明に
よれば、密閉式電解槽内に送り込まれる塩素イオン含有
水の温度に応じて一対の対向電極に与える電解電流値を
補正しているので、塩素イオン含有水の温度が変化した
場合でも、所定濃度の有効塩素が含まれる水を安定して
得てこれを供給できる。また、密閉式電解槽によって給
水途中の塩素イオン含有水を外気と非接触状態で電気分
解しているので、電気分解により発生した有効塩素を効
果的に利用して所期の殺菌を行うことができ、しかも外
部からバクテリア等が侵入することを防止して水質汚染
を的確に回避することができる。
As described in detail above, according to the invention of claim 1, the electrolytic current value given to the pair of counter electrodes is corrected according to the temperature of the chlorine ion-containing water fed into the closed electrolytic cell. Therefore, even when the temperature of the chlorine ion-containing water changes, it is possible to stably obtain and supply water containing a predetermined concentration of available chlorine. In addition, since chlorine ion-containing water in the course of water supply is electrolyzed in a closed electrolyzer without contact with the outside air, the effective chlorine generated by electrolysis can be effectively used for the desired sterilization. In addition, it is possible to prevent bacteria from entering from the outside and accurately avoid water pollution.

【0075】請求項2の発明によれば、電気分解される
塩素イオン含有水の温度を一対の対向電極における極間
電圧によって代替的に検出しているので、請求項1の発
明のような水温検出手段を密閉式電解槽等に組み込む面
倒がなく、簡単な配線で補正用の信号検出を行える。他
の効果は請求項1の発明と同様である。
According to the second aspect of the present invention, the temperature of the water containing the chlorine ions to be electrolyzed is detected by the voltage between the electrodes of the pair of counter electrodes instead. There is no need to install the detection means in a closed electrolytic cell or the like, and the signal for correction can be detected with simple wiring. Other effects are the same as those of the first aspect.

【0076】請求項3の発明によれば、密閉式電解槽内
に送り込まれる塩素イオン含有水の温度に応じて一対の
対向電極への通電時間を補正しているので、電気分解さ
れる塩素イオン含有水の温度が変化した場合でも、設定
給水時間で給水された水に所定濃度の有効塩素を含ませ
ることができる。また、密閉式電解槽によって給水途中
の塩素イオン含有水を外気と非接触状態で電気分解して
いるので、電気分解により発生した有効塩素を効果的に
利用して所期の殺菌を行うことができ、しかも外部から
バクテリア等が侵入することを防止して水質汚染を的確
に回避することができる。
According to the third aspect of the present invention, the energization time to the pair of counter electrodes is corrected according to the temperature of the chlorine ion-containing water fed into the closed electrolytic cell. Even when the temperature of the contained water changes, the water supplied at the set water supply time can be made to contain effective chlorine of a predetermined concentration. In addition, since chlorine ion-containing water in the course of water supply is electrolyzed in a closed electrolyzer without contact with the outside air, the effective chlorine generated by electrolysis can be effectively used for the desired sterilization. In addition, it is possible to prevent bacteria from entering from the outside and accurately avoid water pollution.

【0077】請求項4の発明によれば、電気分解される
塩素イオン含有水の温度を一対の対向電極における極間
電圧によって代替的に検出しているので、請求項3の発
明のような水温検出手段を密閉式電解槽等に組み込む面
倒がなく、簡単な配線で補正用の信号検出を行える。他
の効果は請求項3の発明と同様である。
According to the invention of claim 4, since the temperature of the water containing chlorine ions to be electrolyzed is detected by the voltage between the electrodes at the pair of counter electrodes instead, the water temperature as in the invention of claim 3 is obtained. There is no need to install the detection means in a closed electrolytic cell or the like, and the signal for correction can be detected with simple wiring. Other effects are similar to those of the invention of claim 3.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る水供給装置の回
路図
FIG. 1 is a circuit diagram of a water supply device according to a first embodiment of the present invention.

【図2】図1に示した密閉式電解槽の断面図FIG. 2 is a cross-sectional view of the closed electrolytic cell shown in FIG.

【図3】図1に示した水供給装置の制御系の構成図3 is a configuration diagram of a control system of the water supply device shown in FIG.

【図4】第1の実施形態における給水処理のプログラム
フロー
FIG. 4 is a program flow of water supply processing according to the first embodiment.

【図5】本発明の第2の実施形態に係る水供給装置の制
御系構成図
FIG. 5 is a control system configuration diagram of a water supply device according to a second embodiment of the present invention.

【図6】第2の実施形態における給水処理のプログラム
フロー
FIG. 6 is a program flow of water supply treatment in the second embodiment.

