JPH09154235A - System and method for controlling power transmission and distribution system - Google Patents

System and method for controlling power transmission and distribution system

Info

Publication number
JPH09154235A
JPH09154235A JP8005526A JP552696A JPH09154235A JP H09154235 A JPH09154235 A JP H09154235A JP 8005526 A JP8005526 A JP 8005526A JP 552696 A JP552696 A JP 552696A JP H09154235 A JPH09154235 A JP H09154235A
Authority
JP
Japan
Prior art keywords
power
distribution
distribution line
control
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8005526A
Other languages
Japanese (ja)
Other versions
JP3317833B2 (en
Inventor
Minoru Kanai
実 叶井
Toshifumi Yoshikawa
敏文 吉川
Saburo Yasukawa
三郎 安川
Yuzuru Imamura
譲 今村
Shinya Tanifuji
真也 谷藤
Masahiko Amano
雅彦 天野
Masahiro Watanabe
雅浩 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP00552696A priority Critical patent/JP3317833B2/en
Publication of JPH09154235A publication Critical patent/JPH09154235A/en
Application granted granted Critical
Publication of JP3317833B2 publication Critical patent/JP3317833B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/722
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Selective Calling Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To operate the system at high efficiency and optimize the system voltage and prevent troubles due to higher harmonic waves by leveling loads. SOLUTION: A control system of a power transmission and distribution system has a plurality of power receiving devices 89, each of which has a controller 91. The power receiving devices 89 have such a function as to generate active and reactive power of a fundamental wave and higher harmonic waves and to supply these powers to a distribution line and receive power from the distribution line. Furthermore, a first central controller for controlling the distribution line is installed in this system. The first central controller stores the information on the structure of the distribution line and collects the information on the on/off state at the present of a switch connected to the distribution line. For the amount of current and electricity on the distribution line, the first central controller sends unique and individual control command signals which it caused the power receiving devices 89 to generate based on the information stored and collected by itself, to the controllers 91 and thereby it makes an optimum cooperative control of the power transfer devices 89.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、送配電系統の制御
システムに係り、特に、様々な負荷およびソ−ラ発電機
などの分散型電源を有する送配電系統の制御システムお
よびその制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power transmission and distribution system control system, and more particularly to a power transmission and distribution system control system having various loads and distributed power sources such as solar generators and a control method thereof.

【0002】[0002]

【従来の技術】電力系統においては、系統電圧の適正
化、高調波の低減など、電力品質を維持するために様々
な努力がなされている。例えば、電圧の適正化のための
各電圧階級の変電所の変圧器や調相設備のタップ制御な
どの工夫がある。また、最近では応答性の良い電力用半
導体素子を使用して瞬時的な電圧降下や高調波を低減す
る技術が、例えば「半導体電力変換回路(電気学会半導
体電力変換方式調査専門委員会編)」などの文献に開示
されている。
2. Description of the Related Art In a power system, various efforts have been made to maintain power quality, such as optimization of system voltage and reduction of harmonics. For example, there are devises such as tap control of transformers of substations of each voltage class and phase adjusting equipment for proper voltage adjustment. In addition, recently, a technology for reducing instantaneous voltage drop and harmonics by using a highly responsive power semiconductor element has been described, for example, in “Semiconductor power conversion circuit (edited by the Institute of Electrical Engineers of Japan, Research Committee for Semiconductor Power Conversion Methods”). And the like.

【0003】[0003]

【発明が解決しようとする課題】このように、電力系統
では電力品質を維持するために様々な努力がなされてい
るが、昼夜間負荷較差の増大、分散型電源の系統連系の
増大、高調波を発生する電源の増大など下位の送配電系
統を取り巻く周囲環境が大きく変化しつつあり、その環
境変化により、面的に拡がる膨大な下位の送配電系統か
ら発生する有効・無効電力、高調波電流の変動幅が増大
している。このため、従来のように上位系統制御所にお
ける電圧や無効電力の制御だけでは電力品質を維持する
ことが困難になっている。
As described above, various efforts have been made to maintain the power quality in the electric power system. However, an increase in the load difference between day and night, an increase in the interconnection of distributed power sources, and a harmonic The surrounding environment surrounding the lower power transmission and distribution system is changing drastically due to an increase in the number of power sources that generate waves, and due to this environmental change, the active / reactive power and harmonics generated from the vast lower power transmission and distribution system The fluctuation range of the current is increasing. Therefore, it is difficult to maintain the power quality only by controlling the voltage or the reactive power in the upper system control station as in the past.

【0004】さらに、昼夜間の負荷較差増大や分散型電
源の系統連系増大により系統潮流が様々に変化する状況
下では電圧分布も複雑なものとなり、従来のようなタッ
プ切替や柱上変圧器の固定タップの音動切替等による部
分的な電圧改善対策では配電線路全般にわたる電圧改善
が困難になってくる。
Further, the voltage distribution becomes complicated under a situation in which the system power flow changes variously due to an increase in load difference between daytime and nighttime and an increase in system interconnection of distributed power sources, and thus tap switching and pole transformers as in the prior art. It is difficult to improve the voltage over the entire distribution line by taking partial measures to improve the voltage by switching the sound of fixed taps.

【0005】例えば、下位の送配電系統には多くの進相
コンデンサが接続され重負荷時の電圧適正化に寄与して
いるが、軽負荷時にはそれらの進相コンデンサから発生
する多大な進相電流のため、下位系統に向かって電圧が
上昇する傾向を示し、上位系統の多大なリアクトルを投
入しても電圧上昇を防ぎきれない例があげられる。
For example, many phase advancing capacitors are connected to the lower power transmission and distribution system to contribute to voltage optimization under heavy load, but a large amount of phase advancing current generated from these phase advancing capacitors under light load. Therefore, there is an example in which the voltage tends to increase toward the lower system, and the voltage increase cannot be prevented even if a large amount of the reactor of the upper system is injected.

【0006】さらに、最近のように不特定多数の機器か
ら高調波が発生するような場合には、特定の機器あるい
は特定の個所の高調波を低減する従来技術では配電線路
の高調波を十分に低減できなかった。特に、配電系統は
工事や負荷分布変化に対応して、系統構成が常に変更さ
れるため、特定の個所にのみ制御機器を配置するといっ
た従来技術では、系統構成変更に対応できず,制御され
ない配電線路が発生するという問題があった。
Further, when harmonics are generated from an unspecified large number of devices as in recent years, the conventional technique for reducing the harmonics of a specific device or a specific place is sufficient to reduce the harmonics of the distribution line. It could not be reduced. In particular, since the system configuration of the distribution system is constantly changed in response to construction and load distribution changes, conventional technology, such as arranging control equipment only at specific points, cannot cope with the system configuration change and uncontrolled distribution. There was a problem that railroad tracks were generated.

【0007】さらに、下位の送配電系統に接続された多
数の半導体使用電源で発生した高調波電流が、インピー
ダンスの低い上位系統に多量に流れ込むため、上位系統
の電圧が歪んでしまい、その上位系統に連なる下位の送
配電系統で種々の高調波障害を引き起こしている。
Further, a large amount of harmonic currents generated by a large number of semiconductor-used power sources connected to the lower power transmission and distribution system flows into the upper system having a low impedance, which distorts the voltage of the upper system and the higher system. Various harmonic disturbances are caused in the lower transmission and distribution system connected to.

【0008】また、従来上位系統監視制御所では、下位
送配電系統には負荷だけが接続されていることを前提と
して電圧などを制御していたが、今後多くの分散型電源
が系統連系されるようになると、上位系統監視制御所で
は多くの分散型電源の発電量を考慮して制御しなければ
ならなくなり、制御負担の点で実質的には制御困難に陥
ることが予想される。
Conventionally, the upper system monitoring and control station has controlled the voltage and the like on the assumption that only the load is connected to the lower power transmission and distribution system, but many distributed power sources will be system-connected in the future. In such a situation, the upper system supervisory control station will have to control in consideration of the power generation amount of many distributed power sources, and it is expected that control will be substantially difficult in terms of control burden.

【0009】本発明の目的は、負荷平準化による高効率
運用、系統電圧適正化、高調波障害防止など、現在の電
力系統が抱える問題の解決を図るに好適な送配電系統の
制御システムおよびその制御方法を提供することにあ
る。
An object of the present invention is to provide a control system of a power transmission and distribution system suitable for solving problems of the current power system, such as high efficiency operation by load leveling, optimization of system voltage, prevention of harmonic interference, and the like. It is to provide a control method.

