JPH09151316A - Production of thermoplastic resin composite material and thermoplastic resin composite material - Google Patents

Production of thermoplastic resin composite material and thermoplastic resin composite material

Info

Publication number
JPH09151316A
JPH09151316A JP7311214A JP31121495A JPH09151316A JP H09151316 A JPH09151316 A JP H09151316A JP 7311214 A JP7311214 A JP 7311214A JP 31121495 A JP31121495 A JP 31121495A JP H09151316 A JPH09151316 A JP H09151316A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
composite material
resin composite
isocyanate
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7311214A
Other languages
Japanese (ja)
Inventor
Kenichi Yanagisawa
健一 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP7311214A priority Critical patent/JPH09151316A/en
Publication of JPH09151316A publication Critical patent/JPH09151316A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a thermoplastic resin composite material having good dispersibility and various characteristics and obtain the thermoplastic resin composite material. SOLUTION: Fine powder (a) having hydroxyl group is mixed with an isocyanate (b) having two or more isocyanate groups in the molecule under stirring to react and coat the surface of the fine powder (a) with the isocyanate and further a thermoplastic resin (c) having one or more functional groups capable of reacting with the isocyanate group is added thereto to react the resin (c) with the isocyanate. Thereby, the thermoplastic resin is fixed on the surface of the fine powder (a).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、分散性、各種特性
が良好な熱可塑性樹脂複合材料の製造方法及び熱可塑性
樹脂複合材料に関するものである。更に詳しくは、水酸
基を有する微粒粉末と分子内に2個以上のイソシアネー
ト基を有するイソシアネート類を混合撹拌して微粒粉末
表面をイソシアネート類で反応被覆した後、更にイソシ
アネート基と反応可能な官能基を1個以上有する熱可塑
性樹脂を添加し、反応させることにより得られる熱可塑
性樹脂複合材料の製造方法及び熱可塑性樹脂複合材料に
関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a thermoplastic resin composite material having excellent dispersibility and various properties, and a thermoplastic resin composite material. More specifically, fine powder having hydroxyl groups and isocyanates having two or more isocyanate groups in the molecule are mixed and stirred to reactively coat the fine powder surface with isocyanates, and then a functional group capable of reacting with isocyanate groups is further added. The present invention relates to a method for producing a thermoplastic resin composite material obtained by adding and reacting one or more thermoplastic resins, and a thermoplastic resin composite material.

【0002】[0002]

【従来の技術】一般に、熱可塑性樹脂成形材料には、強
度、耐衝撃性、耐熱性、成形性等の向上及び低コスト化
等の理由から無機充填材が大量に配合されている。しか
しながら、有機物である樹脂と無機物である無機充填材
とは親和性が少ないので分散しづらく、それぞれが独立
して存在しているため、熱応力などの外力が加わった際
には、最も力学的に弱い部分である樹脂と無機充填材の
界面部分から破壊が起き、充分な特性向上が計れないと
いう問題がある。従来この問題を解決する方法として、
カップリング剤を配合する方法が行われているが、カッ
プリング剤は、条件を選べば、水酸基を有する無機充填
材とは反応するが、カップリング剤が相手側の樹脂と反
応しうる官能基を有している場合でも、反応性が高くな
いので必ずしも反応せず、又、反応程度についても明確
には把握されていないのが現状である。 以上から、熱
可塑性樹脂成形材料では、無機充填材の分散性及び樹脂
と無機充填材との界面強度が良好なものは未だ開発され
ていない。
2. Description of the Related Art Generally, a large amount of an inorganic filler is blended in a thermoplastic resin molding material for the purpose of improving strength, impact resistance, heat resistance, moldability, etc. and reducing the cost. However, since the resin that is an organic material and the inorganic filler that is an inorganic material have a low affinity, they are difficult to disperse, and since they exist independently of each other, they are the most mechanical when an external force such as thermal stress is applied. There is a problem that destruction occurs at the interface between the resin and the inorganic filler, which is a weak area, and sufficient improvement of characteristics cannot be achieved. Conventionally, as a method to solve this problem,
Although a method of blending a coupling agent has been carried out, the coupling agent reacts with an inorganic filler having a hydroxyl group if the conditions are selected, but the coupling agent has a functional group capable of reacting with the resin on the other side. In the present situation, even if it has, the reactivity is not so high that it does not necessarily react, and the degree of reaction is not clearly understood. From the above, a thermoplastic resin molding material having good dispersibility of the inorganic filler and good interfacial strength between the resin and the inorganic filler has not yet been developed.

