JPH0915332A - Detecting device of vehicle ground speed - Google Patents

Detecting device of vehicle ground speed

Info

Publication number
JPH0915332A
JPH0915332A JP16626095A JP16626095A JPH0915332A JP H0915332 A JPH0915332 A JP H0915332A JP 16626095 A JP16626095 A JP 16626095A JP 16626095 A JP16626095 A JP 16626095A JP H0915332 A JPH0915332 A JP H0915332A
Authority
JP
Japan
Prior art keywords
road surface
signal
vehicle speed
angle
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16626095A
Other languages
Japanese (ja)
Inventor
Junji Kawakubo
淳史 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16626095A priority Critical patent/JPH0915332A/en
Publication of JPH0915332A publication Critical patent/JPH0915332A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To prevent a detected vehicle speed from being affected by the state of a road surface and thereby to always detect a vehicle speed with high accuracy. CONSTITUTION: A signal of a prescribed frequency is transmitted to a road surface at a prescribed angle by a sensor means M1, the signal reflected on the road surface is received thereby and the speed of a vehicle to the ground is computed from the deviation of the frequency of the received signal from that of the transmitted signal by an arithmetic means M2. A road surface state detecting means M3 detects the state of the road surface on the basis of the strength of the received signal. Based on the detected state of the road surface, an angle correcting means M4 corrects an angle of reception of the signal reflected on the road surface, which is used for computation of the speed to the ground.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は対地車速検出装置に関
し、特にドップラー方式の対地車速検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground vehicle speed detecting device, and more particularly to a Doppler type ground vehicle speed detecting device.

【0002】[0002]

【従来の技術】ABS(アンチロックブレーキシステ
ム)やTRC(トランクションコントロールシステム)
等の車両制御では精度の良い対地車速データが必要とさ
れ、超音波やマイクロ波を用いたドップラー方式の対地
車速検出装置が開発されている。
2. Description of the Related Art ABS (anti-lock brake system) and TRC (truncation control system)
Accurate ground vehicle speed data is required for vehicle control such as, and a Doppler type ground vehicle speed detection apparatus using ultrasonic waves or microwaves has been developed.

【0003】このような対地車速検出装置としては、例
えば特開平2−307087号公報に記載のものがあ
る。これは、超音波のドップラー効果を利用した対地車
速検出装置であり、送信する超音波の路面上の反射点を
車輪の通過位置とし、車輪通過によって降雨時に路面の
水分を排除し、また積雪や氷結時に路面にタイヤのトレ
ッドパターンを付けることにより、路面での超音波の反
射を大きくし、対地車速の検出を確実なものとしてい
る。
An example of such a ground vehicle speed detecting device is disclosed in Japanese Patent Laid-Open No. 2-307087. This is a ground vehicle speed detection device that uses the Doppler effect of ultrasonic waves, and the reflection point on the road surface of the ultrasonic waves to be transmitted is the passing position of the wheels, which eliminates water on the road surface during rainfall by passing the wheels, and By attaching a tire tread pattern to the road surface when it freezes, the reflection of ultrasonic waves on the road surface is increased and the detection of the vehicle speed to ground is ensured.

【0004】[0004]

【発明が解決しようとする課題】しかるに、車輪通過位
置の路面は他の部位より反射波の強度が大きくなるもの
の、反射波の強度が路面状況によって左右されることか
ら、路面状況によっては必ずしも車輪の通過位置で反射
波の最大強度を得られるとは限らない。
However, although the intensity of the reflected wave on the road surface at the wheel passing position is higher than that of the other parts, the intensity of the reflected wave depends on the road surface condition, and therefore the road surface may not necessarily be the wheel depending on the road surface condition. It is not always possible to obtain the maximum intensity of the reflected wave at the passage position of.

【0005】また、路面が粗い場合と滑らかな場合とで
は反射波の中心と路面のなす角及び反射波の周波数が変
化し、路面が滑らかなほど、上記角度が大きくなり、反
射波の周波数が低くなる。これによって算出される車速
が低くなるような誤差を生じるという問題があった。更
に、超音波の送受信センサの配置位置が限られるため、
装置の設計的にも制約が生じる等の問題点があった。
本発明は上記の点に鑑みなされたもので、路面状況を検
出し、その路面状況に基づいて信号を受信する角度を補
正することにより、路面状況によって検出車速が影響を
受けることを防止し、常時、高精度に車速を検出できる
車速検出装置を提供することを目的とする。
Further, the angle formed by the center of the reflected wave and the road surface and the frequency of the reflected wave change depending on whether the road surface is rough or smooth. The smoother the road surface, the larger the angle and the frequency of the reflected wave. Get lower. There is a problem in that an error that causes the calculated vehicle speed to decrease is generated. Furthermore, because the position of the ultrasonic transmission / reception sensor is limited,
There are problems such as restrictions on the design of the device.
The present invention has been made in view of the above points, by detecting the road surface situation, by correcting the angle to receive a signal based on the road surface situation, to prevent the detection vehicle speed is affected by the road surface situation, An object of the present invention is to provide a vehicle speed detection device that can always detect a vehicle speed with high accuracy.