【図7】本発明の第3の実施形態に係る水供給装置の制
御系構成図
FIG. 7 is a control system configuration diagram of a water supply device according to a third embodiment of the present invention.

【図8】第3の実施形態における給水処理のプログラム
フロー
FIG. 8 is a program flow of water supply treatment in the third embodiment.

【図9】本発明の第4の実施形態に係る水供給装置の制
御系構成図
FIG. 9 is a control system configuration diagram of a water supply device according to a fourth embodiment of the present invention.

【図10】第4の実施形態における給水処理のプログラ
ムフロー
FIG. 10 is a program flow of water supply treatment in the fourth embodiment.

【図11】本発明の第5の実施形態における水供給装置
の回路図
FIG. 11 is a circuit diagram of a water supply device according to a fifth embodiment of the present invention.

【図12】従来の水供給装置の回路図FIG. 12 is a circuit diagram of a conventional water supply device.

【符号の説明】[Explanation of symbols]

1…貯水タンク、2…浄水器、3…密閉式電解槽、3b
…通路、3c…入口、3d…アルカリ水出口、3e…酸
性水出口、3f…陰極板、3g…陽極板、3i…水温セ
ンサ、4…合流器、5…ポンプ、6…冷却コイル、7…
バルブ、8…流量調節器、11…マイコン、12…電解
制御回路、13…給水制御回路、14…給水時間設定
器、15…電圧検出回路。
1 ... Water storage tank, 2 ... Water purifier, 3 ... Closed-type electrolyzer, 3b
... passage, 3c ... inlet, 3d ... alkaline water outlet, 3e ... acidic water outlet, 3f ... cathode plate, 3g ... anode plate, 3i ... water temperature sensor, 4 ... merger, 5 ... pump, 6 ... cooling coil, 7 ...
Valves, 8 ... Flow controller, 11 ... Microcomputer, 12 ... Electrolysis control circuit, 13 ... Water supply control circuit, 14 ... Water supply time setting device, 15 ... Voltage detection circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 功 群馬県伊勢崎市寿町20番地 サンデン株式 会社内 (72)発明者 加島 秀雄 群馬県伊勢崎市寿町20番地 サンデン株式 会社内 (72)発明者 中村 誠 群馬県伊勢崎市寿町20番地 サンデン株式 会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Isao Kato 20 Kotobukicho, Isesaki City, Gunma Sanden Co., Ltd. (72) Inventor Hideo Kajima 20 Kotobu Kotobukicho, Isesaki City, Gunma Sanden Co., Ltd. (72) Inventor Makoto Nakamura 20 Kotobukicho, Isesaki City, Gunma Sanden Stock Company