【0003】[0003]

【発明が解決しようとする課題】本発明は、前記の事情
を考慮し、従来の熱可塑性樹脂成形材料では困難であっ
た問題を解決するためになされたものであり、無機充填
材の分散性及び樹脂と無機充填材との界面強度が良好な
熱可塑性樹脂複合材料の製造方法及び熱可塑性樹脂複合
材料を提供するものである。
DISCLOSURE OF THE INVENTION The present invention has been made in consideration of the above circumstances and has been made to solve the problems that were difficult with conventional thermoplastic resin molding materials. And a method for producing a thermoplastic resin composite material having good interfacial strength between a resin and an inorganic filler, and a thermoplastic resin composite material.

【0004】[0004]

【課題を解決するための手段】即ち本発明は、水酸基を
有する微粒粉末(a)と分子内に2個以上のイソシアネ
ート基を有するイソシアネート類(b)を混合撹拌して
微粒粉末表面を該イソシアネート類で反応被覆した後、
更にイソシアネート基と反応可能な官能基を1個以上有
する熱可塑性樹脂(c)を添加し、反応させることによ
り、微粒粉末表面に熱可塑性樹脂を固定することを特徴
とする熱可塑性樹脂複合材料及びその製造方法に関する
ものである。
That is, according to the present invention, the fine particle powder (a) having a hydroxyl group and the isocyanates (b) having two or more isocyanate groups in the molecule are mixed and stirred to bring the surface of the fine particle powder to the isocyanate. After reactive coating with
Further, a thermoplastic resin (c) having one or more functional groups capable of reacting with an isocyanate group is added and reacted to fix the thermoplastic resin on the surface of the fine particle powder, and a thermoplastic resin composite material, The present invention relates to a manufacturing method thereof.

【0005】[0005]

【発明の実施の形態】本発明の(a)成分として用いら
れる微粒粉末は、その表面に水酸基を有することが必要
であり、具体例としては、カーボンブラック、コロイダ
ルシリカ、フュームドシリカ、シリカゲル、アルミナ等
が例示できる。ここで、微粒粉末の平均粒子径が100
μ以下であるとより高分散が達成できる。本発明の
(b)成分として用いられる分子内に2個以上のイソシ
アネート基を有するイソシアネート類としては公知のも
のが使用でき、具体例としては、トルイレンジイソシア
ナート(TDI)、ジフェニルメタンジイソシアナート
(MDI)、ナフチレン−1,5−ジイソシアナート
(NDI)、トリフェニルメタントリイソシアナート、
ポリメチレンポリフェニルイソシアナート等が例示され
る。
BEST MODE FOR CARRYING OUT THE INVENTION The fine powder used as the component (a) of the present invention is required to have a hydroxyl group on the surface, and specific examples thereof include carbon black, colloidal silica, fumed silica, silica gel, Alumina etc. can be illustrated. Here, the average particle diameter of the fine powder is 100.
Higher dispersion can be achieved when it is at most μ. Known isocyanates can be used as the isocyanates having two or more isocyanate groups in the molecule used as the component (b) of the present invention, and specific examples thereof include toluylene diisocyanate (TDI) and diphenylmethane diisocyanate ( MDI), naphthylene-1,5-diisocyanate (NDI), triphenylmethane triisocyanate,
Polymethylene polyphenyl isocyanate etc. are illustrated.