【0006】[0006]

【課題を解決するための手段】本発明は、図1に示す如
く、センサ手段M1で所定周波数の信号を路面に向け所
定角度で送信し、路面で反射された信号を受信し、演算
手段M2で送信信号と受信信号との周波数の偏差から車
両の対地車速を演算する対地車速検出装置において、路
面が粗いか滑らかかの路面状況を検出する路面状況検出
手段M3と、上記検出された路面状況に基づいて、上記
対地速度の演算に用いられる、路面で反射された信号を
受信する角度を補正する角度補正手段M4とを有する。
According to the present invention, as shown in FIG. 1, a sensor means M1 transmits a signal having a predetermined frequency toward a road surface at a predetermined angle, receives a signal reflected on the road surface, and calculates a means M2. In the ground vehicle speed detecting device for calculating the ground vehicle speed of the vehicle from the deviation of the frequency between the transmitted signal and the received signal, the road surface condition detecting means M3 for detecting the road surface condition whether the road surface is rough or smooth, and the detected road surface condition. And an angle correction means M4 for correcting the angle at which the signal reflected on the road surface is received, which is used for the calculation of the ground speed.

【0007】[0007]

【作用】本発明においては、路面が粗いか滑らかかの路
面状況を検出し、この検出路面状況に基づいて路面で反
射された信号を受信する角度、つまり散乱ビーム角度を
補正して車速を求めるため、路面が滑らかなほど受信信
号の強度が低下し、散乱ビーム角度が大きくなって車速
が低下するという誤差を補正でき、車速を高精度に検出
することができる。
According to the present invention, the vehicle speed is obtained by detecting the road surface condition whether the road surface is rough or smooth, and correcting the angle at which the signal reflected on the road surface is received, that is, the scattered beam angle, based on the detected road surface condition. Therefore, the smoother the road surface, the lower the strength of the received signal, the larger the scattered beam angle, and the lower the vehicle speed can be corrected, and the vehicle speed can be detected with high accuracy.

【0008】[0008]

【実施例】図2は本発明装置の一実施例のブロック図を
示す。同図中、センサ手段M1としてのレーダセンサ1
0はドップラー方式のもので、車両の進行方向とは逆向
きに、路面に対して角度(仰角)θとなるようにレーダ
ビームを照射し、路面での反射レーダビームを受信す
る。レーダセンサ10は上記照射レーダビームと反射レ
ーダビームのビート信号を生成して出力する。
FIG. 2 shows a block diagram of an embodiment of the device of the present invention. In the figure, the radar sensor 1 as the sensor means M1
Reference numeral 0 denotes a Doppler system, which irradiates a radar beam at an angle (elevation angle) θ with respect to the road surface in the direction opposite to the traveling direction of the vehicle, and receives a reflected radar beam on the road surface. The radar sensor 10 generates and outputs beat signals of the irradiation radar beam and the reflected radar beam.

【0009】車両が車速Vで走行するとき、レーダセン
サ10に対して相対的に路面は速度−Vで移動するた
め、ドップラー効果によってビート信号の周波数はドッ
プラー周波数fdとなる。上記レーダセンサ10が出力
するドップラー周波数fdのビート信号は増幅器12で
増幅された後、波形整形器14及び検波器16夫々に供
給される。
When the vehicle travels at the vehicle speed V, the road surface moves at the speed -V relative to the radar sensor 10, and the frequency of the beat signal becomes the Doppler frequency fd due to the Doppler effect. The beat signal of the Doppler frequency fd output from the radar sensor 10 is amplified by the amplifier 12, and then supplied to the waveform shaper 14 and the detector 16.