【0010】[0010]

【課題を解決するための手段】本発明の1つの観点に係
る送配電系統の制御システムにおいては、それぞれが制
御装置を有する複数の電力授受装置が設けられいる。ま
た、それらの電力授受装置は配電線路に沿って分散的に
接続されている。電力授受装置は、基本波および高調波
の有効および無効電力を発生すると共に、それらを配電
線路に供給しおよび配電線路から受電する機能を有す
る。さらに、配電線路を制御する第1中央制御装置が設
けられている。該第1中央制御装置は、配電線路の構造
に関する情報を記憶し、配電線路を区間分けするため配
電線路に接続されたそれぞれの開閉器の現時点の入り切
り状態に関する情報を収集すると共に、配電線路上の電
流電気量に関して、記憶されおよび収集された情報に基
づいてそれぞれの電力授受装置に独特な個別の制御指令
信号を発生し、それらの制御指令信号をそれぞれの制御
装置に送信し、それぞれ対応の電力授受装置を制御す
る。その結果、配電線路の所望の目標状態が、それぞれ
の電力授受装置の最適協調制御によって配電線路内で自
動的に達成される。
In a control system for a power transmission and distribution system according to one aspect of the present invention, a plurality of power transfer devices each having a control device are provided. In addition, those power transfer devices are connected in a distributed manner along the power distribution line. The power transfer device has a function of generating active and reactive power of a fundamental wave and a harmonic wave and supplying the active power and reactive power to a power distribution line and receiving power from the power distribution line. Furthermore, a first central control unit for controlling the distribution line is provided. The first central control unit stores information about the structure of the distribution line, collects information about the current on / off state of each switch connected to the distribution line to divide the distribution line into sections, and Based on the stored and collected information regarding the current and electric quantity of, the individual power control devices generate individual control command signals, and those control command signals are transmitted to the respective control devices. Control the power transfer device. As a result, the desired target state of the distribution line is automatically achieved in the distribution line by the optimal coordinated control of the respective power transfer devices.

【0011】本発明に係る送配電系統の制御システムに
おいては、さらに、逓減変圧器を介して配電線路に接続
されている上位送電線路を制御する第2中央制御装置が
設けられている。第2中央制御装置は、第1中央制御装
置を介して逓減変圧器における電流電気量を収集し、逓
減変圧器における収集電流電気量に関して逓減変圧器に
おける目標状態を決定し、それを第1中央制御装置に送
信する。それによって、第1中央制御装置は配電線路の
所望の目標状態を決定し、それを周期的に収集される電
流電気量と比較し、そして、関係する配電線路の目標状
態からの電流電気量の偏差が所定の許容範囲を越える場
合には、そのような偏差を低減させる個別の制御信号を
発生する。その結果、配電線路の所望の目標状態が、そ
れぞれの電力授受装置の最適協調制御によって配電線路
内で自動的に達成される。
In the control system of the power transmission and distribution system according to the present invention, there is further provided a second central control device for controlling the upper power transmission line connected to the power distribution line via the step-down transformer. The second central control unit collects the current-electricity amount in the step-down transformer via the first central control unit, determines a target state in the step-down transformer with respect to the collected current-electricity amount in the step-down transformer, and determines the target state in the first central unit. Send to controller. Thereby, the first central controller determines the desired target state of the distribution line, compares it with the periodically collected current and quantity of electricity and of the current and quantity of electricity from the target state of the concerned distribution line. If the deviation exceeds a predetermined tolerance, a separate control signal is generated to reduce such deviation. As a result, the desired target state of the distribution line is automatically achieved in the distribution line by the optimal coordinated control of the respective power transfer devices.

【0012】また、本発明の他の観点に係る発明は、上
位電力系統から送配電用変圧器を介して電力が供給され
る送配電系統の制御方法にある。この方法は、送配電用
変圧器を通過する電気量の指令値を上位系統制御装置か
ら受信する段階、送配電用変圧器を通過する電気量を計
測する段階、電気量の指令値と通過電気量の偏差を求め
る段階、および偏差が予め定められた許容量より大きい
場合には、前記送配電系統に接続された電力授受装置と
前記送配電系統との間で授受される電力量を制御する段
階を有する。
The invention according to another aspect of the present invention is a method for controlling a power transmission and distribution system in which electric power is supplied from a higher power system via a power transmission and distribution transformer. This method includes the steps of receiving a command value for the amount of electricity passing through the power transmission and distribution transformer from the host system control device, measuring the amount of electricity passing through the power transmission and distribution transformer, and the command value of the amount of electricity and the passing electricity. The step of obtaining the deviation of the amount, and when the deviation is larger than a predetermined allowable amount, the amount of electric power exchanged between the electric power transfer device connected to the power transmission and distribution system and the power transmission and distribution system is controlled. Have stages.

【0013】[0013]

【発明の実施の形態】以下、本発明の一つの実施の形態
例について、図1を参照しながら説明する。
DETAILED DESCRIPTION OF THE INVENTION One embodiment of the present invention will be described below with reference to FIG.

【0014】図1において、上位系統61aに連なる電
力系統は、送電線路62aを介して上位系統61aに接
続された送電変電所63aと、送電変電所63aに送電
線路64a,64bを介して接続された送電系統65
a,65bと、送電系統65a,65bに送電線路66
a,66bを介して接続された配電変電所67a,67
bと、配電変電所67a,67bに配電線路68a,6
8b,68c,68dを介して接続された配電系統69
a,69b,69c,69dで構成される。ここで、送
配電線路が変電所に接続されるという表現は、後で説明
するように実際には変電所内に設けられた変圧器(図示
せず)に接続されることを意味する。上位系統61bに
連なる電力系統についても同様な構成であるため説明を
省略する。配電系統69a,69b,69c,69dか
らは系統内の電気量に関する情報が通信線71を介して
配電系統監視制御所70に収集される。配電変電所67
a,67bからの情報も同様に配電系統監視制御所70
に収集される。配電系統監視制御所70からは同様に通
信線71を介して配電系統69a,69b,69c,6
9d内に設けられた電力授受制御装置(図示せず)に制
御指令が出力される。また、配電変電所67a,67b
に設けられた電力授受制御装置(図示せず)にも制御指
令が出力される。配電系統監視制御所70からは配電変
電所67a,67bに設けられた配電用変圧器(図示せ
ず)を通過する有効・無効電力,高調波電流などの電気
量だけが地域送電系統監視制御所72に情報として送信
される。地域送電系統監視制御所72では、配電系統監
視制御所70,送配電系統65a,65b及び送電変電
所63aからの電気量に関する情報にもとづいて電力授
受(図示せず)の制御指令が作成され、送電系統65
a,65bあるいは送電変電所63a内に設けられた電
力授受制御装置に出力される。地域送電系統監視制御所
72からは送電変電所63a内に設けられた変圧器(図
示せず)を通過する有効・無効電力,高調波電流などの
電気量だけが上位系統監視制御所73に情報として送信
される。以上の動作は、上位系統61bに連なる電力系
統についても同様に行われる。
In FIG. 1, an electric power system connected to the upper grid 61a is connected to a power transmission substation 63a connected to the upper grid 61a via a power transmission line 62a and to a power transmission substation 63a via power transmission lines 64a and 64b. Power transmission system 65
a, 65b, and the power transmission line 66 in the power transmission systems 65a, 65b.
a, substation 67a, 67 connected via 66b
b, and distribution lines 68a, 6 at the distribution substations 67a, 67b.
Power distribution system 69 connected via 8b, 68c, 68d
a, 69b, 69c, 69d. Here, the expression that the transmission and distribution line is connected to the substation means that it is actually connected to a transformer (not shown) provided in the substation, as described later. Since the power system connected to the upper system 61b has the same configuration, the description thereof will be omitted. Information about the amount of electricity in the system is collected from the distribution systems 69a, 69b, 69c, 69d to the distribution system monitoring and control station 70 via the communication line 71. Distribution substation 67
Information from a and 67b is similarly distributed to the distribution system monitoring control station 70.
Will be collected. Similarly, from the power distribution system monitoring and control station 70, the power distribution systems 69a, 69b, 69c, 6 are connected via the communication line 71.
A control command is output to a power transfer control device (not shown) provided in 9d. In addition, the distribution substations 67a and 67b
A control command is also output to a power transfer control device (not shown) provided in the. From the distribution system monitoring and control station 70, only the amount of electricity such as active / reactive power and harmonic current passing through distribution transformers (not shown) provided at the distribution substations 67a and 67b is supplied to the regional transmission system monitoring and control station. 72 to be transmitted as information. At the local power transmission system monitoring control station 72, a control command for power transfer (not shown) is created based on the information about the amount of electricity from the power distribution system monitoring control station 70, the power transmission / distribution systems 65a and 65b, and the power transmission substation 63a. Power transmission system 65
a, 65b or the power transmission / reception control device provided in the power transmission substation 63a. Only the amount of electricity such as active / reactive power and harmonic current that passes through a transformer (not shown) provided in the transmission substation 63a is transmitted from the regional transmission system monitoring control station 72 to the upper system monitoring control station 73. Sent as. The above operation is similarly performed for the power system connected to the upper system 61b.

