JPH09151754A - Control device of rotary valve for internal combustion engine - Google Patents
Control device of rotary valve for internal combustion engineInfo
- Publication number
- JPH09151754A JPH09151754A JP35495395A JP35495395A JPH09151754A JP H09151754 A JPH09151754 A JP H09151754A JP 35495395 A JP35495395 A JP 35495395A JP 35495395 A JP35495395 A JP 35495395A JP H09151754 A JPH09151754 A JP H09151754A
- Authority
- JP
- Japan
- Prior art keywords
- rotary valve
- valve
- engine
- shaft
- rotating body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は内燃機関用ロータリ弁の
弁開、弁閉時期を制御する制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for controlling the valve opening / closing timing of a rotary valve for an internal combustion engine.
【0002】[0002]
【従来の技術】先ず、本発明に係わるロータリ弁の軸内
を通ってシリンダー内へ動作流体を流入させる構成の内
燃機関用ロータリ弁について説明する。図1(イ)にお
いてシリンダーヘッド4に備えられたロータリ弁6は互
いに向かい合う状態に配置された回転摺動面7を有し、
機関の主軸(クランク軸)により例えばチェーン、スプ
ロケット5を介して同期的に駆動される(1/2又は1
/4に減速)。各々の回転摺動面7にはシール装置Sが
バネにより密着しており、燃焼室内圧力をシールしてい
る。シール装置Sは種々考えられるが、図では先ず円筒
状のシール筒が回転摺動面7に密着し、このシール筒に
合い口が特殊な密閉型合い口を有するシールリングがバ
ネにより密着する構成となっている。ロータリ弁6に形
成された弁内連通路9,10が燃焼室3に連通すると両
者を介してロータリ弁6の軸内を流れて来た吸気がシリ
ンダー1内に導入され、ロータリ弁6に形成された弁内
連通路11,12が燃焼室3に連通するとシリンダー1
内の排気が弁内連通路11,12を介して排出される様
になっている。弁内連通路9,10には空気と燃料との
混合気が供給され(ロータリ弁6の潤滑はこの混合気中
に混入された油により行なう)、かくして吸気・圧縮・
膨張・排気の各行程を行なう。8はシール板で、バネに
より回転摺動面7に押圧され、弁内連通路9(10)と
弁内連通路11(12)との連通を断っている。図1
(ロ)は図1(イ)で弁内連通路11を除去したものに
相当し、更に図1(ハ)は図1(ロ)で弁内連通路10
を除去したものに相当するが、回転摺動面7を軸心に対
して垂直ではなく,ある傾斜角を持たせた円錐面状とし
ている(もちろん軸心に対して垂直としても良いし、回
転摺動面7を球面状としても良い。逆に図1(イ),
(ロ)における回転摺動面7を円錐面状,球面状とする
事も考えられる)。但し、回転摺動面7を軸心に対して
垂直とした方がロータリ弁6の軸にはラジアル荷重が加
わらない利点がある。図1(ニ)は互いに向かい合う状
態に配置された回転摺動面7を有するロータリ弁6を2
サイクル機関に適用したもので、掃気通路14(クラン
ク室又は掃気ポンプに連絡)はロータリ弁6の軸内へ接
続しており、排気口15が開かれた後に弁内連通路13
が燃焼室3に連通すると、新気はロータリ弁6の軸内か
ら弁内連通路13を介してシリンダー1内へ流入し、掃
気過程を行なう様になっている。図1(ホ)に示すロー
タリ弁16は円筒型のもので、弁内連通路17を介して
ロータリ弁16の軸内を通って来た吸気をシリンダー1
内に流入させ、弁内連通路18を介してシリンダー1内
の排気を排出する構成となっている。さて以上の様な内
燃機関用ロータリ弁においてはシリンダー1内に動作流
体を流入するに当り,ロータリ弁6の弁開時期を早く
し、弁閉時期を遅くした方が高速域では高出力・高トル
クが得られるが、低速域では逆に低下し、更に低負荷域
ともなるとシリンダー1内の残留ガス量増大により燃料
が悪化した。この様にロータリ弁の弁開,弁閉時期を固
定したものでは出力・トルク・燃費・排気清浄度などの
機関の諸特性を広い運転範囲に互って改善できなかっ
た。2. Description of the Related Art First, a rotary valve for an internal combustion engine having a structure in which a working fluid flows into the cylinder through the shaft of the rotary valve according to the present invention will be described. In FIG. 1 (a), the rotary valve 6 provided in the cylinder head 4 has rotary sliding surfaces 7 arranged so as to face each other,
Driven synchronously by the main shaft (crank shaft) of the engine, for example, via a chain or sprocket 5 (1/2 or 1
Decelerate to / 4). A seal device S is closely attached to each rotary sliding surface 7 by a spring to seal the pressure in the combustion chamber. Although various sealing devices S are conceivable, in the figure, first, a cylindrical sealing tube is brought into close contact with the rotary sliding surface 7, and a sealing ring having a special closed type opening is brought into close contact with this sealing tube by a spring. Has become. When the in-valve communication passages 9 and 10 formed in the rotary valve 6 are communicated with the combustion chamber 3, the intake air flowing through the shaft of the rotary valve 6 is introduced into the cylinder 1 and is formed in the rotary valve 6. When the in-valve communication passages 11 and 12 communicated with the combustion chamber 3, the cylinder 1
The exhaust gas inside is discharged through the valve communication passages 11 and 12. A mixture of air and fuel is supplied to the in-valve communication passages 9 and 10 (lubrication of the rotary valve 6 is performed by oil mixed in the mixture), and thus intake, compression and
Perform expansion and exhaust strokes. Reference numeral 8 denotes a seal plate, which is pressed against the rotary sliding surface 7 by a spring and blocks the communication between the valve communication passage 9 (10) and the valve communication passage 11 (12). FIG.