【0010】波形整形器14は図3に示す如く、コンパ
レータ20で構成されている。同図中、端子21には増
幅器12の出力するビート信号が入来しコンパレータ2
0の非反転入力端子に供給される。コンパレータ20の
反転入力端子には電源電圧+Vss,−Vssを抵抗R1
2 で分圧した基準電圧Vref が印加されている。コン
パレータ20はビート信号のレベルが基準電圧Vref 以
上のときハイレベルとなり、基準電圧Vref 未満のとき
ローレベルとなる矩形波信号を生成して端子22より出
力する。この波形整形器14で矩形化されたビート信号
は車速演算ECU(電子制御回路)18に供給される。
The waveform shaper 14 is composed of a comparator 20, as shown in FIG. In the figure, the beat signal output from the amplifier 12 enters the terminal 21 and the comparator 2
0 is supplied to the non-inverting input terminal. To the inverting input terminal of the comparator 20, the power supply voltage + Vss, -Vss is applied to the resistor R 1 ,
The reference voltage Vref divided by R 2 is applied. The comparator 20 generates a rectangular wave signal which becomes a high level when the level of the beat signal is equal to or higher than the reference voltage Vref and becomes a low level when the beat signal is lower than the reference voltage Vref, and outputs from the terminal 22. The beat signal rectangularized by the waveform shaper 14 is supplied to a vehicle speed calculation ECU (electronic control circuit) 18.

【0011】検波器16は図4に示す如く、ダイオード
1 とコンデンサC1 と抵抗R3 とから構成されてい
る。同図中、端子25には増幅器12の出力するビート
信号が入来し、ダイオードD1 のアノードに供給され
る。ダイオードD1 はビート信号の正極性部分で導通し
て正の半波を取り出す。この正の半波はコンデンサC1
及び抵抗R3 で平滑されることにより、ビート信号の正
の半波におけるピークレベルに応じた電圧の強度信号S
rを生成して端子26より出力する。この強度信号Sr
は車速演算ECU18に供給される。
As shown in FIG. 4, the detector 16 is composed of a diode D 1 , a capacitor C 1 and a resistor R 3 . In the figure, the beat signal output from the amplifier 12 enters the terminal 25 and is supplied to the anode of the diode D 1 . The diode D 1 conducts in the positive polarity portion of the beat signal and takes out a positive half wave. This positive half-wave is the capacitor C 1
By being smoothed by the resistance R 3 and the resistance R 3 , the intensity signal S of the voltage corresponding to the peak level in the positive half wave of the beat signal is obtained.
r is generated and output from the terminal 26. This intensity signal Sr
Is supplied to the vehicle speed calculation ECU 18.

【0012】なお、検波器16としては全波整流を行っ
ても良いのは勿論である。更に検波器16はビート信号
の強度を検出しているが、このビート信号の強度は反射
レーダビームの受信信号の強度によって決定されるもの
であるから、レーダセンサ10における受信信号の強度
を直接検出することと等価である。
Of course, the detector 16 may perform full-wave rectification. Further, the detector 16 detects the strength of the beat signal. Since the strength of this beat signal is determined by the strength of the received signal of the reflected radar beam, the strength of the received signal at the radar sensor 10 is directly detected. Is equivalent to doing.

【0013】ここで、図5(A)に示す如く、車両30
に固定したレーダセンサ10からレーダビームの中心軸
が路面に対して仰角θ、俯角ψ(ψ=90°−θ)とな
るように設定しても、レーダビームはある程度広がり、
路面において最大仰角θ’で最小仰角θ”となるビーム
幅を持つ。
Here, as shown in FIG.
Even if the central axis of the radar beam from the radar sensor 10 fixed to is set to an elevation angle θ and a depression angle ψ (ψ = 90 ° −θ) with respect to the road surface, the radar beam spreads to some extent,
It has a beam width that gives the maximum elevation angle θ ′ and the minimum elevation angle θ ″ on the road surface.

【0014】また、レーダビームをレーダセンサ10方
向に反射する確率である散乱係数は、図5(B)に示す
如く路面状況によって大きく異なる。路面が粗い場合は
実線Iaに示す如く俯角ψによらず大きな散乱係数が得
られる。路面の滑らかさが増加するに従って一点鎖線I
b,破線Icの順に散乱係数が低下する。路面が滑らか
になると俯角ψが大きいほど散乱係数が低下する傾向に
あり、その傾向は滑らかな路面ほど大きくなる。
The scattering coefficient, which is the probability of reflecting the radar beam toward the radar sensor 10, greatly differs depending on the road surface condition, as shown in FIG. 5 (B). When the road surface is rough, a large scattering coefficient can be obtained regardless of the depression angle ψ as shown by the solid line Ia. As the smoothness of the road surface increases, the alternate long and short dash line I
The scattering coefficient decreases in the order of b and the broken line Ic. When the road surface becomes smooth, the scattering coefficient tends to decrease as the depression angle ψ increases, and the tendency increases as the road surface becomes smoother.