【0015】以上の構成において配電変電所67bとそ
れに連なる配電系統69c,69dにおける具体的構成
について、図2を参照して説明する。図2において、配
電変電所67bには送電線路66bを介して上位系統6
1a(図示せず)に接続される配電用変圧器80a,8
0bが設けられる。配電用変圧器80a,80bには母
線81a,81bを介して複数の配電線路82a,82
b,82c,82dが接続される。ここで、送電線路,
母線及び配電線路は一般には三相で構成されるが、図面
では簡単のため単線で表示する。配電用変圧器80aの
二次側には配電用変圧器80aを通過する有効・無効電
力,高調波電流を計測するためのセンサ83,計測子局
84からなる計測装置が取り付けられる。計測子局84
からの出力は通信線86を介して配電系統監視制御所7
0に送信される。配電用変圧器80bを通過する有効・
無効電力,高調波電流を計測についても同一構成の計測
手段を有し説明を省略する。配電線路82cを例にと
り、その構成について説明する。配電線路82cの引き
出し口には計測装置87が取り付けられる。配電線路8
2cには、出力変圧器88を介して電力授受装置89が
接続される。ここで、電力授受装置89とは、具体的に
は分散型電源や電力用半導体を応用した有効・無効電力
発生装置などであり、電力の基本波や高調波の有効・無
効電力を、配電線路82cとの間で授受できる機能を備
えたものを指す。配電線路82cと電力授受装置89の
間には授受電力量を計測するためセンサ90が取り付け
られ、その出力が制御子局91に接続される。制御子局
91には配電線路の電圧,有効・無効電力,高調波電圧
・電流を計測するセンサ92の出力も取り込まれる。制
御子局91は通信線93を介して配電系統監視制御所7
0に接続され、電気量の情報が送られる。同様な構成の
装置は、配電線路の他の個所や配電変電所の母線にも取
り付けられる。また、配電線路の電圧,有効・無効電
力,高調波電圧・電流を計測するセンサも配電線路に沿
って適当個所に取り付けられる。この中には例えば電圧
だけを計測するセンサなども含まれている。
A specific configuration of the distribution substation 67b and the distribution systems 69c and 69d connected to the distribution substation 67b will be described with reference to FIG. In FIG. 2, the distribution substation 67b is connected to the upper system 6 via a transmission line 66b.
Distribution transformers 80a, 8 connected to 1a (not shown)
0b is provided. A plurality of distribution lines 82a, 82 are connected to the distribution transformers 80a, 80b via bus bars 81a, 81b.
b, 82c and 82d are connected. Where the transmission line,
Bus lines and distribution lines are generally composed of three phases, but they are shown as single lines in the drawings for simplicity. On the secondary side of the distribution transformer 80a, a measuring device including a sensor 83 for measuring active / reactive power and harmonic current passing through the distribution transformer 80a and a measuring slave station 84 is attached. Measurement slave station 84
The output from the distribution system monitoring and control station 7 via the communication line 86.
Sent to 0. Effective passing through distribution transformer 80b
Since the reactive power and the harmonic current are also measured, the measuring means having the same configuration is used and the description thereof is omitted. The structure of the power distribution line 82c will be described as an example. A measuring device 87 is attached to the outlet of the power distribution line 82c. Distribution line 8
A power transfer device 89 is connected to 2c via an output transformer 88. Here, the power transfer device 89 is, for example, an active / reactive power generation device to which a distributed power source or a power semiconductor is applied, and the active / reactive power of the fundamental wave and harmonics of the power is distributed to the distribution line. 82c indicates a device having a function of exchanging data with the device 82c. A sensor 90 is mounted between the power distribution line 82c and the power transfer device 89 to measure the amount of transferred power, and its output is connected to the control slave station 91. The control slave station 91 also receives the output of a sensor 92 for measuring the voltage of the distribution line, active / reactive power, and harmonic voltage / current. The control slave station 91 is connected to the distribution system monitoring control station 7 via the communication line 93.
It is connected to 0 and the information of the quantity of electricity is sent. A device having a similar configuration is also attached to other parts of the distribution line or the bus bar of the distribution substation. Also, sensors for measuring the voltage, active / reactive power, and harmonic voltage / current of the distribution line are installed at appropriate points along the distribution line. This includes, for example, a sensor that measures only the voltage.

【0016】以上の構成において配電系統監視制御所7
0における送電,配電系統全体の制御動作について、図
3により説明する。ステップS31では、配電変圧器を
通過する有効電力,無効電力,高調波電流の目標値P
s*,Qs*,Ihs* を地域送電系統監視制御所72から受
信する。これらの目標値は、例えば高調波電流を例に取
ると地域の送電系統の電圧歪みを数%以内に抑制するた
めに、配電用変圧器80aを通して配電系統69dから
送電系統65bに流しても良い高調波電流の限度値を考
慮して設定される。同様に有効電力は負荷平準化や過負
荷防止という点から、また無効電力は送電系統を含む上
位系統の調相能力や制御の容易さなどの点から決められ
る。S32では、配電線路に沿った電圧,有効電力,無
効電力,高調波電圧,電流の目標値Vd*,Pd*,Qd*,
hd*,Ihi*が設定される。この目標値も配電線路に沿
って電力品質を維持するという点や過負荷や地域間の負
荷アンバランスを発生させないという点を考慮して決め
られる。この目標値は、配電線路に沿って変化する場合
もある。S33では、計測子局84や87,制御子局9
1などで計測されているi点の電圧,有効電力,無効電
力,高調波電圧・電流Vi,Pi, Qi,Vhi,Ihi
ポーリングされ、配電系統監視制御所70に収集され
る。ただし、すべての個所でこれらの全電気量が取り込
まれるわけではなく前述したように電圧等の情報のみが
送られる場合もある。S34では、配電用変圧器80
a,80bを通過する有効電力,無効電力,高調波電流
の計測値Ps,Qs,Ihs と目標値Ps*,Qs*,Ihs*
の偏差が計算される。ここでの計算において、有効電
力,無効電力の偏差が絶対値である理由は、配電用変圧
器80a,80bを通過する有効電力,無効電力をある
一定幅内に抑えるためである。一方、高調波電流に関し
ては高調波電流を最大限度内に抑えるために絶対値をと
っていない。S35では、配電線路における電圧,有効
電力,無効電力,高調波電圧・電流の計測値Vi,Pi
i,Vhi,Ihi と目標値Vd*,Pd*,Qd*,Vhd*,
hi*との偏差が計算される。S36では、S34及び
S35で求められた偏差があらかじめ定められた偏差を
超えていないかどうかを判定し、もし偏差を超えている
場合には、S37において配電線路や母線に接続された
電力授受装置を制御して偏差を縮小するように調整す
る。この制御法としては、例えば偏差に対して感度の高
い電力授受装置から順番に電力授受量をわずかずつ制御
してみて、その制御により全体としての偏差が減少する
方向であればそのまま制御を採用するなどの経験的な手
法が考えられる。また、あらかじめ配電系統に対するそ
れぞれの電力授受装置が改善できる偏差情報を配電系統
監視制御所70がデータベースとして有しておくことに
より、個々の装置に最適な指令を与えることができる。
S36で、偏差が許容値を超えていない場合には再度S
31に戻り、以上に説明した手順を一定時間毎に繰り返
す。配電系統監視制御所70からは配電用変圧器80
a,80bを通過する有効・無効電力,高調波電流だけ
が地域送電系統監視制御所72に情報として送信され
る。
In the above configuration, the distribution system monitoring control station 7
The control operation of the entire power transmission and distribution system at 0 will be described with reference to FIG. In step S31, target values P of active power, reactive power, and harmonic current passing through the distribution transformer are set.
The s *, Q s *, and I hs * are received from the regional transmission system monitoring control station 72. These target values may be made to flow from the distribution system 69d to the transmission system 65b through the distribution transformer 80a in order to suppress the voltage distortion of the local transmission system within several percent when taking the harmonic current as an example. It is set in consideration of the limit value of harmonic current. Similarly, active power is determined in terms of load leveling and overload prevention, and reactive power is determined in terms of the phasing ability of the upper system including the transmission system and the ease of control. In S32, the target values V d *, P d *, Q d * of the voltage along the distribution line, active power, reactive power, harmonic voltage, and current,
V hd * and I hi * are set. This target value is also determined in consideration of maintaining power quality along the distribution line and preventing overload or load imbalance between regions. This target value may change along the distribution line. In S33, the measurement slave stations 84 and 87, the control slave station 9
Voltage of point i, which is measured in such 1, active power, reactive power, harmonic voltage and current V i, P i, Q i , V hi, I hi is polled, is collected in the distribution system monitoring and control stations 70 It However, not all the electric quantities are taken in at all points, and only the information such as the voltage may be sent as described above. In S34, the distribution transformer 80
Measured values P s , Q s , and I hs of active power, reactive power, and harmonic current passing through a and 80 b and target values P s *, Q s *, and I hs *
The deviation of is calculated. In the calculation here, the reason why the deviation between the active power and the reactive power is an absolute value is to suppress the active power and the reactive power passing through the distribution transformers 80a and 80b within a certain range. On the other hand, the absolute value of the harmonic current is not taken in order to keep the harmonic current within the maximum limit. In S35, the measured values V i , P i of the voltage, active power, reactive power, harmonic voltage / current in the distribution line,
Q i , V hi , I hi and target values V d *, P d *, Q d *, V hd *,
The deviation from I hi * is calculated. In S36, it is determined whether the deviation obtained in S34 and S35 does not exceed a predetermined deviation, and if it exceeds the deviation, in S37 the power transfer device connected to the power distribution line or the busbar. Is adjusted to reduce the deviation. As this control method, for example, the power transfer amount is controlled little by little from the power transfer device which is highly sensitive to the deviation, and if the control reduces the overall deviation, the control is adopted as it is. Empirical methods such as Further, the distribution system monitoring and control station 70 has a database beforehand with deviation information that can improve each power transmission / reception device for the distribution system, so that an optimum command can be given to each device.
In S36, if the deviation does not exceed the allowable value, S is again performed.
Returning to step 31, the procedure described above is repeated at regular intervals. From the distribution system monitoring and control station 70, a distribution transformer 80
Only the active / reactive power and the harmonic current passing through a and 80b are transmitted as information to the regional transmission system monitoring control station 72.