1B corresponds to the valve communication passage 11 removed in FIG. 1A, and FIG. 1C shows the valve communication passage 10 in FIG. 1B.
The rotary sliding surface 7 is not perpendicular to the axis, but is a conical surface with a certain inclination angle (of course, it may be perpendicular to the axis, The sliding surface 7 may be spherical.
It is also conceivable that the rotary sliding surface 7 in (b) has a conical surface shape or a spherical surface shape). However, making the rotary sliding surface 7 perpendicular to the axis has the advantage that no radial load is applied to the axis of the rotary valve 6. FIG. 1D shows a rotary valve 6 having rotary sliding surfaces 7 which are arranged to face each other.
It is applied to a cycle engine, and a scavenging passage 14 (which communicates with a crank chamber or a scavenging pump) is connected to the shaft of the rotary valve 6, and an in-valve communication passage 13 is formed after the exhaust port 15 is opened.
Is communicated with the combustion chamber 3, fresh air flows into the cylinder 1 from the inside of the shaft of the rotary valve 6 through the in-valve communication passage 13 to perform the scavenging process. The rotary valve 16 shown in FIG. 1 (e) is of a cylindrical type, and the intake air that has passed through the inside of the rotary valve 16 via the valve communication passage 17 is transferred to the cylinder 1
The exhaust gas in the cylinder 1 is discharged through the in-valve communication passage 18. In the rotary valve for an internal combustion engine as described above, when the working fluid flows into the cylinder 1, it is better to advance the valve opening timing of the rotary valve 6 and delay the valve closing timing in the high speed range. Although torque was obtained, it decreased in the low speed range, and in the low load range, the fuel deteriorated due to an increase in the residual gas amount in the cylinder 1. In this way, the rotary valve with fixed valve opening and closing times could not improve various engine characteristics such as output, torque, fuel consumption, and exhaust cleanliness over a wide operating range.
【0003】[0003]
【発明が解決しようとする問題点】本発明の目的は、ロ
ータリ弁の弁開時期,弁閉時期を可変化する事によって
広い運転範囲に亙って出力・トルク・燃費・排気清浄度
などの機関の諸特性を改善しようとしたものである。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention An object of the present invention is to make variable the valve opening timing and valve closing timing of a rotary valve so that output, torque, fuel consumption, exhaust gas cleanliness, etc. It is an attempt to improve various characteristics of the engine.
【0004】[0004]
【問題点を解決する為の手段】本発明は、動作流体がロ
ータリ弁の軸内を通る様に構成された内燃機関用ロータ
リ弁において、ロータリ弁の軸の内周面に密接又は接触
する制御部を有する回動体を備え、機関の運転状態に応
じて前記回動体の制御部を回動させる事によってロータ
リ弁の軸内と燃焼室との連通状態を時期的に変化させ、
かつ前記回動体より下流側にある弁内連通路を分離壁に
より分割し、前記弁内連通路の燃焼室と連通しながらロ
ータリ弁の軸内へは連通しない部分の実質的容積を機関
の運転状態に応じて前記回動体の制御部と分離壁とによ
り分離する事によって小さくする様に構成したのであ
る。SUMMARY OF THE INVENTION The present invention relates to a rotary valve for an internal combustion engine, in which a working fluid is configured to pass through the inside of a shaft of a rotary valve, a control for closely contacting or contacting an inner peripheral surface of the shaft of the rotary valve. A rotating body having a portion, and by rotating the control unit of the rotating body according to the operating state of the engine, the communication state between the shaft of the rotary valve and the combustion chamber is changed with time.
Further, the in-valve communication passage on the downstream side of the rotating body is divided by a partition wall, and the substantial volume of the portion which does not communicate with the shaft of the rotary valve while communicating with the combustion chamber of the in-valve communication passage is operated by the engine. According to the state, the size is reduced by separating the rotating body by the control portion and the separating wall.