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水道水等の塩素イオン含有水を電気分解
して、所定濃度の有効塩素を含む水を供給する水供給装
置において、 入口から流入し一対の対向電極間を流れる塩素イオン含
有水をその通過過程で電気分解して出口から流出可能な
密閉式電解槽と、 給水開始指令に基づいて密閉式電解槽内への塩素イオン
含有水の送り込みを開始し、給水停止指令に基づいて或
いは給水開始から設定給水時間経過後に密閉式電解槽内
への塩素イオン含有水の送り込みを停止する給水制御手
段と、 密閉式電解槽内への塩素イオン含有水の送り込みに合わ
せて所定の電解電流を一対の対向電極に与える電解制御
手段と、 密閉式電解槽内に送り込まれる塩素イオン含有水の温度
を検出する水温検出手段と、 所定濃度の有効塩素を含む水が給水されるように密閉式
電解槽内に送り込まれる塩素イオン含有水の温度に応じ
て一対の対向電極に与える電解電流値を補正する電解電
流値補正手段とを具備した、 ことを特徴とする水供給装置。
1. A water supply device for electrolyzing chlorine ion-containing water such as tap water to supply water containing effective chlorine at a predetermined concentration, and chlorine ion-containing water flowing from an inlet and flowing between a pair of opposing electrodes. In the course of passing through the sealed electrolytic cell that can be electrolyzed and flow out from the outlet, start feeding chlorine-containing water into the sealed electrolytic cell based on the water supply start command, and based on the water supply stop command or Water supply control means that stops the feeding of chlorine ion-containing water into the closed electrolytic cell after the set water supply time has elapsed from the start of water supply, and a predetermined electrolysis current according to the feeding of chlorine ion-containing water into the closed electrolytic cell. Electrolysis control means applied to a pair of opposed electrodes, water temperature detection means for detecting the temperature of the chlorine ion-containing water fed into the closed electrolytic cell, and water soaked so that water containing a predetermined concentration of available chlorine is supplied. Equipped an electrolytic current value correcting means for correcting the electrolytic current value applied to the pair of opposed electrodes in accordance with the temperature of the chlorine ion-containing water to be fed into the formula electrolytic cell, the water supply device, characterized in that.
【請求項2】 水道水等の塩素イオン含有水を電気分解
して、所定濃度の有効塩素を含む水を供給する水供給装
置において、 入口から流入し一対の対向電極間を流れる塩素イオン含
有水をその通過過程で電気分解して出口から流出可能な
密閉式電解槽と、 給水開始指令に基づいて密閉式電解槽内への塩素イオン
含有水の送り込みを開始し、給水停止指令に基づいて或
いは給水開始から設定給水時間経過後に密閉式電解槽内
への塩素イオン含有水の送り込みを停止する給水制御手
段と、 密閉式電解槽内への塩素イオン含有水の送り込みに合わ
せて所定の電解電流を一対の対向電極に与える電解制御
手段と、 電気分解中に一対の対向電極における極間電圧を検出す
る電圧検出手段と、 所定濃度の有効塩素を含む水が給水されるように上記極
間電圧に応じて一対の対向電極に与える電解電流値を補
正する電解電流値補正手段とを具備した、 ことを特徴とする水供給装置。
2. A water supply device for electrolyzing chlorine ion-containing water such as tap water to supply water containing effective chlorine at a predetermined concentration, and chlorine ion-containing water flowing from an inlet and flowing between a pair of opposing electrodes. In the course of passing through the sealed electrolytic cell that can be electrolyzed and flow out from the outlet, start feeding chlorine-containing water into the sealed electrolytic cell based on the water supply start command, and based on the water supply stop command or Water supply control means that stops the feeding of chlorine ion-containing water into the closed electrolytic cell after the set water supply time has elapsed from the start of water supply, and a predetermined electrolysis current according to the feeding of chlorine ion-containing water into the closed electrolytic cell. Electrolysis control means applied to the pair of opposing electrodes, voltage detection means for detecting the interelectrode voltage at the pair of opposing electrodes during electrolysis, and the above-mentioned interelectrode electricity so that water containing a predetermined concentration of available chlorine is supplied. Water supply device according to claim equipped and an electrolytic current value correcting means for correcting the electrolytic current value applied to the pair of opposed electrodes, that in accordance with the.
【請求項3】 水道水等の塩素イオン含有水を電気分解
して、所定濃度の有効塩素を含む水を供給する水供給装
置において、 入口から流入し一対の対向電極間を流れる塩素イオン含
有水をその通過過程で電気分解して出口から流出可能な
密閉式電解槽と、 給水開始指令に基づいて密閉式電解槽内への塩素イオン
含有水の送り込みを開始し、給水開始から設定給水時間
経過後に密閉式電解槽内への塩素イオン含有水の送り込
みを停止する給水制御手段と、 密閉式電解槽内への塩素イオン含有水の送り込みに合わ
せて所定の電解電流を一対の対向電極に与える電解制御
手段と、 密閉式電解槽内に送り込まれる塩素イオン含有水の温度
を検出する水温検出手段と、 上記設定給水時間で給水された水に所定濃度の有効塩素
が含まれるように密閉式電解槽内に送り込まれる塩素イ
オン含有水の温度に応じて一対の対向電極への通電時間
を補正する通電時間補正手段とを具備した、 ことを特徴とする水供給装置。
3. A water supply device for electrolyzing water containing chlorine ions such as tap water to supply water containing effective chlorine of a predetermined concentration, and water containing chlorine ions containing water flowing from an inlet to flow between a pair of opposing electrodes. A closed electrolyzer that can be electrolyzed in the course of passing through the outlet and flows out from the outlet, and starts feeding chlorine-containing water into the closed electrolyzer based on the water supply start command, and the set water supply time has elapsed from the start of water supply. Water supply control means for stopping the feeding of chlorine ion-containing water into the closed electrolytic cell later, and electrolysis that applies a predetermined electrolytic current to the pair of opposing electrodes in accordance with the feeding of chlorine ion-containing water into the closed electrolytic cell Control means, water temperature detecting means for detecting the temperature of the chlorine ion-containing water fed into the closed electrolytic cell, and closed type electric power so that the water supplied at the set water supply time contains effective chlorine of a predetermined concentration. Depending on the temperature of the chlorine ion-containing water to be fed into the tank equipped with a energizing time correction means for correcting the energization time of the pair of opposed electrodes, the water supply device, characterized in that.
【請求項4】 水道水等の塩素イオン含有水を電気分解
して、所定濃度の有効塩素を含む水を供給する水供給装
置において、 入口から流入し一対の対向電極間を流れる塩素イオン含
有水をその通過過程で電気分解して出口から流出可能な
密閉式電解槽と、 給水開始指令に基づいて密閉式電解槽内への塩素イオン
含有水の送り込みを開始し、給水開始から設定給水時間
経過後に密閉式電解槽内への塩素イオン含有水の送り込
みを停止する給水制御手段と、 密閉式電解槽内への塩素イオン含有水の送り込みに合わ
せて所定の電解電流を一対の対向電極に与える電解制御
手段と、 電気分解中に一対の対向電極における極間電圧を検出す
る電圧検出手段と、 上記設定給水時間で給水された水に所定濃度の有効塩素
が含まれるように上記極間電圧に応じて一対の対向電極
への通電時間を補正する通電時間補正手段とを具備し
た、 ことを特徴とする水供給装置。
4. A water supply device for electrolyzing water containing chlorine ions such as tap water to supply water containing effective chlorine of a predetermined concentration, and water containing chlorine ions containing water flowing from between an inlet and flowing between a pair of opposing electrodes. A closed electrolyzer that can be electrolyzed in the course of passing through the outlet and flows out from the outlet, and starts feeding chlorine-containing water into the closed electrolyzer based on the water supply start command, and the set water supply time has elapsed from the start of water supply. A water supply control means for stopping the feeding of chlorine ion-containing water into the closed electrolytic cell later, and an electrolysis that gives a predetermined electrolytic current to the pair of opposing electrodes in accordance with the feeding of the chlorine ion containing water into the closed electrolytic cell. Control means, voltage detection means for detecting the inter-electrode voltage at the pair of opposing electrodes during electrolysis, and the voltage applied to the inter-electrode voltage so that the water supplied at the set water supply time contains a predetermined concentration of available chlorine. Equipped with a energizing time correction means for correcting the energization time of the pair of opposed electrodes Te, it water supply apparatus according to claim.
JP31680995A 1995-12-05 1995-12-05 Water supply apparatus Pending JPH09155353A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31680995A JPH09155353A (en) 1995-12-05 1995-12-05 Water supply apparatus
MYPI9604919 MY120510A (en) 1995-12-05 1996-11-25 Device for processing object water into processed water containing effective chlorine
KR1019960061587A KR970042295A (en) 1995-12-05 1996-12-04 Water treatment device that treats the target water to produce treated water containing effective chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31680995A JPH09155353A (en) 1995-12-05 1995-12-05 Water supply apparatus