【0006】また本発明の(c)成分として用いられる
熱可塑性樹脂は、イソシアネート類の官能基と反応しう
る官能基を分子内に1個以上有するものであれば公知の
ものが使用できる。イソシアネート類の官能基と反応し
うる官能基としては、水酸基、アミノ基、エポキシ基、
カルボキシル基、メルカプト基等があるが、中でも水酸
基、カルボキシル基又はアミノ基を有するものが好まし
い。具体例としては、ポリアミド樹脂、エチレン−ビニ
ルアルコール共重合体、エチレン−アクリル酸共重合
体、エチレン−メタアクリル酸共重合体、エチレン−グ
リシジルメタクリレート共重合体等が上げられる。
As the thermoplastic resin used as the component (c) of the present invention, known ones can be used as long as they have at least one functional group capable of reacting with the functional group of isocyanates in the molecule. As the functional group capable of reacting with the functional group of isocyanates, a hydroxyl group, an amino group, an epoxy group,
There are a carboxyl group, a mercapto group and the like, among which a group having a hydroxyl group, a carboxyl group or an amino group is preferable. Specific examples thereof include polyamide resin, ethylene-vinyl alcohol copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene-glycidyl methacrylate copolymer and the like.

【0007】本発明の熱可塑性樹脂複合材料を得るに
は、まず、分子内に2個以上のイソシアネート基を有す
るイソシアネート類と表面に水酸基を有する微粒粉末と
を混合撹拌し、微粒粉末の表面を該イソシアネート類で
反応被覆する。イソシアネート類の配合量は、微粒粉末
100重量部に対して1〜100重量部、さらに好まし
くは20〜70重量部である。被覆処理法としては、メ
チルエチルケトン、トルエン等の溶媒中で混合撹拌を行
う湿式法、あるいはヘンシェルミキサー等の高速撹拌機
を用いドライブレンドする乾式法等が上げられるが、湿
式法がより好ましい。
In order to obtain the thermoplastic resin composite material of the present invention, first, the isocyanates having two or more isocyanate groups in the molecule and the fine powder having hydroxyl groups on the surface are mixed and stirred, and the surface of the fine powder is removed. Reactive coating with the isocyanates. The amount of the isocyanate compounded is 1 to 100 parts by weight, more preferably 20 to 70 parts by weight, based on 100 parts by weight of the fine powder. Examples of the coating treatment method include a wet method in which mixing and stirring are performed in a solvent such as methyl ethyl ketone and toluene, a dry method in which dry blending is performed using a high-speed stirrer such as a Henschel mixer, and the wet method is more preferable.

【0008】本発明の熱可塑性樹脂複合材料は、このよ
うにして得られた表面がイソシアネート類で反応被覆さ
れた微粒粉末にイソシアネート基と反応しうる官能基を
1個以上有する熱可塑性樹脂を添加、混合した後、二軸
混練機等で溶融混練することにより得られる。混練条件
としては、ポリアミド系樹脂の場合は、250℃〜27
0℃が、又、ポリオレフィン系樹脂の場合は、180℃
〜200℃が好ましい。該イソシアネート類と熱可塑性
樹脂とは、イソシアネート基と反応しうる熱可塑性樹脂
中の官能基当量(C)/イソシアネート類の官能基当量
(B)が、1≦官能基当量(C)/官能基当量(B)≦
200、特に20≦官能基当量(C)/官能基当量
(B)≦70の範囲内とすることが好ましい。この官能
基当量比が1未満では、熱可塑性樹脂比率が低くなるた
め、流動性、成形加工性が低下する傾向にあり、200
を越えると、微粒粉末との化学結合を有さない熱可塑性
樹脂が多くなるため、微粒粉末の分散性、各種特性が低
下する傾向にある。
In the thermoplastic resin composite material of the present invention, a thermoplastic resin having at least one functional group capable of reacting with an isocyanate group is added to the thus obtained fine particle powder whose surface is reactively coated with isocyanates. After being mixed, it is obtained by melt-kneading with a biaxial kneader or the like. As the kneading conditions, in the case of a polyamide resin, 250 ° C to 27 ° C.
0 ℃, 180 ℃ for polyolefin resin
-200 degreeC is preferable. The isocyanates and the thermoplastic resin are such that the functional group equivalent (C) in the thermoplastic resin capable of reacting with an isocyanate group / the functional group equivalent (B) of the isocyanates is 1 ≦ functional group equivalent (C) / functional group Equivalent (B) ≤
The range of 200, particularly 20 ≦ functional group equivalent (C) / functional group equivalent (B) ≦ 70 is preferable. If this functional group equivalent ratio is less than 1, the thermoplastic resin ratio will be low, so that the fluidity and molding processability will tend to be reduced.
If it exceeds, the amount of the thermoplastic resin that does not have a chemical bond with the fine powder increases, so that the dispersibility and various characteristics of the fine powder tend to be deteriorated.