【0005】[0005]
【作用】回動体を回動させると,ロータリ弁の軸の内周
面に密接又は接触する制御部が回動し、ロータリ弁の軸
内と弁内連通路との連通状態が時期的に変化し、ロータ
リ弁の軸内と燃焼室との連通状態も時期的に変化する。
回動体はサーボモーター等により駆動され、従ってロー
タリ弁の弁開,弁閉時期は機関の運転状態に応じて制御
されるから、機関の諸特性を広い運転範囲に亙って改善
できる。又,弁内連通路は分割されているから、シリン
ダー内から逆流して来ても弁内連通路内への動作流体の
逆流量は極めて小さい。When the rotating body is rotated, the control portion that is in close contact with or in contact with the inner peripheral surface of the shaft of the rotary valve rotates, and the communication state between the shaft of the rotary valve and the valve communication passage changes with time. However, the state of communication between the inside of the rotary valve shaft and the combustion chamber also changes with time.
Since the rotating body is driven by a servomotor or the like, and therefore the valve opening and closing timings of the rotary valve are controlled according to the operating condition of the engine, various characteristics of the engine can be improved over a wide operating range. Further, since the in-valve communication passage is divided, the reverse flow rate of the working fluid into the in-valve communication passage is extremely small even if the fluid flows backward from the cylinder.
【0006】[0006]
【実施例】図2(イ)は本発明による内燃機関用ロータ
リ弁の制御装置の一実施例で、ロータリ弁6の軸の内部
に,軸の内周面に密接(微小ギャップを以って非接触を
保つこと)する制御部20を有する回動体19を備えて
ある。この場合、ロータリ弁6の軸の内周面及び回動体
19の外周面をテーパー状として両者を接触させたり、
図2(ト)の如く回動体19にスリット22を形成し、
そのバネ作用(ピストンリングの様に)によってロータ
リ弁6の軸の内周面に軽く接触させても良い。左側のロ
ータリ弁6を図2(ロ)に示すが、回動体19より下流
側にある弁内連通路10は分離壁23により10aと1
0bとに分割されている(右側のロータリ弁6も同様で
あるので、以後は左側のロータリ弁で説明する)。回動
体19はロータリ弁6と一緒に回転はしないが、任意の
位置まで回動させる事によりロータリ弁6の弁開,弁閉
時期を制御するものである。今,回動体の制御部20を
図2(ロ)の位置まで回動させておくと、弁内連通路1
0とロータリ弁6の軸内との連通状態が時期的に変化
し、これによりロータリ弁6の軸内と燃料室3との連通
状態が時期的に変化する(連通状態が時期的に変化する
とは,連通の開始又は遮断時期が変化することであ
る)。次にこれを具体的に説明すると、図2(ロ)にお
いて回動体の制御部20がθの間にある時は弁内連通路
10と燃料室3との連通,即ち弁内連通路10とシール
装置Sとの連通はクランク角で例えば上死点前20゜で
開始し、下死点後60゜で遮断される様にしてあり,こ
れにより機関の高速域(高負荷)における充填効率が高
まり、高出力・高トルクが得られる。低速域では回動体
の制御部20を図示の位置まで回動させてあり、従って
ロータリ弁6の軸内と燃焼室3(シール装置S)との連
通遮断時期は例えば下死点後20゜と早まり、低速域に
おける充填効率が高まって高出力・高トルクが得られ
る。この場合,下死点後20゜から60゜まではシリン
ダー内の動作流体は弁内連通路10内へ逆流するが、弁
内連通路の燃焼室3と連通しながらロータリ弁6の軸内
へは連通しない実質的な容積を回動体の制御部20と分
離壁23とにより分離する事によって小さくしているの
で(弁内連通路10の全体の容積から10bの容積まで
小さくしている)。動作流体の逆流量は微々たるものに
なる。中速域においても回動体の制御部20を最適制御
すべく最適位置まで回動させておくので、充填効率が高
まり、高出力・高トルクが得られる。燃焼室3とロータ
リ弁6の軸内との連通の開始時期、遮断時期を以後、ロ
ータリ弁の弁開時期,弁閉時期と各々称する事とする。
ところで図2(ロ)において弁内連通路10bとロータ
リ弁6の軸内との連通が遮断されてゆく時は,制御部2
0により絞られる絞り抵抗があるが、これを防ぐには図
2(イ)の如く弁内連通路9,10の回動体19に接続
する部分を軸方向に幅広くする事の他に,図2(ハ)の
如く工夫が必要である。即ち、図2(ハ)の若干前の状
態を示す図3(イ)の如く、分離壁23が燃焼室3のロ
ータリ弁6に接続する部分(シール装置Sがある部分)
を通過する時,分離壁23の両側にある弁内連通路10
a,10bから動作流体がシリンダー1内に流入できる
様に制御部20を形成するのである。これにより絞り抵
抗が減少し、充填効率が高まる。弁内連通路10bが図
3(ロ)の如くシール装置Sを完全に通過するまでは,
弁内連通路10bとロータリ弁6の軸内との連通を制御
部20により遮断しておく。高速域では制御部20を十
分に左回転させた位置まで回動させておけば良い。尚,
図3では弁内連通路12は省略してある。図2(ニ)は
ロータリ弁6の弁開時期を変化させたもので、低負荷域
では制御部20は図示の位置まで回動をさせてあり,従
って燃焼室3(シール装置S)とロータリ弁6の軸内と
の連通開始,即ちロータリ弁6の弁開時期は上死点前0
°と遅くなり、シリンダー内の残留ガス量を減らし、燃
焼を改善する事ができる。上死点前20°から上死点ま
ではシリンダー内の残留ガスは弁内連通路10内へ逆流
するが、弁内連通路の燃焼室3と連通しながらロータリ