Publications (1)

Publication Number Publication Date
JPH09155353A true JPH09155353A (en) 1997-06-17

Family

ID=18081171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31680995A Pending JPH09155353A (en) 1995-12-05 1995-12-05 Water supply apparatus

Country Status (1)

Country Link
JP (1) JPH09155353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2222102A1 (en) * 2003-07-11 2005-01-16 Interef 2000 Promocions Inmobiliaries, S.L. Method of controlling and disinfecting sanitary hot water distribution systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2222102A1 (en) * 2003-07-11 2005-01-16 Interef 2000 Promocions Inmobiliaries, S.L. Method of controlling and disinfecting sanitary hot water distribution systems
WO2005005325A1 (en) * 2003-07-11 2005-01-20 Interef 2000 Promocions Inmobiliaries, S.L. Method of controlling and disinfecting sanitary hot water distribution systems

Similar Documents

Publication Publication Date Title
US8419926B2 (en) Electrolyzed water producing method and apparatus
JP4653708B2 (en) Electrolyzed water generating method and electrolyzed water generating apparatus used therefor
KR20020090888A (en) Water treatment apparatus
JP2004298832A (en) Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water
JPH07299457A (en) Electrolyzed water producing device
JPH09155353A (en) Water supply apparatus
JP2002079250A (en) Hypochlorous acid water making apparatus
JPH09155356A (en) Water supply apparatus
JP3519843B2 (en) Water supply device
JPH09189141A (en) Sterilizing and disinfecting device for swimming pool
JPH09155354A (en) Water supply apparatus
JPH09155355A (en) Water supply apparatus
JP3716027B2 (en) Method and apparatus for sterilization and sterilization of continuous electrolytic water generator
JP2000218269A (en) Electrolytic water generator
JPH06312189A (en) Electrolytic sterilized water making apparatus
JP4378803B2 (en) Alkaline ion water conditioner
JP2605642B2 (en) Electrolytic ionic water generating apparatus and electrolytic ionic water generating method
JP2001062453A (en) Electrolytic water production device
JPH10192857A (en) Electrolytic water making apparatus
JP4114189B2 (en) Water activation equipment
JP2005279519A (en) Apparatus for producing electrolytic water
JPH09155352A (en) Water supply apparatus
JPH091150A (en) Potable water supplying device
JPH08192158A (en) Ion water generator
JPH10118654A (en) Production of weak acidic sterilizing water and weak alkaline water