【0009】このようにして得られた本発明の熱可塑性
樹脂複合材料を用いることにより、強度、耐衝撃性、耐
熱性、成形性、ガスバリアー性等の著しい改善が可能と
なる。この理由として、以下のことが考えられる。即
ち、本発明の熱可塑性樹脂複合材料は、微粒粉末表面に
熱可塑性樹脂自体が固定化されている為、熱可塑性樹脂
に無機充填剤を単純添加した組成物に比べ微粒粉末が予
め均一に分散しているので、少量の微粒粉末の配合する
だけで、強度、剛性、ガスバリアー性など各種特性の顕
著な改善が可能となる。又、従来の熱可塑性樹脂では、
有機物である樹脂と無機物である無機充填材とは親和性
が少ないので分散しづらく、それぞれが独立して存在し
ているため、熱応力などの外力が加わった際には、最も
力学的に弱い部分である樹脂と無機充填材の界面部分か
ら破壊が起き、充分な特性向上が図れないが、本発明の
熱可塑性樹脂複合材料は、微粒粉末表面に熱可塑性樹脂
自体が固定化されている為、微粒粉末と熱可塑性樹脂と
の間の界面が強固であり、且つ両者の親和性も良好であ
るため、各種特性が向上したものと考えられる。
By using the thermoplastic resin composite material of the present invention thus obtained, it is possible to significantly improve strength, impact resistance, heat resistance, moldability, gas barrier property and the like. The following can be considered as a reason for this. That is, in the thermoplastic resin composite material of the present invention, since the thermoplastic resin itself is immobilized on the surface of the fine powder, the fine powder is uniformly dispersed in advance as compared with the composition in which the inorganic filler is simply added to the thermoplastic resin. Therefore, it is possible to significantly improve various properties such as strength, rigidity, and gas barrier property by adding a small amount of fine powder. Moreover, in the conventional thermoplastic resin,
The resin, which is an organic substance, and the inorganic filler, which is an inorganic substance, have a low affinity and are difficult to disperse, and since they exist independently of each other, they are the most mechanically weak when an external force such as thermal stress is applied. Although the destruction occurs from the interface between the resin and the inorganic filler, which is the part, and the characteristics cannot be sufficiently improved, the thermoplastic resin composite material of the present invention has the thermoplastic resin itself immobilized on the surface of the fine powder. It is considered that various characteristics are improved because the interface between the fine powder and the thermoplastic resin is strong and the affinity between them is good.

【0010】[0010]