弁6の軸内へは連通しない部分の実質的容積を制御部2
0と分離壁24とにより分離する事によって小さくして
いるので(弁内連通路10の全体の容積から10dの容
積まで小さくしている)、この逆流量は微々たるものに
なる。図2(ニ)において動作流体が流入し始める際の
絞り抵抗を減少させる実施例を図2(ホ)に示し、分離
壁24が図3(ハ)の如く燃焼室3のロータリ弁6に接
続する部分(シール装置Sがある部分)を通過する時,
分離壁24の両側にある弁内連通路10c,10dから
動作流体が流入する様に制御部20を形成しているので
ある。図2(ヘ)は図2(ハ)と(ホ)とを組み合わせ
た実施例に相当し,低速域(高負荷)では制御部20に
よりロータリ弁6の弁閉時期を下死点後20°と早め、
低負荷域では図3(ニ)の如く制御部20を図示の位置
まで回動をさせておいて,ロータリ弁6の弁開時期を上
死点前0°と遅らせているのである。高負荷・高速域で
は制御部20を図3(ホ)の位置まで回動させ、吸入の
邪魔とならない様にする(ロータリ弁6の弁開,弁閉時
期は各々上死点前20°,下死点後60°となる)。こ
の場合,高負荷・低速域ではロータリ弁6の弁開時期を
遅らすと共に弁閉時期を早める事はできないが、これを
可能とする実施例を図3(ヘ)に示す。即ち図3(ヘ)
において、高負荷・低速域では制御部20は図示の位置
にあり、これによりロータリ弁6の弁開時期を上死点前
0°と遅らせ、かつ弁閉時期を下死点前20°と早める
のである(図3(ト)参照)。低負荷域でも制御部20
を図示と同位置として,弁開時期を遅らせるのが良い。
高負荷・低速域でロータリ弁6の弁開時期を遅らせる事
は弁内連通路への排ガスの逆流を防ぐので、トルクは向
上する。次に回動体19を駆動する方法としてはアクセ
ルペダルによる方法や,図4(イ)の如く機関の主軸2
5と共に回転するボール26の遠心力による方法があ
り、機関の回転速度が高まるとボール26はバネに抗し
て外側に移動し、ロッド27を移動させ,駆動片21を
介して回動体19を駆動するのである。更には、図4
(ロ)の如くサーボモーター30による方法がある。即
ち,回転速度センサー28から得た機関回転速度信号は
マイクロコンピューター29に入力され、演算されてサ
ーボモーター30に出力信号を送る。この出力信号はマ
イクロコンピューター29に予め記憶させた機関回転速
度と望ましい回動体19の回動量との関係に従うもので
あり、この出力信号によりサーボモーター30は駆動さ
れ、ウォームギァ31,ロッド32を介して回動体19
を機関回転速度に応じて最適制御するのである。回転速
度センサー28はアクセルペダル開度センサーに替えて
も良く、更には両センサーからの信号を入力し、回動体
19を最適制御する様にしても良い。図5(イ)は図1
(ニ)の2サイクル機関に本発明を実施したもので、排
気口15は例えば下死点前80°で開,下死点後80°
で閉となっており、低速域(低負荷域も)では制御部2
は図示の位置まで回動され、ロータリ弁6は下死点前1
0°で弁開,下死点後80°で弁閉となっている。ロー
タリ弁6の弁開時期は非常に遅い為、新気の素通りは防
止される。高速域では制御部20を例えば十分に左回転
方向に回動させておくと、ロータリ弁6の弁開時期は下
死点前40°となり、十分な掃気期間を与える。図5
(ロ)はロータリ弁6を機関主軸の回転の1/1で駆動
したもので、同様に説明をされる。図5(ハ)は図1
(ホ)に本発明を実施したもので、例えば図2(ヘ)と
同様に低負荷域では制御部20によりロータリ弁16の
弁開時期を遅らせ、低速域(高負荷)では図5(ニ)の
如く制御部20を図示の位置まで回動させて,弁閉時期
を早めている。もちろん、分離壁24(23)が燃焼室
3のロータリ弁16に接続する部分(シール装置Sがあ
る部分)を通過する時,分離壁24(23)の両側にあ
る弁内連通路17a,17c(17a,17b)から動
作流体がシリンダー1内へ流入する様に制御部20を形
成している。この場合,高負荷・低速域ではロータリ弁
16の弁開時期を遅らせると共に弁閉時期を早める事は
できないが、これを可能とする実施例を図5(ホ)に示
す。これは既に図3(ヘ),(ト)で述べたものと同様
の説明となるから、省略する。図5(ヘ)は図5(ロ)
においてロータリ弁6を円筒型としたものに相当し、低
速域(低負荷域も)では制御部20によりロータリ弁3
4の弁開時期を遅らせ、新気の素通りを防止している。
35は分離壁,37は制御部20を有する回動体を補強
する補強部である(この様な補強部37は必要ならば本
発明の他の実施例にも形成する事ができる)。尚、本発
明では球面型ロータリ弁にも全く同様に適用できる。
又、多気筒機関にも同様に実施できるものである。FIG. 2A shows an embodiment of a rotary valve control device for an internal combustion engine according to the present invention, in which the rotary valve 6 is closely contacted with the inner surface of the shaft (with a minute gap). A rotating body 19 having a control unit 20 for keeping non-contact) is provided. In this case, the inner peripheral surface of the shaft of the rotary valve 6 and the outer peripheral surface of the rotating body 19 are tapered to bring them into contact with each other,
As shown in FIG. 2 (g), a slit 22 is formed in the rotating body 19,
The spring action (like a piston ring) may be brought into light contact with the inner peripheral surface of the shaft of the rotary valve 6. The rotary valve 6 on the left side is shown in FIG. 2 (B). The in-valve communication passage 10 on the downstream side of the rotating body 19 is separated by the separating wall 23 into 10a and 1a.