【0015】この結果、路面で反射されたレーダビーム
をレーダセンサで受信する角度である散乱ビーム角度は
路面が滑らかになるに従って仰角θより大きな値とな
る。この現象をドップラー周波数の信号スペクトラムで
見ると、路面が滑らかになるに従って図5(C)の実線
IIa,一点鎖線IIb,破線IIc の順にピークの周波数が低く
なり、かつピークレベル(反射ビーム強度)が低くな
る。
As a result, the scattered beam angle, which is the angle at which the radar sensor receives the radar beam reflected on the road surface, becomes larger than the elevation angle θ as the road surface becomes smoother. Looking at this phenomenon in the signal spectrum of the Doppler frequency, as the road surface becomes smoother, the solid line in FIG.
The peak frequency decreases in the order of IIa, the alternate long and short dash line IIb, and the broken line IIc, and the peak level (reflected beam intensity) decreases.

【0016】ここで、従来、車速Vは(1)式を用いて
算出している。
Here, conventionally, the vehicle speed V is calculated using the equation (1).

【0017】[0017]

【数1】 (Equation 1)

【0018】但し、fdはドップラー周波数、f0 は送
信周波数、Cは光速、θは仰角である。しかるに、散乱
ビーム角度は路面状況によって変化するにも拘らず、固
定値である仰角θを用いると、路面が滑らになるにつ
れ、算出される車速は低車速側に誤差を生じることにな
る。本実施例では反射ビーム強度、つまり強度信号に応
じて上記誤差を検出し、誤差の補正を行う。
However, fd is the Doppler frequency, f 0 is the transmission frequency, C is the speed of light, and θ is the elevation angle. However, although the scattered beam angle changes depending on the road surface condition, if the fixed elevation angle θ is used, the calculated vehicle speed will have an error on the low vehicle speed side as the road surface becomes slippery. In this embodiment, the above error is detected according to the reflected beam intensity, that is, the intensity signal, and the error is corrected.

【0019】なお、路面が滑らかなほどピークの周波数
が低くなる理由について説明する。(1)式を変形した
(1’)式を得る。
The reason why the peak frequency becomes lower as the road surface becomes smoother will be described. A formula (1 ′) obtained by modifying the formula (1) is obtained.

【0020】[0020]

【数2】 (Equation 2)

【0021】仰角θが大きくなった場合、(1’)式の
右辺分母は一定とみなすことができ、右辺分子のcos
θが減小するためにドップラー周波数fdが低くなる。
図6は車速演算ECU18が実行する車速演算処理の一
実施例のフローチャートを示す。この処理は所定時間毎
に繰り返し実行される。同図中、ステップS10では強
度信号Srの読み取りを行う。勿論、強度信号SrはE
CU18の内蔵する入力回路でA/D変換された値であ
る。
When the elevation angle θ becomes large, the denominator on the right side of the equation (1 ') can be regarded as constant, and the cos of the numerator on the right side can be considered.
Since the θ is reduced, the Doppler frequency fd is lowered.
FIG. 6 shows a flowchart of an embodiment of the vehicle speed calculation processing executed by the vehicle speed calculation ECU 18. This process is repeatedly executed at predetermined time intervals. In the figure, in step S10, the intensity signal Sr is read. Of course, the intensity signal Sr is E
The value is A / D converted by the input circuit incorporated in the CU 18.

【0022】次に路面状況検出手段M3及び角度補正手
段M4に対応するステップS20で上記の読み取った強
度信号Srを用いて、図7に示すマップを参照して散乱
ビーム角度φを検出する。前述の如く路面が滑らかであ
ればドップラー信号強度Srは小さくなり、散乱ビーム
角度φは仰角θより大きくなり、路面が粗ければドップ
ラー信号強度Srは大きくなり、散乱ビーム角度φは小
さくなり、仰角θに近付く。このことから図7に示すマ
ップが形成されている。勿論、このマップは線形であっ
ても非線形であっても良い。
Next, in step S20 corresponding to the road surface condition detecting means M3 and the angle correcting means M4, the scattered beam angle φ is detected by referring to the map shown in FIG. 7 by using the read intensity signal Sr. As described above, if the road surface is smooth, the Doppler signal intensity Sr is small, the scattered beam angle φ is larger than the elevation angle θ, and if the road surface is rough, the Doppler signal intensity Sr is large and the scattered beam angle φ is small, and the elevation angle θ is small. Approach θ. From this, the map shown in FIG. 7 is formed. Of course, this map may be linear or non-linear.