【実施例】以下に示すポリアミド樹脂系材料の実施例1
〜2及び比較例1〜2において配合した各成分は以下の
通りである。 <熱可塑性樹脂複合材料1>撹拌機付きのフラスコの中
にコロイダルシリカ(日本アエロジル製 アエロジル
200;平均粒子径 約12nm,BET比表面積20
0±25m2/g)5g、トルエン500gを添加し、撹
拌機で撹拌しながら滴下ロートにてトルイレンジイソシ
アナート(スミジュールT−80 住友バイエル(株)
製、イソシアナート当量 82)1.46g添加し、8
0℃で3時間撹拌後、触媒(2−フェニルイミダゾー
ル、四国化成(株)製)0.5gを配合した後、溶媒を
減圧下で除去し、次いで、小型のヘンシェルミキサーに
投入し、更にポリアミド6(宇部興産(株)製 UBE
ナイロン 1011FB;アミン当量112)100g
を配合し500〜700rpmで撹拌した後、二軸混練
機にて混練温度250℃〜270℃で混練、反応させて
本発明の熱可塑性樹脂複合材料を得た。得られた熱可塑
性樹脂複合材料を赤外線吸収スペクトル、固体NMRで
チェックした結果、イソシアネート基とコロイダルシリ
カの水酸基及びポリアミド樹脂のアミノ基が反応してい
ることが確認できた。
EXAMPLE Example 1 of polyamide resin material shown below
-2 and each component mix | blended in Comparative Examples 1-2 are as follows. <Thermoplastic resin composite material 1> Colloidal silica (Nippon Aerosil made Aerosil
200; average particle size about 12 nm, BET specific surface area 20
0 ± 25 m 2 / g) 5 g and toluene 500 g are added, and the mixture is stirred with a stirrer while adding a dropping funnel toluylene diisocyanate (Sumijour T-80 Sumitomo Bayer Co., Ltd.).
Manufactured, isocyanato equivalent 82) 1.46g added, 8
After stirring at 0 ° C. for 3 hours, 0.5 g of a catalyst (2-phenylimidazole, manufactured by Shikoku Kasei Co., Ltd.) was added, the solvent was removed under reduced pressure, and then the mixture was put into a small Henschel mixer, and polyamide was further added. 6 (UBE manufactured by Ube Industries, Ltd.)
Nylon 1011FB; amine equivalent 112) 100g
Was mixed and stirred at 500 to 700 rpm, and then kneaded at a kneading temperature of 250 ° C. to 270 ° C. with a twin-screw kneader and reacted to obtain a thermoplastic resin composite material of the present invention. As a result of checking the obtained thermoplastic resin composite material by infrared absorption spectrum and solid-state NMR, it was confirmed that the isocyanate group, the hydroxyl group of colloidal silica and the amino group of polyamide resin were reacted.

【0011】<熱可塑性樹脂複合材料2>撹拌機付きの
フラスコの中にコロイダルシリカ(日本アエロジル製
アエロジル 300;平均粒子径 約7nm,BET比
表面積300±30m2/g)5g、トルエン500gを
添加し、撹拌機で撹拌しながら滴下ロートにてトリフェ
ニルメタントリイソシアナートの20%メチレンクロリ
ド溶液(デスモジュールR住友バイエル(株)製 イソシ
アナート当量123.3)11mlを添加し、80℃で
3時間撹拌後、触媒(2−フェニルイミダゾール、四国
化成(株)製)0.5gを配合した後、溶媒を減圧下で
除去し、次いで、小型のヘンシェルミキサーに投入し、
更にポリアミド6(宇部興産(株)製 UBEナイロン
1011FB;アミン当量112)100gを配合し
500〜700rpmで撹拌した後、二軸混練機にて混
練温度250℃〜270℃で混練、反応させて本発明の
熱可塑性樹脂複合材料を得た。得られた熱可塑性樹脂複
合材料を赤外線吸収スペクトル、固体NMRでチェック
した結果、イソシアネート基とコロイダルシリカの水酸
基及びポリアミド樹脂のアミノ基が反応していることが
確認できた。
<Thermoplastic resin composite material 2> Colloidal silica (made by Nippon Aerosil Co., Ltd.) is placed in a flask equipped with a stirrer.
Aerosil 300; average particle size of about 7 nm, BET specific surface area of 300 ± 30 m 2 / g) 5 g, and toluene 500 g were added, and a 20% methylene chloride solution of triphenylmethane triisocyanate was added with a dropping funnel while stirring with a stirrer ( Desmodur R Sumitomo Bayer Co., Ltd., isocyanate equivalent 123.3) 11 ml was added, and after stirring at 80 ° C. for 3 hours, 0.5 g of a catalyst (2-phenylimidazole, Shikoku Kasei Co., Ltd.) was added. , The solvent is removed under reduced pressure, then put into a small Henschel mixer,
Further, 100 g of polyamide 6 (UBE Nylon 1011FB; amine equivalent 112, manufactured by Ube Industries, Ltd.) was blended and stirred at 500 to 700 rpm, and then the mixture was kneaded at a kneading temperature of 250 ° C. to 270 ° C. with a twin-screw kneader to react and A thermoplastic resin composite material of the invention was obtained. As a result of checking the obtained thermoplastic resin composite material by infrared absorption spectrum and solid-state NMR, it was confirmed that the isocyanate group, the hydroxyl group of colloidal silica and the amino group of polyamide resin were reacted.