0b (the same applies to the rotary valve 6 on the right side, so the rotary valve on the left side will be described hereinafter). Although the rotating body 19 does not rotate together with the rotary valve 6, the rotary valve 6 is rotated to an arbitrary position to control the valve opening / closing timing of the rotary valve 6. Now, when the control unit 20 of the rotating body is rotated to the position shown in FIG.
0 and the communication state between the inside of the shaft of the rotary valve 6 and the fuel chamber 3 change accordingly (when the communication state changes with time). Is that the start or cutoff time of communication changes.) Next, this will be described in detail. When the control unit 20 of the rotating body is between θ in FIG. 2B, the communication between the valve communication passage 10 and the fuel chamber 3, that is, the valve communication passage 10 The communication with the seal device S starts at 20 ° before the top dead center at the crank angle and is cut off at 60 ° after the bottom dead center, so that the charging efficiency in the high speed range (high load) of the engine is improved. Higher output and higher torque can be obtained. In the low speed range, the control unit 20 of the rotating body is rotated to the position shown in the figure, and therefore the timing of disconnecting the communication between the shaft of the rotary valve 6 and the combustion chamber 3 (sealing device S) is, for example, 20 ° after bottom dead center. As soon as possible, the filling efficiency in the low speed range is increased and high output and high torque can be obtained. In this case, the working fluid in the cylinder flows backward into the valve communication passage 10 from 20 ° to 60 ° after bottom dead center, but into the shaft of the rotary valve 6 while communicating with the combustion chamber 3 in the valve communication passage. Since the substantial volume that does not communicate with each other is reduced by separating it by the control unit 20 and the separation wall 23 of the rotating body (the volume of the valve communication passage 10 is reduced from the total volume to 10b). The reverse flow rate of the working fluid is negligible. Even in the medium speed range, since the control unit 20 of the rotating body is rotated to the optimum position for optimum control, the charging efficiency is increased and high output and high torque are obtained. The start timing and cutoff timing of communication between the combustion chamber 3 and the shaft of the rotary valve 6 will be referred to as the valve open timing and valve close timing of the rotary valve, respectively.
By the way, when the communication between the in-valve communication passage 10b and the shaft of the rotary valve 6 is cut off in FIG.
Although there is a throttling resistance that is narrowed by 0, in order to prevent this, as shown in FIG. 2A, in addition to widening the portion of the valve communication passages 9 and 10 connected to the rotating body 19 in the axial direction, Ingenuity is required as shown in (c). That is, as shown in FIG. 3A showing a state slightly before FIG. 2C, the part where the separation wall 23 is connected to the rotary valve 6 of the combustion chamber 3 (the part where the seal device S is located).
When passing through, the valve communication passages 10 on both sides of the separation wall 23
The control unit 20 is formed so that the working fluid can flow into the cylinder 1 from a and 10b. This reduces throttling resistance and increases filling efficiency. Until the in-valve communication passage 10b completely passes through the sealing device S as shown in FIG.
The communication between the in-valve communication passage 10b and the shaft of the rotary valve 6 is blocked by the control unit 20. In the high speed range, the control unit 20 may be rotated to the position where the control unit 20 is rotated sufficiently to the left. still,
In FIG. 3, the valve communication passage 12 is omitted. FIG. 2D shows a case where the valve opening timing of the rotary valve 6 is changed, and the control unit 20 is rotated to the position shown in the figure in the low load region. Therefore, the combustion chamber 3 (seal device S) and the rotary device are rotated. The communication with the shaft of the valve 6 is started, that is, the valve opening timing of the rotary valve 6 is 0 before the top dead center.