【0017】以上説明した例によれば、電圧,有効電
力,無効電力,高調波電圧・電流などの点で、上位送電
系統及び配電系統として、全体的に適正化できるように
なるという効果がある。また、地域送電系統監視制御所
72では送電系統65bと配電系統79c,79dとの
接続点となる配電用変圧器80a,80bを通過する有
効電力,無効電力,高調波電流だけを監視すれば良く、
上位の監視制御所からみて配電系統は有効電力,無効電
力,高調波電流が管理された単なる負荷的存在になるた
め、上位制御所の監視制御負担を軽減できるという効果
がある。
According to the example described above, there is an effect that the voltage, the active power, the reactive power, the harmonic voltage / current, etc. can be entirely optimized as a higher-order transmission system and distribution system. . Further, in the local power transmission system monitoring and control station 72, only active power, reactive power, and harmonic current passing through the distribution transformers 80a and 80b, which are connection points between the power transmission system 65b and the power distribution systems 79c and 79d, may be monitored. ,
From the viewpoint of the higher-level supervisory control station, the power distribution system is merely a load existence in which active power, reactive power, and harmonic current are managed, so there is an effect that the supervisory control load on the higher-order control station can be reduced.

【0018】また、送電系統に接続されている配電系統
それぞれに対して、電圧,有効電力,無効電力,高周波
電圧,電流を適正化できるため、送電線路に対して障害
となる影響がでないようにすることができる。
Further, since the voltage, active power, reactive power, high frequency voltage and current can be optimized for each distribution system connected to the power transmission system, there will be no obstacle to the transmission line. can do.

【0019】なお、電力授受装置の状態によっては授受
できる電力に制限があることも考えられるため、配電系
統監視制御所70では電力授受装置の電気量の状態も収
集しておき制御に反映させても良い。この場合には、電
力授受装置の授受量の制限が制御に反映されるため、よ
り精度の良い制御が可能になるという効果がある。
Since the power that can be transferred may be limited depending on the state of the power transfer device, the distribution system monitoring control station 70 also collects the amount of electricity of the power transfer device and reflects it in the control. Is also good. In this case, the limit of the amount of power transfer of the power transfer device is reflected in the control, so that there is an effect that more accurate control becomes possible.

【0020】以下、本発明の他の実施の形態例につい
て、図4を参照しながら説明する。図4において配電系
統は、上位電力系統からの供給電圧を配電電圧に変換す
る主要変圧器1と、該主要変圧器1に母線2を介して遮
断器3a,3b,3cを介して接続される配電線路4
a,4b,4cにより構成される。配電線路4a,4
b,4cには開閉器5a−1から5c−2が直列に接続
される。また、配電線路間を連系する開閉器6aから6
gも接続される。なお、母線2や配電線路4a,4b,
4cは、一般には三相で構成されるが、図面では簡単の
ため単線で表示する。
Another embodiment of the present invention will be described below with reference to FIG. In FIG. 4, the distribution system is connected to a main transformer 1 for converting the supply voltage from the higher-order power system into a distribution voltage, and to the main transformer 1 via a bus bar 2 and circuit breakers 3a, 3b, 3c. Distribution line 4
a, 4b, 4c. Distribution lines 4a, 4
Switches 5a-1 to 5c-2 are connected in series to b and 4c. In addition, the switches 6a to 6 that interconnect the distribution lines
g is also connected. In addition, the bus 2 and the distribution lines 4a, 4b,
4c is generally composed of three phases, but is shown as a single line for simplicity in the drawing.

【0021】ここで、配電線路4aを例にとり説明する
と開閉器で区切られる各区間には系統電圧センサ10,
電源側電流センサ11,負荷側電流センサ12,出力電
流センサ13,出力変圧器14及び電力授受装置15で
構成される電力授受システム16が接続される。電力授
受装置15は通信線17a,17b,17cを介して中
央制御装置18に接続される。
Now, taking the distribution line 4a as an example, the system voltage sensor 10 is provided in each section separated by a switch.
A power transfer system 16 including a power supply side current sensor 11, a load side current sensor 12, an output current sensor 13, an output transformer 14, and a power transfer device 15 is connected. The power transfer device 15 is connected to the central controller 18 via communication lines 17a, 17b, 17c.

【0022】図5に基づき、電力授受装置15の内部構
成について説明する。電力授受装置15は、出力変圧器
14に接続されるインバータ20,インバータ20に電
力を供給する電力源21,インバータ20のスイッチタ
イミングを制御する制御部22及び制御部22と接続さ
れる通信端末23により構成される。通信端末23には
通信線16が接続される。制御部22には、系統電圧セ
ンサ10,電源側電流センサ11,負荷側電流センサ1
2,出力電流センサ13からの出力信号が入力される。
ここで、Vs, Is1,Is2, Ii:それぞれ系統電圧センサ1
0,電源側電流センサ11,負荷側電流センサ12,出
力電流センサ13の出力とする。
The internal configuration of the power transfer device 15 will be described with reference to FIG. The power transfer device 15 includes an inverter 20 connected to the output transformer 14, a power source 21 for supplying power to the inverter 20, a control unit 22 for controlling the switch timing of the inverter 20, and a communication terminal 23 connected to the control unit 22. It is composed of The communication line 16 is connected to the communication terminal 23. The control unit 22 includes a system voltage sensor 10, a power supply side current sensor 11, a load side current sensor 1
2. The output signal from the output current sensor 13 is input.
Where Vs, Is1, Is2, Ii: system voltage sensor 1 respectively
0, the power source side current sensor 11, the load side current sensor 12, and the output current sensor 13.

【0023】制御部22の内部構成について、図6をも
とに説明する。制御部22は、電源側電流センサ11及
び負荷側電流センサ12からの出力信号が入力される切
替器31,切替器31の出力信号と出力電流センサ13
からの出力信号が比較される電流比較器32,その出力
信号が入力される制御信号変換部33,その出力を系統
電圧センサ10の出力信号(Vs)と比較する電圧比較器
34及びその出力信号からインバータの出力信号を作成
する制御信号出力部で構成される。
The internal structure of the control unit 22 will be described with reference to FIG. The control unit 22 includes a switch 31 to which output signals from the power supply side current sensor 11 and the load side current sensor 12 are input, an output signal of the switcher 31 and the output current sensor 13.
Current comparator 32 to which the output signal from the device is compared, control signal converter 33 to which the output signal is input, voltage comparator 34 to compare its output with the output signal (Vs) of the system voltage sensor 10, and its output signal It is composed of a control signal output unit for generating an output signal of the inverter from

【0024】図7に基づき、中央制御装置7の構成につ
いて説明する。中央制御装置7は、通信線16a,16
b,16cに接続される通信端末40,CPU41、そ
れに接続され系統の接続関係や系統定数などのデータを
格納している系統情報データベース42,PCU41に
接続され通信端末40を介して別途収集される開閉器入
り切り情報から現在の系統構成を認識する現在系統認識
装置42,現在系統認識装置43の情報に基づいて各電
力授受装置の制御定数を計算する制御定数計算装置44
とで構成される。
The configuration of the central controller 7 will be described with reference to FIG. The central control unit 7 uses the communication lines 16a, 16
b, 16c, a communication terminal 40, a CPU 41, a system information database 42 connected to the CPU 41, which stores data such as system connection relationships and system constants, and a PCU 41, which is separately collected via the communication terminal 40. A control constant calculation device 44 that calculates the control constant of each power transfer device based on the information of the current system recognition device 42 and the current system recognition device 43 that recognizes the current system configuration from the switch on / off information.
It is composed of

【0025】以上のように構成された配電用電力授受制
御システムの中央制御装置7のCPU40における動作
について図5に基づいて説明する。S51では、系統に
接続されている開閉器の現在の入り切り状態が通信端末
を介して収集される。
The operation of the CPU 40 of the central control unit 7 of the power distribution control system for distribution configured as above will be described with reference to FIG. In S51, the current on / off state of the switch connected to the system is collected via the communication terminal.