【0012】《実施例1〜2及び比較例1〜2》第1表
に示すように実施例については、熱可塑性樹脂複合材料
単体を、又、比較例については、配合原料を混合、混
練、粉砕して得られる可塑性樹脂成形材料を射出成形し
て成形品を得た。その成形品の評価結果も合わせて第1
表に示す。尚、得られた成形品の特性評価は、下記の方
法で行った。 (1) 引張強さ:ASTM D 638に準じて測定し
た。 (2) 曲げ弾性率:ASTM D 790に準じて測定し
た。 (3)熱変形温度:ASTM D 648に準じて測定し
た。(荷重 18.6kg/cm2
<< Examples 1 and 2 and Comparative Examples 1 and 2 >> As shown in Table 1, for the examples, the thermoplastic resin composite material alone was used, and for the comparative examples, the blended raw materials were mixed and kneaded. A plastic resin molding material obtained by crushing was injection-molded to obtain a molded product. The first also includes the evaluation results of the molded products
It is shown in the table. In addition, the characteristic evaluation of the obtained molded article was performed by the following method. (1) Tensile strength: Measured according to ASTM D638. (2) Flexural modulus: measured according to ASTM D790. (3) Heat distortion temperature: measured according to ASTM D648. (Load 18.6 kg / cm 2 )

【0013】[0013]

【表1】 [Table 1]

【0014】以下に示すポリオレフィン樹脂系材料の実
施例3〜4及び比較例3〜4において配合した各成分は
以下の通りである。 <熱可塑性樹脂複合材料3>撹拌機付きのフラスコの中
にコロイダルシリカ(日本アエロジル製 アエロジル
200;平均粒子径 約12nm,BET比表面積20
0±25m2/g)5g、トルエン500gを添加し、撹
拌機で撹拌しながら滴下ロートにてトルイレンジイソシ
アナート(スミジュールT−80 住友バイエル(株)
製、イソシアナート当量 82)2.34gを添加し、
80℃で3時間撹拌後、触媒(2−フェニルイミダゾー
ル、四国化成(株)製)0.5gを配合した後、溶媒を
減圧下で除去し、次いで、小型のヘンシェルミキサーに
投入し、更にエチレン−ビニルアルコール共重合体
((株)クラレ製 エバール EP−G 110;水酸
基当量70)100gを配合し500〜700rpmで
撹拌した後、二軸混練機にて混練温度180℃〜200
℃で混練、反応させて本発明の熱可塑性樹脂複合材料を
得た。得られた熱可塑性樹脂複合材料を赤外線吸収スペ
クトル、固体NMRでチェックした結果、イソシアネー
ト基とコロイダルシリカ及びエチレン−ビニルアルコー
ル共重合体の水酸基が反応していることが確認できた。
The components blended in Examples 3 to 4 and Comparative Examples 3 to 4 of the polyolefin resin material shown below are as follows. <Thermoplastic resin composite material 3> Colloidal silica (Nippon Aerosil made Aerosil
200; average particle size about 12 nm, BET specific surface area 20
0 ± 25 m 2 / g) 5 g and toluene 500 g are added, and the mixture is stirred with a stirrer while adding a dropping funnel toluylene diisocyanate (Sumijour T-80 Sumitomo Bayer Co., Ltd.).
Manufactured, isocyanate equivalent 82) 2.34 g was added,
After stirring at 80 ° C. for 3 hours, 0.5 g of a catalyst (2-phenylimidazole, manufactured by Shikoku Kasei Co., Ltd.) was added, the solvent was removed under reduced pressure, and then the mixture was put into a small Henschel mixer and ethylene was further added. -Vinyl alcohol copolymer (EVAL EP-G 110, manufactured by Kuraray Co., Ltd .; hydroxyl group equivalent 70) (100 g) was mixed and stirred at 500 to 700 rpm, and then the kneading temperature was 180 ° C to 200 with a biaxial kneader.
The thermoplastic resin composite material of the present invention was obtained by kneading and reacting at ° C. As a result of checking the obtained thermoplastic resin composite material by infrared absorption spectrum and solid-state NMR, it was confirmed that the isocyanate group reacted with the colloidal silica and the hydroxyl group of the ethylene-vinyl alcohol copolymer.