It becomes slower and the amount of residual gas in the cylinder can be reduced and combustion can be improved. From 20 ° before top dead center to top dead center, the residual gas in the cylinder flows back into the valve communication passage 10, but communicates with the shaft of the rotary valve 6 while communicating with the combustion chamber 3 of the valve communication passage. The control unit 2 controls the substantial volume
Since it is made small by separating it by 0 and the separating wall 24 (it is made small from the entire volume of the valve communication passage 10 to the volume of 10d), this reverse flow rate becomes insignificant. An example of reducing the throttling resistance when the working fluid begins to flow in is shown in FIG. 2D, and the separation wall 24 is connected to the rotary valve 6 of the combustion chamber 3 as shown in FIG. 3C. When passing through the part to be sealed (the part where the sealing device S is),
The control unit 20 is formed so that the working fluid flows in from the valve communication passages 10c and 10d on both sides of the separation wall 24. 2F corresponds to an embodiment in which FIGS. 2C and 2E are combined, and in the low speed range (high load), the control unit 20 sets the valve closing timing of the rotary valve 6 to 20 ° after bottom dead center. As soon as possible
In the low load region, as shown in FIG. 3D, the control unit 20 is rotated to the illustrated position to delay the valve opening timing of the rotary valve 6 to 0 ° before the top dead center. In the high load / high speed range, the control unit 20 is rotated to the position shown in FIG. 3 (e) so as not to interfere with the suction (the rotary valve 6 is opened and closed at 20 ° before the top dead center, 60 ° after bottom dead center). In this case, the valve opening timing of the rotary valve 6 cannot be delayed and the valve closing timing cannot be advanced in the high load / low speed range, but an embodiment that enables this is shown in FIG. That is, Figure 3 (f)
In the high load / low speed range, the control unit 20 is at the position shown in the figure, whereby the valve opening timing of the rotary valve 6 is delayed to 0 ° before top dead center and the valve closing timing is advanced to 20 ° before bottom dead center. (See FIG. 3G). Control unit 20 even in the low load range
It is advisable to delay the valve opening timing with the same position as shown in the figure.
Delaying the valve opening timing of the rotary valve 6 in the high load / low speed range prevents backflow of the exhaust gas into the valve communication passage, so that the torque is improved. Next, as a method for driving the rotating body 19, a method using an accelerator pedal or a main shaft 2 of the engine as shown in FIG.
There is a method of using the centrifugal force of the ball 26 that rotates together with 5, and when the rotational speed of the engine increases, the ball 26 moves outward against the spring, moves the rod 27, and moves the rotating body 19 via the drive piece 21. Drive. Furthermore, FIG.
There is a method using the servo motor 30 as shown in (b). That is, the engine rotation speed signal obtained from the rotation speed sensor 28 is input to the microcomputer 29, calculated and the output signal is sent to the servo motor 30. This output signal follows the relationship between the engine rotation speed stored in the microcomputer 29 in advance and the desired amount of rotation of the rotating body 19, and the servo motor 30 is driven by this output signal and the worm gear 31 and the rod 32 are used. Revolving body 19
Is optimally controlled according to the engine speed. The rotation speed sensor 28 may be replaced by an accelerator pedal opening sensor, or signals from both sensors may be input to optimally control the rotating body 19. FIG. 5 (a) is shown in FIG.
The present invention is applied to the two-stroke engine of (d), and the exhaust port 15 is opened at 80 ° before bottom dead center and 80 ° after bottom dead center, for example.
The control unit 2 is closed in the low speed range (also in the low load range).
Is rotated to the position shown in the drawing, and the rotary valve 6 is set to 1 before bottom dead center.
The valve opens at 0 ° and closes at 80 ° after bottom dead center. Since the valve opening timing of the rotary valve 6 is very late, the fresh air is prevented from passing through. In the high speed range, for example, when the control unit 20 is sufficiently rotated in the counterclockwise rotation direction, the valve opening timing of the rotary valve 6 is 40 ° before the bottom dead center, which provides a sufficient scavenging period. FIG.
(B) shows that the rotary valve 6 is driven at 1/1 of the rotation of the engine main shaft, and will be described in the same manner. FIG. 5C shows FIG.
The present invention is applied to (e). For example, as in FIG. 2 (f), the control unit 20 delays the valve opening timing of the rotary valve 16 in the low load range, and in the low speed range (high load) as shown in FIG. ), The control unit 20 is rotated to the position shown in the figure to advance the valve closing timing. Of course, when the separation wall 24 (23) passes through the portion of the combustion chamber 3 connected to the rotary valve 16 (the portion where the sealing device S is located), the valve communication passages 17a and 17c on both sides of the separation wall 24 (23) are provided. The control unit 20 is formed so that the working fluid flows into the cylinder 1 from (17a, 17b). In this case, the valve opening timing of the rotary valve 16 cannot be delayed and the valve closing timing cannot be advanced in the high load / low speed range, but an embodiment that enables this is shown in FIG. This is the same as that described with reference to FIGS. Figure 5 (f) is Figure 5 (b)
Corresponds to a cylindrical rotary valve 6, and the control unit 20 controls the rotary valve 3 in the low speed range (also in the low load range).
The valve opening timing of 4 is delayed to prevent fresh air from passing through.