【0026】S52では、どの配電線路がどの開閉器を
介してどの配電線路と接続されているかという系統情報
データベースが読み込まれる。このデータベースには、
開閉器の入り切り情報は含まれていない。そこで、S5
3では、S52で得られた系統構成情報とS51で得ら
れた現在の開閉器の入り切り状態情報から、現在の系統
構成が認識される。S54では、現在電気量を計測する
センサ取り付け点から電圧,電流などの電気量情報が収
集される。ここで、センサは電力授受サブシステム取付
点以外にも系統の電気状態を表す代表点に取り付けられ
ている(図示せず)。S55では、S53で得られた現
在の系統構成とS54で得られたセンサ取付点の電気量
情報から、各電力授受シブシステムの制御定数が算出さ
れる。ここで、制御定数は各点に取り付けられた電力授
受サブシステムが協調して動作するように設定される。
例えば、高調波抑制に関して説明すると協調制御動作が
ない場合には、高調波発生源に近いサブシステムだけが
高調波抑制動作をフルに行い、他のサブシステムはあま
り動作をしていないなど特定のサブシステムに負担がか
かるという現象が発生する。また、電圧に関していえば
協調制御動作させないと系統内で電圧の逆制御動作が発
生する。すなわち、各電力授受サブシステムの動作は、
系統各点の電圧を変化させるため、協調制御動作させな
いとある点の電力授受サブシステムが系統電圧の上げ動
作しているのに対して別な点の電力授受サブシステムは
系統電圧の下げ動作をするなどちぐはぐな動作を引き起
こす恐れがある。本発明では、以下のような好ましくな
い動作を防止するため、電力授受シブシステムが電源側
に近い方か未端側に近い方かなど系統内における設置位
置関係の認識、また高調波電流が大きい個所に位置して
いるかどうかなど系統の電気量との関連の把握をもと
に、各電力授受サブシステムが他の電力授受サブシステ
ムとの関連でどんな速さでどの程度のゲインで制御され
るべきかを算出する。S56では、それらの制御定数を通
信端末40,通信線16a,16b,16cを介して各
電力授受サブシステムに伝送する。
In S52, a system information database indicating which distribution line is connected to which distribution line through which switch is read. This database contains
It does not include switching information for switches. Therefore, S5
In 3, the current system configuration is recognized from the system configuration information obtained in S52 and the current switch on / off state information obtained in S51. In S54, electricity quantity information such as voltage and current is collected from the sensor attachment point for measuring the current electricity quantity. Here, the sensor is attached to a representative point that represents the electrical state of the system other than the power transmission / reception subsystem attachment point (not shown). At S55, the control constant of each power transfer system is calculated from the current system configuration obtained at S53 and the electric quantity information of the sensor attachment point obtained at S54. Here, the control constants are set so that the power transfer subsystems attached to the respective points operate in cooperation.
For example, in the case of harmonic suppression, when there is no coordinated control operation, only subsystems close to the harmonic source perform full harmonic suppression operation, and other subsystems do not operate much. The phenomenon that the subsystem is burdened occurs. Further, in terms of voltage, reverse control operation of voltage occurs in the system unless cooperative control operation is performed. That is, the operation of each power transfer subsystem is
Since the voltage at each point of the grid is changed, the power transfer subsystem at one point is operating to raise the grid voltage when the coordinated control operation is not performed, while the power transfer subsystem at another point is to lower the grid voltage. Doing so may cause a strange movement. According to the present invention, in order to prevent the following undesired operations, it is possible to recognize the installation positional relationship in the system such as whether the power transfer system is closer to the power supply side or closer to the non-end side, and the harmonic current is large. Each power transfer subsystem is controlled at what speed and with what gain in relation to other power transfer subsystems based on the understanding of the relationship with the amount of electricity in the system such as whether it is located at a location Calculate whether it should. In S56, those control constants are transmitted to each power transfer subsystem via the communication terminal 40 and the communication lines 16a, 16b, 16c.

【0027】また、本発明においては、特別な通信線1
6a,16b,16cを用いなくても、例えば特公平6
−24328号に示されたような配電系統同期伝送方法を用
いることにより配電系統を制御信号の媒体として用い
て、中央制御装置と各電力授受サブシステムの間で通信
を行うことが可能になる。
Further, in the present invention, the special communication line 1
Even without using 6a, 16b, 16c, for example,
By using the distribution system synchronous transmission method as shown in No. -24328, it becomes possible to perform communication between the central control unit and each power transfer subsystem by using the distribution system as a medium for control signals.

【0028】各電力授受サブシステムの制御部の動作に
ついて、図6及び図9をもとに説明する。S61では、
センサ出力信号Vs, Is1, Is2, Iiが取り込まれる。S6
2では、通信端末23を介して当該電力授受サブシステ
ムの系統中の位置関係及び当該電力授受サブシステムの
制御定数がそれぞれ切替器31と制御信号変換部33に
取り込まれる。S63では、切替器31のスイッチが、
S62で取り込んだ位置関係情報に基づいて、制御に使
用する負荷側電流信号に切り替えられる。ここで、負荷
側電流情報を用いる理由は、電力授受サブシステムから
出力される電流が一般には電流側に流れるため、電力授
受サブシステム出力の影響を受けにくい負荷側電流情報
を用いることによって制御が比較的簡単になるためであ
る。
The operation of the control unit of each power transfer subsystem will be described with reference to FIGS. 6 and 9. In S61,
Sensor output signals Vs, Is1, Is2, Ii are taken in. S6
In 2, the positional relationship in the system of the power transfer subsystem and the control constants of the power transfer subsystem are loaded into the switch 31 and the control signal converter 33 via the communication terminal 23. In S63, the switch of the switch 31 is
The load-side current signal used for control is switched based on the positional relationship information captured in S62. Here, the reason for using the load-side current information is that since the current output from the power transfer subsystem generally flows to the current side, it can be controlled by using the load-side current information that is less affected by the output of the power transfer subsystem. This is because it becomes relatively easy.

【0029】この電力授受サブシステムが、接続された
配電線路路のうち、どちら側かの線路が負荷側であるか
を判断するために、上位電力系統状態、また開閉器の開
閉状態を判断する中央制御装置18が、その電力授受サ
ブシステムが接続されている経路の潮流方向を判断し
て、その情報を通信線,通信端末23を介して制御部2
2に伝送することにより、電力授受サブシステムが潮流
方向を判断するようにしても良い。
This power transfer subsystem determines the state of the upper power system and the open / close state of the switch in order to determine which side of the connected distribution line is the load side. The central controller 18 determines the power flow direction of the route to which the power transfer subsystem is connected, and sends the information to the control unit 2 via the communication line and the communication terminal 23.
Alternatively, the power transfer subsystem may determine the power flow direction.

【0030】電力授受サブシステム16の場合は、Is2
が負荷側電流であるため、Is2が取り込まれるように切
り替えられる。S64では、比較器32により切替器の
出力である負荷側電流Is2と出力電流Ii が比較され、
差分ΔIが出力される。S65では、制御信号変換部33
において取り込まれた制御速度,ゲインなどの制御定数
を用いて差分ΔIが電圧指令信号V* に変換される。S
66では、電圧指令信号V* と系統電圧が比較され、他
の電力授受サブシステムと協調を取りつつその差電圧分
に相当する電流Ii が図2に示す電力源21から系統側
に出力されるようなインバータ制御信号がインバータ2
0に出力される。以上のようにして、制御定数を全体的
に協調を取りつつ制御信号変銀部インバータ20のスイ
ッチタイミングを変えることにより、電力源21から系
統に供給される電流が様々に調整できるため、結果とし
て系統全体にわたる過負荷解消,電圧適正化あるいは逆
位相出力電流による高調波抑制などが可能になる。
In the case of the power transfer subsystem 16, Is2
Is a load-side current, it is switched so that Is2 is taken in. In S64, the comparator 32 compares the load-side current Is2, which is the output of the switching device, with the output current Ii,
The difference ΔI is output. In S65, the control signal converter 33
The difference ΔI is converted into the voltage command signal V * by using the control constants such as the control speed and the gain that have been taken in. S
At 66, the voltage command signal V * is compared with the system voltage, and the current Ii corresponding to the difference voltage is output from the power source 21 shown in FIG. 2 to the system side in cooperation with other power transfer subsystems. Inverter control signals such as
Output to 0. As described above, the current supplied from the power source 21 to the grid can be adjusted in various ways by changing the switch timing of the control signal conversion unit inverter 20 while coordinating the control constants as a whole. It is possible to eliminate overloads throughout the system, optimize the voltage, or suppress harmonics by using the reverse-phase output current.