【0015】<熱可塑性樹脂複合材料4>撹拌機付きの
フラスコの中にコロイダルシリカ(日本アエロジル製
アエロジル 300;平均粒子径 約7nm,BET比
表面積300±30m2/g)5g、トルエン500gを
添加し、撹拌機で撹拌しながら滴下ロートにてトリフェ
ニルメタントリイソシアナートの20%メチレンクロリ
ド溶液(デスモジュールR住友バイエル(株)製 イソシ
アナート当量123.3)17.6mlを添加し、80
℃で3時間撹拌後、触媒(2−フェニルイミダゾール、
四国化成(株)製)0.5gを配合した後、溶媒を減圧
下で除去し、次いで、小型のヘンシェルミキサーに投入
し、更にエチレン−ビニルアルコール共重合体((株)
クラレ製エバール EP−G 110;水酸基当量 7
0)100gを配合し500〜700rpmで撹拌した
後、二軸混練機にて混練温度180℃〜200℃で混
練、反応させて本発明の熱可塑性樹脂複合材料を得た。
得られた熱可塑性樹脂複合材料を赤外線吸収スペクト
ル、固体NMRでチェックした結果、イソシアネート基
とコロイダルシリカ及びエチレン−ビニルアルコール共
重合体の水酸基が反応していることが確認できた。
<Thermoplastic resin composite material 4> Colloidal silica (made by Nippon Aerosil Co., Ltd.) is placed in a flask equipped with a stirrer.
Aerosil 300; average particle size of about 7 nm, BET specific surface area of 300 ± 30 m 2 / g) 5 g, and toluene 500 g were added, and a 20% methylene chloride solution of triphenylmethane triisocyanate was added with a dropping funnel while stirring with a stirrer ( Desmodur R Sumitomo Bayer Co., Ltd., isocyanate equivalent 123.3) 17.6 ml was added, and 80
After stirring for 3 hours at ℃, the catalyst (2-phenylimidazole,
After blending 0.5 g of Shikoku Kasei Co., Ltd., the solvent was removed under reduced pressure, and then the mixture was put into a small Henschel mixer, and further ethylene-vinyl alcohol copolymer (Co., Ltd.) was added.
Kuraray's Eval EP-G 110; hydroxyl equivalent 7
0) 100 g was mixed and stirred at 500 to 700 rpm, and then kneaded and reacted at a kneading temperature of 180 ° C. to 200 ° C. in a biaxial kneader to obtain a thermoplastic resin composite material of the present invention.
As a result of checking the obtained thermoplastic resin composite material by infrared absorption spectrum and solid-state NMR, it was confirmed that the isocyanate group reacted with the colloidal silica and the hydroxyl group of the ethylene-vinyl alcohol copolymer.