【0023】次にステップS30で波形整形器14から
供給されるビート信号の周波数、つまりドップラー周波
数fdを演算してステップS50に進む。演算手段M2
に対応するステップS40では(2)式を用いて車速V
を算出する。
Next, in step S30, the frequency of the beat signal supplied from the waveform shaper 14, that is, the Doppler frequency fd is calculated, and the process proceeds to step S50. Computing means M2
In step S40 corresponding to, the vehicle speed V is calculated using the equation (2).
Is calculated.

【0024】[0024]

【数3】 (Equation 3)

【0025】但し、fdはドップラー周波数、f0 は送
信周波数、Cは光速、φは散乱ビーム角度である。この
ステップS50によって車速Vを算出した後、処理を終
了する。 このように、受信信号の強度に基づいて路面
が粗いか滑らかかの路面状況を検出し、この検出路面状
況に基づいて路面で反射された信号を受信する角度、つ
まり散乱ビーム角度を補正して車速を求めるため、路面
が滑らかなほど受信信号の強度が低下し、散乱ビーム角
度が大きくなって車速が低下するという誤差を補正で
き、車速を高精度に検出することができる。
However, fd is the Doppler frequency, f 0 is the transmission frequency, C is the speed of light, and φ is the scattered beam angle. After the vehicle speed V is calculated in step S50, the process ends. In this way, the road surface condition of whether the road surface is rough or smooth is detected based on the intensity of the received signal, and the angle at which the signal reflected on the road surface is received based on the detected road surface condition, that is, the scattered beam angle is corrected. Since the vehicle speed is obtained, the error that the received signal strength decreases as the road surface becomes smoother, the scattered beam angle increases, and the vehicle speed decreases can be corrected, and the vehicle speed can be detected with high accuracy.

【0026】なお、上記実施例では、受信信号の強度に
基づいて路面状況を検出しているが、例えば光学センサ
を用いて路面状況を検出したり、又は車高センサで検出
した車高値の変位状況から路面状況を検出しても良く、
上記実施例に限定されない。
Although the road surface condition is detected based on the intensity of the received signal in the above embodiment, the road surface condition is detected using, for example, an optical sensor, or the vehicle height value detected by the vehicle height sensor is displaced. You may detect the road condition from the situation,
It is not limited to the above embodiment.

【0027】[0027]

【発明の効果】上述の如く、本発明によれば、路面が粗
いか滑らかかの路面状況を検出し、この検出路面状況に
基づいて路面で反射された信号を受信する角度、つまり
散乱ビーム角度を補正して車速を求めるため、路面が滑
らかなほど受信信号の強度が低下し、散乱ビーム角度が
大きくなって車速が低下するという誤差を補正でき、車
速を高精度に検出することができ、実用上きわめて有用
である。
As described above, according to the present invention, the angle at which the road surface condition is detected whether the road surface is rough or smooth, and the signal reflected by the road surface is received based on the detected road surface condition, that is, the scattered beam angle. Since the vehicle speed is calculated by correcting the error, the intensity of the received signal decreases as the road surface becomes smoother, the error that the scattered beam angle increases and the vehicle speed decreases can be corrected, and the vehicle speed can be detected with high accuracy. It is extremely useful in practice.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理図である。FIG. 1 is a principle diagram of the present invention.

【図2】本発明装置のブロック図である。FIG. 2 is a block diagram of the device of the present invention.

【図3】波形整形器の回路図(一例)である。FIG. 3 is a circuit diagram (example) of a waveform shaper.

【図4】検波器の回路図(一例)である。FIG. 4 is a circuit diagram (one example) of a detector.

【図5】本発明を説明するための図である。FIG. 5 is a diagram for explaining the present invention.

【図6】車速演算処理のフローチャートである。FIG. 6 is a flowchart of vehicle speed calculation processing.

【図7】散乱ビーム角度のマップを示す図である。FIG. 7 is a diagram showing a map of scattered beam angles.