【0031】上述の例では、負荷側電流を使用して制御
する場合について説明したが、電力授受サブシステムか
ら出力される電流が系統定数の関係で電源側や負荷側に
分流する場合には、負荷側電流とともに電源側電流を用
いて制御することにより制御精度向上を期待できる。
In the above example, the case where the load side current is used for control has been described. However, when the current output from the power transfer subsystem is shunted to the power supply side or the load side due to the system constant, The control accuracy can be improved by controlling the power supply side current together with the load side current.

【0032】本発明に係るさらに他の例を図10にもと
づいて説明する。図10において、図4と同一部分は同
一符号を用いて説明を省略する。主要変圧器50には、
その二次側電圧を上下できる電圧タップ切替装置(図示
せず)が取り付けられており、また電圧タップ切り替え
を制御する送出し電圧制御装置51が接続される。母線
2には母線電圧センサ52が接続され、母線電圧センサ
52の出力は送出し電圧制御装置51に入力される。配
電線路3aには、電力授受サブシステム16などが並列
に、また線路電圧調整器53が直列に接続される。ここ
で、電力授受シブシステムの接続点としては、系統構成
変化時の電圧分布も考慮して電圧分布の山谷になる付近
が選ばれる。線路電圧調整器53には、電圧調整器制御
装置54が接続される。電圧調整器制御装置54には、
線路電圧調整器53の設置点の電圧が計測する系統電圧
センサ55により入力される。電圧授受サブシステム1
6及び電圧調整器制御装置54は、通信線17により中
央制御装置18に接続される。なお、ここでは線路電圧
センサが電力授受サブシステム16や線路電圧調整器8
の設置点に取り付けられる場合を示したが、一般には装
置の設置点に限らず、推定などの手段も含めて配電線路
電圧全体にわたる電圧プロフィルを把握できる程度の個
所に取り付けられるものとする。また、電力授受サブシ
ステムは系統構成,線路定数分布,負荷分布などを考慮
して電圧を適正化できる個所が選定される。
Still another example of the present invention will be described with reference to FIG. In FIG. 10, the same parts as those in FIG. The main transformer 50 has
A voltage tap switching device (not shown) capable of raising and lowering the secondary side voltage is attached, and a sending voltage control device 51 for controlling the voltage tap switching is connected. A bus voltage sensor 52 is connected to the bus 2, and the output of the bus voltage sensor 52 is sent out and input to the voltage control device 51. The power transfer subsystem 16 and the like are connected in parallel to the power distribution line 3a, and the line voltage regulator 53 is connected in series. Here, as a connection point of the power transfer system, the vicinity of the peaks and valleys of the voltage distribution is selected in consideration of the voltage distribution when the system configuration changes. A voltage regulator control device 54 is connected to the line voltage regulator 53. The voltage regulator controller 54 includes:
The voltage at the installation point of the line voltage regulator 53 is input by the system voltage sensor 55 that measures the voltage. Voltage transfer subsystem 1
6 and voltage regulator controller 54 are connected by communication line 17 to central controller 18. In addition, here, the line voltage sensor is the power transfer subsystem 16 and the line voltage regulator 8
However, it is not limited to the installation point of the equipment, but it should be installed at a location where the voltage profile over the entire distribution line voltage can be grasped, including means such as estimation. Further, in the power transfer subsystem, a location where the voltage can be optimized is selected in consideration of the system configuration, line constant distribution, load distribution and the like.

【0033】図10から図12を参照して動作について
説明する。一般に、電力授受サブシステム16は、電力
用半導体素子を用いているため電圧制御においてもすば
やく目標電圧に近付けることができる。一方、タップ付
主要変圧器50や線路電圧調整器53による電圧制御は
機械的なタップを使用しているため応答が遅い。そのた
め、電力授受サブシステム16が系統電圧を上げる方向
で動作した後、しばらくしてから電圧タップ切替えによ
り電圧が逆に下げ動作するなど無駄な動作が発生する恐
れがある。本発明では、送出し電圧制御装置51あるい
は線路電圧調整器53に動作感度変更部を設けてこの問
題を解決している。図11に基づいて、送出し電圧制御
装置51の場合を例に取りその構成について説明する。
図11において、送出し電圧制御装置51は電圧変化計
算部201,電圧比較部202,動作感度変更部203
により構成される。母線電圧センサ52の出力Va0は、
電圧変化計算部201に入力されるとともに電圧比較部
202で目標電圧Vref と比較される。電圧変化計算部
201及び電圧比較部202の出力は、動作感度変更部
203に入力される。動作感度変更部203の出力はタ
ップ付主要変圧器50に入力される。動作感度変更部2
03では、電圧比較部202からの入力すなわち基準電
圧からの電圧偏差Va0−Vref と電圧変化計算部201
からの入力Vd とをもとに、図12に示すような感度曲
線にしたがって主要変圧器50の電圧タップが切替動作
を開始するまでの時間(以下、電圧タップ切替動作開始
時間と呼ぶ)を設定する。図12に示すように、例えば
電圧偏差が負方向に大きいa点とb点の場合でも、電圧
変化率Vd の大きさによって異なった電圧タップ切替動
作開始時間に設定している。a点とb点は、Va0がVre
f より小さい場合であり送出し電圧制御装置51は電圧
タップを上げ方向に動作させてVa0を大きくしようと動
作するが、b点のように電圧変化率Vd が正方向に大き
い場合には、その配電線路に接続されている各電力授受
サブシステムが電圧を上げる方向で動作していると判断
し、電圧タップ切替動作開始時間を遅らせたり、不感帯
幅を広げたりする。これにより、電力授受装置が電圧の
上げ動作をしている間あるいは動作終了後に主要変圧器
や線路電圧調整器8の電圧タップ切り替えによる逆動作
の発生を防止できる。ここでは、送出し電圧制御装置5
1を例にとり説明したが、線路電圧調整器53について
も同様な動作と構成であり説明を省略する。
The operation will be described with reference to FIGS. 10 to 12. Generally, since the power transfer subsystem 16 uses the power semiconductor element, it can quickly approach the target voltage even in voltage control. On the other hand, the voltage control by the main transformer 50 with a tap and the line voltage regulator 53 uses a mechanical tap, so that the response is slow. Therefore, after the power transmission / reception subsystem 16 operates in the direction of increasing the system voltage, the voltage may be inversely decreased by the voltage tap switching, and then a wasteful operation may occur. In the present invention, this problem is solved by providing the sending voltage control device 51 or the line voltage regulator 53 with an operation sensitivity changing unit. Based on FIG. 11, the configuration of the sending voltage control device 51 will be described as an example.
In FIG. 11, the sending voltage control device 51 includes a voltage change calculation unit 201, a voltage comparison unit 202, and an operation sensitivity change unit 203.
It consists of. The output Va0 of the bus voltage sensor 52 is
The voltage change calculation unit 201 inputs the voltage change calculation unit 201 and the voltage comparison unit 202 compares it with the target voltage Vref. The outputs of the voltage change calculation unit 201 and the voltage comparison unit 202 are input to the operation sensitivity changing unit 203. The output of the operation sensitivity changing unit 203 is input to the tapped main transformer 50. Operating sensitivity changing unit 2
03, the input from the voltage comparison unit 202, that is, the voltage deviation Va0-Vref from the reference voltage and the voltage change calculation unit 201.
Based on the input Vd from, the time until the voltage tap of the main transformer 50 starts the switching operation according to the sensitivity curve shown in FIG. 12 (hereinafter referred to as the voltage tap switching operation start time) is set. To do. As shown in FIG. 12, even in the case where the voltage deviation is large in the negative direction at points a and b, different voltage tap switching operation start times are set depending on the magnitude of the voltage change rate Vd. Va0 is Vre at points a and b
When it is smaller than f and the sending voltage control device 51 operates to increase the voltage Va0 by operating the voltage tap in the upward direction, when the voltage change rate Vd is large in the positive direction as at point b, the It is determined that each power transfer subsystem connected to the power distribution line is operating in the direction of increasing the voltage, and the voltage tap switching operation start time is delayed or the dead band is widened. As a result, it is possible to prevent the reverse operation due to the voltage tap switching of the main transformer or the line voltage regulator 8 while the power transfer device is performing the voltage increasing operation or after the operation is completed. Here, the sending voltage control device 5
1 has been described as an example, the line voltage regulator 53 has a similar operation and configuration, and a description thereof will be omitted.

【0034】[0034]

【発明の効果】以上に説明したように、本発明の送配電
系統の制御システムおよび制御方法によれば、負荷平準
化による高効率運用、系統電圧適正化、高調波障害防止
など、現在の電力系統が抱える問題の解決が図れる。
As described above, according to the control system and the control method of the power transmission and distribution system of the present invention, the present power consumption such as high-efficiency operation by load leveling, system voltage optimization, and harmonic interference prevention is provided. It is possible to solve the problems that the system has.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される送配電系統の構成を示す図
である。
FIG. 1 is a diagram showing a configuration of a power transmission / distribution system to which the present invention is applied.