Reference numeral 35 is a separating wall, and 37 is a reinforcing portion that reinforces the rotating body having the control portion 20 (such a reinforcing portion 37 can be formed in another embodiment of the present invention if necessary). The present invention can be applied to a spherical rotary valve in exactly the same manner.
Further, it can be similarly applied to a multi-cylinder engine.
【0007】[0007]
【発明の効果】本発明によれば回動体の制御部20を回
動させる事によりロータリ弁の弁開,弁閉時期を最適制
御できるから、広い運転範囲に亙って出力・トルク・燃
費・排ガス清浄度などの諸特性を改善する事ができる。
例えば図2,3の4サイクル機関では低速から高速まで
全域に亙って出力・トルクを増大させる事ができるし、
低負荷域ではロータリ弁6の弁開時期を遅らせて,燃焼
を安定させる事ができる。又、図5(イ),(ロ),
(ヘ)の2サイクル機関では低速域(低負荷域も)でロ
ータリ弁の弁開時期を遅らせて新気の素通りを防ぎ、高
速域では弁開時期を早めて十分な掃気期間を与え、高出
力・高トルクを達成するのである。又,本発明では弁内
連通路を分離壁により分割している為、シリンダー内か
らの逆流があっても,逆流量は微々たるものになる(図
2(ハ),(ニ)参照)。図5(イ),(ロ),(ヘ)
の2サイクル機関でも図の状態ではシリンダー内の残留
ガスと弁内連通路内の新気とは混合するが、弁内連通路
13b,36bは分離壁33,35により容積が小さく
なっている為、掃気作用に与える害は極めて小さい。According to the present invention, the opening / closing timing of the rotary valve can be optimally controlled by rotating the control unit 20 of the rotating body, so that the output, torque, fuel consumption, and fuel consumption can be reduced over a wide operating range. It is possible to improve various characteristics such as exhaust gas cleanliness.
For example, in the 4-cycle engine of FIGS. 2 and 3, the output and torque can be increased over the entire range from low speed to high speed.
In the low load range, the valve opening timing of the rotary valve 6 can be delayed to stabilize the combustion. In addition, FIG. 5 (a), (b),
(2) In the 2-cycle engine, the rotary valve is opened in the low speed range (also in the low load range) to prevent the fresh air from passing through, and in the high speed range, the valve open time is advanced to provide a sufficient scavenging period. It achieves output and high torque. Further, in the present invention, since the communication passage in the valve is divided by the separating wall, even if there is a backflow from the inside of the cylinder, the backflow becomes very small (see FIGS. 2C and 2D). Figure 5 (a), (b), (f)
In the two-cycle engine, the residual gas in the cylinder and the fresh air in the valve communication passage are mixed in the state shown in the figure, but the volume of the valve communication passages 13b and 36b is reduced by the separating walls 33 and 35. However, the harm to the scavenging action is extremely small.
【図1】本発明に係わる内燃機関用各種ロータリ弁を示
す図。FIG. 1 is a diagram showing various rotary valves for an internal combustion engine according to the present invention.
【図2】本発明による内燃機関用ロータリ弁の制御装置
の図。FIG. 2 is a diagram of a control device for a rotary valve for an internal combustion engine according to the present invention.
【図3】ロータリ弁の各位相における状態図。FIG. 3 is a state diagram in each phase of the rotary valve.
【図4】ロータリ弁を駆動する装置の図。FIG. 4 is a diagram of an apparatus for driving a rotary valve.
【図5】本発明による内燃機関用ロータリ弁の制御装置
の各種実施態様の図。FIG. 5 is a diagram of various embodiments of a control device for a rotary valve for an internal combustion engine according to the present invention.
1はシリンダー,2はピストン,3は燃焼室,4はシリ
ンダーヘッド,5はスプロケット,6はロータリ弁,7
は回転摺動面,8はシール板,9・10・11・12・
13・17・18・10a・10b・10c・10d・
10e・13a・13b・17a・17b・17c・3
6a・36bは弁内連通路,14は掃気通路,15は排
気口,16・34はロータリ弁,19は回動体,20は
制御部,21は駆動片,22はスリット,23・24・
33・35は分離壁,25は機関の主軸,26はボー
ル,27はロッド,28はセンサー,29はマイクロコ
ンピューター,30はサーボモーター,31はウォーム
ギァ,32はロッド,37は補強部,Sはシール装置で
ある。1 is a cylinder, 2 is a piston, 3 is a combustion chamber, 4 is a cylinder head, 5 is a sprocket, 6 is a rotary valve, 7
Is a rotary sliding surface, 8 is a seal plate, 9 ・ 10 ・ 11 ・ 12 ・
13, 17, 18, 10a, 10b, 10c, 10d,
10e / 13a / 13b / 17a / 17b / 17c / 3
6a and 36b are communication passages in the valve, 14 is a scavenging passage, 15 is an exhaust port, 16 and 34 are rotary valves, 19 is a rotating body, 20 is a control unit, 21 is a drive piece, 22 is a slit, 23 and 24,
33 and 35 are separating walls, 25 is the main shaft of the engine, 26 is a ball, 27 is a rod, 28 is a sensor, 29 is a microcomputer, 30 is a servomotor, 31 is a worm gear, 32 is a rod, 37 is a reinforcing portion, S is It is a sealing device.