【符号の説明】[Explanation of symbols]

10 レーダセンサ 12 増幅器 14 波形整形器 16 検波器 18 ECU 20 コンパレータ C1 コンデンサ D1 ダイオード R1 〜R3 抵抗 M1 センサ手段 M2 演算手段 M3 路面状況検出手段 M4 角度補正手段10 radar sensor 12 amplifier 14 waveform shaper 16 detector 18 ECU 20 comparator C 1 capacitor D 1 diode R 1 to R 3 resistance M1 sensor means M2 calculation means M3 road surface condition detection means M4 angle correction means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 所定周波数の信号を路面に向け所定角度
で送信し、路面で反射された信号を受信し、送信信号と
受信信号との周波数の偏差から車両の対地車速を演算す
る対地車速検出装置において、 路面が粗いか滑らかかの路面状況を検出する路面状況検
出手段と、 上記検出された路面状況に基づいて、上記対地速度の演
算に用いられる、路面で反射された信号を受信する角度
を補正する角度補正手段とを有することを特徴とする対
地車速検出装置。
1. A ground vehicle speed detection, which transmits a signal of a predetermined frequency to a road surface at a predetermined angle, receives a signal reflected on the road surface, and calculates a vehicle ground speed of the vehicle from a frequency difference between the transmitted signal and the received signal. In the device, a road surface condition detecting means for detecting a road surface condition whether the road surface is rough or smooth, and an angle for receiving a signal reflected on the road surface, which is used for calculating the ground speed based on the detected road surface condition. A vehicle speed detecting device for ground, comprising:
JP16626095A 1995-06-30 1995-06-30 Detecting device of vehicle ground speed Pending JPH0915332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16626095A JPH0915332A (en) 1995-06-30 1995-06-30 Detecting device of vehicle ground speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16626095A JPH0915332A (en) 1995-06-30 1995-06-30 Detecting device of vehicle ground speed

Publications (1)

Publication Number Publication Date
JPH0915332A true JPH0915332A (en) 1997-01-17

Family

ID=15828090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16626095A Pending JPH0915332A (en) 1995-06-30 1995-06-30 Detecting device of vehicle ground speed

Country Status (1)

Country Link
JP (1) JPH0915332A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014166A (en) * 2000-06-30 2002-01-18 Nippon Soken Inc Sound-wave measuring apparatus
CN104345309A (en) * 2013-08-09 2015-02-11 山推工程机械股份有限公司 Vehicle speed measuring method and device
WO2015040815A1 (en) * 2013-09-17 2015-03-26 株式会社デンソー Object detection device and object detection system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014166A (en) * 2000-06-30 2002-01-18 Nippon Soken Inc Sound-wave measuring apparatus
CN104345309A (en) * 2013-08-09 2015-02-11 山推工程机械股份有限公司 Vehicle speed measuring method and device
WO2015040815A1 (en) * 2013-09-17 2015-03-26 株式会社デンソー Object detection device and object detection system
JP2015059764A (en) * 2013-09-17 2015-03-30 株式会社日本自動車部品総合研究所 Object detection apparatus and object detection system
US9880273B2 (en) 2013-09-17 2018-01-30 Denso Corporation Object detection apparatus and object detection system

Similar Documents

Publication Publication Date Title
US20180335787A1 (en) Six-dimensional point cloud system for a vehicle
JP2600879B2 (en) Top radar speed detection method
JPH0386619A (en) Road surface sensing system for vehicle running on land
KR20020074485A (en) Road surface detection apparatus and apparatus for detecting upward/downward axis displacement of vehicle-mounted radar
JP2002340863A (en) Road surface determination device and system
JP4197033B2 (en) Radar
JPH09222477A (en) On-board radar apparatus
JPH07140245A (en) Method for decision of visibility
US10183676B2 (en) System for use in a vehicle
JPH0798375A (en) On-vehicle radar device
US6683533B1 (en) Inter-vehicle distance measuring system and apparatus measuring time difference between each detection time of same road surface condition
JPH0915332A (en) Detecting device of vehicle ground speed
JPWO2019181448A1 (en) Radar device
JP2002243846A (en) Scanning radar system
JPH0769421B2 (en) On-vehicle multipurpose ultrasonic measuring device
US20220349995A1 (en) Method for adjusting correction information in a radar system
JPH0921870A (en) Ground speed detecting device for vehicle
JPH11211493A (en) Vehicle position measuring device
JP2004177289A (en) Target speed calculation device and vehicle controller using it
JP3440488B2 (en) Road surface condition detection device in vehicle operation support system
JP2004301764A (en) Vehicle-mounted obstacle detection device
JPH07120554A (en) Ground speed sensor
JP3979043B2 (en) Apparatus and method for calculating vehicle movement distance
JP2001221856A (en) Doppler earth speedometer
JPH06138221A (en) Ground speed detecting device