【図2】図1の送配電系統に適用される本発明に係る送
配電系統の制御システムの一つの実施の形態例の構成を
示す図である。
FIG. 2 is a diagram showing a configuration of an embodiment of a control system for a power transmission and distribution system according to the present invention, which is applied to the power transmission and distribution system shown in FIG.

【図3】図2の実施の形態例における配電系統監視制御
所の動作フロー図である。
FIG. 3 is an operation flow diagram of a distribution system monitoring and control station in the embodiment of FIG.

【図4】図1の送配電系統に適用される本発明に係る送
配電系統の制御システムの他の実施の形態例の構成を示
す図である。
FIG. 4 is a diagram showing the configuration of another embodiment of the control system for a power transmission and distribution system according to the present invention, which is applied to the power transmission and distribution system shown in FIG.

【図5】図4の実施の形態例における電力授受サブシス
テム16の内部構成を示す図である。
5 is a diagram showing an internal configuration of a power transfer subsystem 16 in the embodiment example of FIG.

【図6】図5の制御部22の内部構成を示す図である。6 is a diagram showing an internal configuration of a control unit 22 of FIG.

【図7】図4の実施の形態例における中央制御装置18
の内部構成を示す図である。
FIG. 7 is a central controller 18 in the embodiment of FIG.
FIG. 3 is a diagram showing an internal configuration of the device.

【図8】図4の実施の形態例における中央制御装置18
の動作フロー図である。
FIG. 8 is a central controller 18 in the embodiment of FIG.
FIG. 5 is an operation flow chart of FIG.

【図9】図5の実施の形態例における中央制御装置18
の動作フロー図である。
FIG. 9 is a central controller 18 in the embodiment of FIG.
FIG. 5 is an operation flow chart of FIG.

【図10】図1の送配電系統に適用される本発明に係る
送配電系統の制御システムのさらに他の実施の形態例の
構成を示す図である。
FIG. 10 is a diagram showing the configuration of still another embodiment of the power transmission and distribution system control system according to the present invention, which is applied to the power transmission and distribution system shown in FIG. 1;

【図11】図10の実施の形態例における送出し電圧制
御装置51の内部構成を示す図である。
11 is a diagram showing an internal configuration of a delivery voltage control device 51 in the embodiment example of FIG.

【図12】図11の動作感度変更部203の感度曲線の
特性例を示す図である。
12 is a diagram showing a characteristic example of a sensitivity curve of the operation sensitivity changing unit 203 of FIG.

【符号の説明】[Explanation of symbols]

61a、61b…上位系統、69a−69h…配電系
統、70…配電系統監視制御所、72…地域送電系統監
視制御所、73…上位系統監視制御所、80a,80b
…配電用変圧器、89…電力授受装置、91…制御子局
(電力授受制御装置)。
61a, 61b ... Upper system, 69a-69h ... Distribution system, 70 ... Distribution system monitoring control station, 72 ... Regional power transmission system monitoring control station, 73 ... Upper system monitoring control station, 80a, 80b
… Distribution transformer, 89… Power transfer device, 91… Control slave station (power transfer control device).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今村 譲 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 谷藤 真也 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 天野 雅彦 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 渡辺 雅浩 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuzuru Imamura 7-1, 1-1 Omika-cho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Shinya Yato 7-chome, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Masahiko Amano 7-1-1 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Masahiro Watanabe Mika Hitachi, Ibaraki Prefecture 7-1-1, Machi, Hitachi Co., Ltd. Hitachi Research Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】送電線路と、上記送電線路に接続された配
電用変圧器と、上記配電用変圧器に接続された配電線路
と、上記配電線路を区間分けする複数の開閉器と、それ
ぞれが上記配電線路に沿って分散的に接続された制御装
置を有する複数の電力授受装置と、上記配電線路を制御
するための第1中央制御装置を備え、 該第1中央制御装置は、配電線路の構造に関する情報を
記憶し、それぞれの上記開閉器の現時点の入り切り状態
に関する情報を収集すると共に、少なくとも上記電力授
受装置のある上記配電線路上の電流電気量に関して、記
憶されおよび収集された情報に基づいてそれぞれの上記
電力授受装置に独特な個別の制御指令信号を発生し、そ
れらの制御指令信号をそれぞれの上記制御装置に送信
し、配電線路の所望の目標状態が、それぞれの上記電力
授受装置の最適協調制御によって配電線路内で自動的に
達成されるように、それぞれ対応の上記電力授受装置を
制御することを特徴とする送配電系統の制御システム。
1. A transmission line, a distribution transformer connected to the transmission line, a distribution line connected to the distribution transformer, and a plurality of switches for dividing the distribution line into sections. A plurality of power transfer devices having control devices distributedly connected along the distribution line; and a first central control device for controlling the distribution line, wherein the first central control device comprises: Information about the structure is stored, information about the current on / off state of each of the switches is collected, and based on the stored and collected information at least with respect to the amount of current and electricity on the distribution line where the power transfer device is present. To generate individual control command signals unique to each of the power transfer devices, and to send the control command signals to each of the control devices so that the desired target state of the distribution line is A control system for a power transmission and distribution system, characterized in that each of the corresponding power transfer devices is controlled so as to be automatically achieved in the power distribution line by the optimal coordinated control of each power transfer device.
【請求項2】請求項1に記載の送配電系統の制御システ
ムにおいて、さらに、上記送電線路を制御するための第
2中央制御装置を設け、上記第2中央制御装置は、第1
中央制御装置を介して上記配電用変圧器における電流電
気量を収集し、上記配電用変圧器における収集電流電気
量に関して上記配電用変圧器における目標状態を決定
し、該目標状態を上記第1中央制御装置に送信すると共
に、上記第1中央制御装置は配電線路の所望の目標状態
を決定し、それを周期的に収集される電流電気量と比較
し、そして、関係する配電線路の目標状態からの電流電
気量の偏差が所定の許容範囲を越える場合には、そのよ
うな偏差を低減させる個別の制御信号を発生することを
特徴とする送配電系統の制御システム。
2. The control system for a power transmission and distribution system according to claim 1, further comprising a second central control device for controlling the power transmission line, wherein the second central control device is the first central control device.
A current / electricity amount in the distribution transformer is collected through a central control device, a target state in the distribution transformer is determined with respect to the collected current / electricity amount in the distribution transformer, and the target state is set to the first central state. While transmitting to the control device, the first central control device determines the desired target state of the distribution line, compares it with the current quantity of electricity collected periodically, and from the relevant distribution line target state. When the deviation of the amount of current and electricity exceeds a predetermined permissible range, a control system for a power transmission and distribution system, which generates an individual control signal for reducing such deviation.
【請求項3】請求項1に記載の送配電系統の制御システ
ムにおいて、上記電力授受装置が連続可変型であること
を特徴とする送配電系統の制御システム。
3. The control system for a power transmission and distribution system according to claim 1, wherein the power transfer device is a continuously variable type.
【請求項4】上位電力系統から電力が供給される配電線
路と、上記配電線路を区間分けする複数の開閉器と、そ
れぞれが上記配電線路に沿って分散的に接続された制御
装置を有する複数の電力授受装置と、該電力授受装置に
対して電力授受装置が接続されている配電線路の潮流方
向を伝送する中央制御装置とを備えていることを特徴と
する送配電系統の制御システム。
4. A plurality of distribution lines to which electric power is supplied from a higher-level power system, a plurality of switches for dividing the distribution line into sections, and a plurality of control devices connected in a distributed manner along the distribution lines. And a central control device that transmits the power flow direction of a power distribution line to which the power transfer device is connected to the power transfer device.
【請求項5】上位電力系統から電力が供給される配電線
路と、上記配電線路を区間分けする複数の開閉器と、そ
れぞれが上記配電線路に沿って分散的に接続された制御
装置を有する複数の電力授受装置と、該電力授受装置の
電力授受量を連続的に変化させることによって、上記配
電線路の始点から末端までの電力特性を適正に制御する
中央制御装置とを有することを特徴とする送配電系統の
制御システム。
5. A plurality of distribution lines to which power is supplied from a higher-level power system, a plurality of switches for dividing the distribution line into sections, and a plurality of control devices connected in a distributed manner along the distribution line. And a central control unit that appropriately controls the power characteristics from the start point to the end of the distribution line by continuously changing the power transfer amount of the power transfer apparatus. Transmission and distribution system control system.
【請求項6】上位電力系統から電力が供給される配電線
路と、上記配電線路を区間分けする複数の開閉器と、そ
れぞれが上記配電線路に沿って分散的に接続された制御
装置を有する複数の電力授受装置と、上記配電線路を制
御するための中央制御装置と、上記配電線路に接続され
た電圧調整機器と、該電圧調整機器の動作感度を調整す
る機器とを有することを特徴とする送配電系統の制御シ
ステム。
6. A plurality of distribution lines to which electric power is supplied from a higher-order power system, a plurality of switches for dividing the distribution line into sections, and a plurality of control devices connected in a distributed manner along the distribution lines. Power supply device, a central control device for controlling the distribution line, a voltage adjusting device connected to the distribution line, and a device for adjusting the operation sensitivity of the voltage adjusting device. Transmission and distribution system control system.
【請求項7】上位電力系統から送配電用変圧器を介して
電力が供給される送配電系統において、上記送配電用変
圧器を通過する電気量の指令値を上位系統制御装置から
受信すること、該送配電用変圧器を通過する電気量を計
測すること、前記電気量の指令値と前記通過電気量の偏
差を求めること、該偏差が予め定められた許容量より大
きい場合に前記送配電系統に接続された電力授受装置と
前記送配電系統との間で授受される電力量を制御するこ
とを特徴とする送配電系統の制御方法。
7. A power transmission / distribution system in which power is supplied from a higher power system via a power transmission / distribution transformer, and a command value of the amount of electricity passing through the power transmission / distribution transformer is received from a higher power system controller. Measuring the amount of electricity passing through the power transmission / distribution transformer, obtaining a deviation between the command value of the electricity quantity and the passing electricity quantity, and transmitting / distributing the electricity when the deviation is larger than a predetermined allowable amount. A method of controlling a power transmission / distribution system, comprising controlling an amount of power exchanged between a power transmission / reception device connected to a power system and the power transmission / distribution system.
JP00552696A 1995-01-17 1996-01-17 Power transmission and distribution system control system and control method Expired - Lifetime JP3317833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00552696A JP3317833B2 (en) 1995-01-17 1996-01-17 Power transmission and distribution system control system and control method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP467095 1995-01-17
JP24907795 1995-09-27
JP7-249077 1995-09-27
JP7-4670 1995-09-27
JP00552696A JP3317833B2 (en) 1995-01-17 1996-01-17 Power transmission and distribution system control system and control method