Claims (2)
ーヘッドに備えられたロータリ弁の回転に従って、ロー
タリ弁に形成された弁内連通路が燃焼室に連通する事に
よってロータリ弁の軸内から前記弁内連通路を介してシ
リンダー内へ動作流体を流入させ、以ってシリンダー内
の動作流体を圧縮した後に燃焼・膨張させる内燃機関に
おいて、前記ロータリ弁の軸の内周面に密接又は接触す
る制御部を有する回動体を備え、機関の運転状態に応じ
て前記回動体の制御部を回動させる事によってロータリ
弁の軸内と燃焼室との連通状態を時期的に変化させ、か
つ前記回動体より下流側にある弁内連通路を分離壁によ
り分割し、前記弁内連通路の燃焼室と連通しながらロー
タリ弁の軸内へは連通しない部分の実質的容積を機関の
運動状態に応じて前記回動体の制御部と分離壁とにより
分離する事によって小さくする様に構成した内燃機関用
ロータリ弁の制御装置。1. A rotary valve provided in a cylinder head that rotates in synchronism with a main shaft of an engine, and an internal valve communication passage formed in the rotary valve communicates with a combustion chamber according to the rotation of the rotary valve. In an internal combustion engine in which a working fluid flows into a cylinder through the in-valve communication passage to compress and then burn and expand the working fluid in the cylinder, the working fluid is brought into close contact with or in contact with an inner peripheral surface of a shaft of the rotary valve. A rotating body having a control unit for controlling the rotation of the rotating body according to the operating state of the engine to change the communication state between the shaft of the rotary valve and the combustion chamber with time. The in-valve communication passage on the downstream side of the rotating body is divided by a partition wall, and the substantial volume of a portion that does not communicate with the inside of the rotary valve shaft while communicating with the combustion chamber of the in-valve communication passage is brought into the motion state of the engine. According to A rotary valve control device for an internal combustion engine, which is configured to be made smaller by separating it by a control part of a rotating body and a separating wall.
ロータリ弁に接続する部分を通過する時、前記分離壁の
両側にある弁内連通路から動作流体がシリンダー内へ流
入できる様に回動体の制御部を形成した請求項1記載の
内燃機関用ロータリ弁の制御装置。2. The working fluid can flow into the cylinder from the communication passages on both sides of the separation wall when the separation wall dividing the communication passage in the valve passes through a portion of the combustion chamber connected to the rotary valve. The control device for a rotary valve for an internal combustion engine according to claim 1, wherein a control unit for the rotating body is formed in the control unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35495395A JPH09151754A (en) | 1995-11-30 | 1995-11-30 | Control device of rotary valve for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35495395A JPH09151754A (en) | 1995-11-30 | 1995-11-30 | Control device of rotary valve for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09151754A true JPH09151754A (en) | 1997-06-10 |
Family
ID=18441010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35495395A Withdrawn JPH09151754A (en) | 1995-11-30 | 1995-11-30 | Control device of rotary valve for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09151754A (en) |
-
1995
- 1995-11-30 JP JP35495395A patent/JPH09151754A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4932378A (en) | Intake system for internal combustion engines | |
JPH0217686B2 (en) | ||
JPH0765510B2 (en) | 2-cycle engine | |
JPH09151754A (en) | Control device of rotary valve for internal combustion engine | |
JP6734438B1 (en) | Engine intake and exhaust structure | |
JPS61200324A (en) | Suction device for engine | |
GB2262569A (en) | Oscillatory rotating engine. | |
JPS6235024A (en) | Two-cycle engine | |
JPH062550A (en) | Intake control device for internal combustion engine | |
JPH04166624A (en) | Intake controller for automobile engine | |
JPH09203323A (en) | Two cycle engine with scavenging valve | |
JPH09112226A (en) | Controller for rotary valve of internal combustion engine | |
JPH09203322A (en) | Two cycle engine with supercharger provided with rotary valve | |
JP3624540B2 (en) | Engine intake system | |
JPH10299491A (en) | Intake device for internal combustion engine | |
JPS61255213A (en) | Intake control device for internal-combustion engine | |
JP2533753B2 (en) | Engine valve timing controller | |
JPH0364649A (en) | Control device of engine with mechanical supercharger | |
JPS5865919A (en) | Adjusting system of optional valve timing | |
JPH1150849A (en) | Exhaust control device for two cycle engine | |
JP3387536B2 (en) | Intake device for internal combustion engine | |
JPH09268930A (en) | Intake valve control device for internal combustion engine and intake valve controlling method | |
JPS5930889B2 (en) | Steam motor power control device | |
JPH03194125A (en) | Dilution gas reducing device for rotary piston engine | |
JPH0953425A (en) | Four-cycle engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030204 |