Publications (2)

Publication Number Publication Date
JPH09154235A true JPH09154235A (en) 1997-06-10
JP3317833B2 JP3317833B2 (en) 2002-08-26

Family

ID=27276395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00552696A Expired - Lifetime JP3317833B2 (en) 1995-01-17 1996-01-17 Power transmission and distribution system control system and control method

Country Status (1)

Country Link
JP (1) JP3317833B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013118804A (en) * 2011-10-31 2013-06-13 Panasonic Corp Voltage control device, voltage control method, power adjustment device, and voltage control program
JP2014057518A (en) * 2010-06-21 2014-03-27 Hitachi Ltd Control system of new energy power plant group and its control method
JP2014150694A (en) * 2013-02-04 2014-08-21 Takaoka Electric Mfg Co Ltd Voltage adjustment system and voltage adjustment method for power distribution system
JP2016208640A (en) * 2015-04-21 2016-12-08 東北電力株式会社 Voltage adjusting device
US9667100B2 (en) 2013-06-26 2017-05-30 Mitsubishi Electric Corporation Voltage monitoring control device and voltage monitoring control method
US9733277B2 (en) 2012-11-26 2017-08-15 Mitsubishi Electric Corporation Voltage monitoring control device, voltage control device, and voltage monitoring control method
US9825465B2 (en) 2013-08-15 2017-11-21 Mitsubishi Electric Corporation Voltage monitoring control device and voltage control device
US9843195B2 (en) 2013-06-26 2017-12-12 Mitsubishi Electric Corporation Voltage monitoring control system, voltage monitoring control device, measurement device, and voltage monitoring control method
JP2019515624A (en) * 2016-05-04 2019-06-06 エルテウ、レゾ、ド、トランスポール、デレクトリスィテRte Reseau De Transport D’Electricite Method, computer program, system and arrangement for optimizing the function of a current transmission network
US10345842B2 (en) 2011-10-31 2019-07-09 Mitsubishi Electric Corporation Power-distribution-system voltage control system, power-distribution-system voltage control method, and centralized voltage control apparatus
US10627432B2 (en) 2014-06-13 2020-04-21 Mitsubishi Electric Corporation Power-generation-amount estimation apparatus and power-generation-amount estimation method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8753243B2 (en) 2006-08-15 2014-06-17 United Technologies Corporation Ring gear mounting arrangement with oil scavenge scheme
US9976437B2 (en) 2006-08-15 2018-05-22 United Technologies Corporation Epicyclic gear train
JP2011517276A (en) * 2008-04-18 2011-05-26 エー ビー ビー リサーチ リミテッド Apparatus and method for transmission line control
CN105244890A (en) * 2015-08-27 2016-01-13 国网山东省电力公司经济技术研究院 Reactive power optimization method for new energy grid connection

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014057518A (en) * 2010-06-21 2014-03-27 Hitachi Ltd Control system of new energy power plant group and its control method
JP2013118804A (en) * 2011-10-31 2013-06-13 Panasonic Corp Voltage control device, voltage control method, power adjustment device, and voltage control program
US10345842B2 (en) 2011-10-31 2019-07-09 Mitsubishi Electric Corporation Power-distribution-system voltage control system, power-distribution-system voltage control method, and centralized voltage control apparatus
US9733277B2 (en) 2012-11-26 2017-08-15 Mitsubishi Electric Corporation Voltage monitoring control device, voltage control device, and voltage monitoring control method
JP2014150694A (en) * 2013-02-04 2014-08-21 Takaoka Electric Mfg Co Ltd Voltage adjustment system and voltage adjustment method for power distribution system
US9667100B2 (en) 2013-06-26 2017-05-30 Mitsubishi Electric Corporation Voltage monitoring control device and voltage monitoring control method
US9843195B2 (en) 2013-06-26 2017-12-12 Mitsubishi Electric Corporation Voltage monitoring control system, voltage monitoring control device, measurement device, and voltage monitoring control method
US9825465B2 (en) 2013-08-15 2017-11-21 Mitsubishi Electric Corporation Voltage monitoring control device and voltage control device
US10627432B2 (en) 2014-06-13 2020-04-21 Mitsubishi Electric Corporation Power-generation-amount estimation apparatus and power-generation-amount estimation method
JP2016208640A (en) * 2015-04-21 2016-12-08 東北電力株式会社 Voltage adjusting device
JP2019515624A (en) * 2016-05-04 2019-06-06 エルテウ、レゾ、ド、トランスポール、デレクトリスィテRte Reseau De Transport D’Electricite Method, computer program, system and arrangement for optimizing the function of a current transmission network

Also Published As

Publication number Publication date
JP3317833B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
KR100393528B1 (en) Control device for power transmission and distribution system
KR102101108B1 (en) Reactive power control methods, devices and systems
Bidgoli et al. Combined local and centralized voltage control in active distribution networks
JP3317833B2 (en) Power transmission and distribution system control system and control method
EP2506384B1 (en) System and method for operating a tap changer
Jiao et al. Distributed coordinated voltage control for distribution networks with DG and OLTC based on MPC and gradient projection
EP2506383B1 (en) System and method for operating capacitor banks
EP3497770B1 (en) Method and apparatus for bidirectional storage and renewable power converter
AU2010285341B2 (en) Power regulating system for solar power station
CN113054684B (en) Distributed energy storage control method for power quality management
CN115117901A (en) Distribution area three-phase imbalance optimization method and system applying distributed photovoltaic access
Tsiakalos et al. Development of an innovative grid ancillary service for PV installations: Methodology, communication issues and experimental results
CN110729817A (en) Power distribution network voltage coordination control system and control method thereof
JP2016178733A (en) Automatic voltage regulation device and automatic voltage regulation method
CN110970915B (en) Control method and device for grid-connected voltage of wind generating set
Bidgoli et al. Voltage profile correction in distribution grids combining single-and two-level controllers
Qiao et al. Bi-level multi time-scale voltage/var optimization and control in a hybrid distribution network
Soleimani Bidgoli et al. Voltage Profile Correction in Distribution Grids Combining Single-and Two-level Controllers
JP7487633B2 (en) Distributed Power Systems and Power Conditioners
CN107404115A (en) A kind of remote distributed DC power-supply system and its control method
KR20220049320A (en) Smart energy convergence solution system
RU2467447C1 (en) DEVICE OF DYNAMIC CONTROL OF VOLTAGE MODE IN ELECTRIC CIRCUIT WITH APPLICATION OF fuzzy LOGIC
CN115734572A (en) PWM voltage regulation control circuit for solid-state load box
CN115149589A (en) System and method for high-voltage plant alternating current controllable load auxiliary thermal power frequency modulation
CN116505580A (en) Micro-grid control system and method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

EXPY Cancellation because of completion of term