【0016】《実施例3〜4及び比較例3〜4》第2表
に示すように実施例については、熱可塑性樹脂複合材料
単体を、又、比較例については、配合原料を混合、混
練、粉砕して得られる可塑性樹脂成形材料を射出成形し
て成形品を得、曲げ強さ、曲げ弾性率を評価した。又、
押し出し成形をしてシートを得、酸素透過量を評価し
た。その評価結果も併せて第2表に示す。尚、得られた
成形品の特性評価は、下記の方法で行った。 (1) 曲げ強さ:ASTM D 790に準じて測定し
た。 (2) 曲げ弾性率:ASTM D 790に準じて測定し
た。 (3) 酸素透過量:JIS Z 1707に準じて測定し
た。
<< Examples 3 to 4 and Comparative Examples 3 to 4 >> As shown in Table 2, in the examples, the thermoplastic resin composite material alone was mixed, and in the comparative examples, the blended raw materials were mixed and kneaded. The plastic resin molding material obtained by crushing was injection-molded to obtain a molded product, and the bending strength and bending elastic modulus were evaluated. or,
A sheet was obtained by extrusion molding, and the oxygen permeation amount was evaluated. The evaluation results are also shown in Table 2. In addition, the characteristic evaluation of the obtained molded article was performed by the following method. (1) Bending strength: measured according to ASTM D790. (2) Flexural modulus: measured according to ASTM D790. (3) Oxygen permeation amount: measured according to JIS Z 1707.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】本発明の製造方法により、無機充填材の
分散性及び樹脂と無機充填材との界面強度が良好な熱可
塑性樹脂複合材料が得られ、該熱可塑性樹脂複合材料を
用いることにより、分散性、各種特性に優れる熱可塑性
樹脂組成物が得られる。
By the production method of the present invention, a thermoplastic resin composite material having good dispersibility of the inorganic filler and interfacial strength between the resin and the inorganic filler can be obtained, and by using the thermoplastic resin composite material A thermoplastic resin composition having excellent dispersibility and various properties can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 101/00 C08L 101/00 C09C 3/08 PBU C09C 3/08 PBU // C08G 18/08 NFQ C08G 18/08 NFQ ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location C08L 101/00 C08L 101/00 C09C 3/08 PBU C09C 3/08 PBU // C08G 18/08 NFQ C08G 18/08 NFQ

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 水酸基を有する微粒粉末(a)と分子内
に2個以上のイソシアネート基を有するイソシアネート
類(b)を混合撹拌して微粒粉末表面を該イソシアネー
ト類で反応被覆した後、更にイソシアネート基と反応可
能な官能基を1個以上有する熱可塑性樹脂(c)を添加
し、反応させることにより、微粒粉末表面に熱可塑性樹
脂を固定することを特徴とする熱可塑性樹脂複合材料の
製造方法。
1. A fine powder (a) having a hydroxyl group and an isocyanate (b) having two or more isocyanate groups in the molecule are mixed and stirred to reactively coat the surface of the fine powder with the isocyanate, and then the isocyanate is further added. A method for producing a thermoplastic resin composite material, characterized in that the thermoplastic resin (c) having at least one functional group capable of reacting with a group is added and reacted to fix the thermoplastic resin on the surface of the fine particle powder. .
【請求項2】 微粒粉末(a)が平均粒子径100μ以
下である請求項1記載の熱可塑性樹脂複合材料の製造方
法。
2. The method for producing a thermoplastic resin composite material according to claim 1, wherein the fine powder (a) has an average particle diameter of 100 μm or less.
【請求項3】 微粒粉末(a)が、カーボンブラック、
コロイダルシリカ、フュームドシリカ、シリカゲル、ア
ルミナのなかから選ばれた少なくとも1つ以上である請
求項1又は2記載の熱可塑性樹脂複合材料の製造方法。
3. The fine powder (a) is carbon black,
The method for producing a thermoplastic resin composite material according to claim 1 or 2, which is at least one selected from colloidal silica, fumed silica, silica gel, and alumina.
【請求項4】 熱可塑性樹脂(c)の官能基が、水酸
基、カルボキシル基又はアミノ基である請求項1、2又
は3記載の熱可塑性樹脂複合材料の製造方法。
4. The method for producing a thermoplastic resin composite material according to claim 1, 2 or 3, wherein the functional group of the thermoplastic resin (c) is a hydroxyl group, a carboxyl group or an amino group.
【請求項5】 熱可塑性樹脂(c)がポリアミド樹脂で
ある請求項1、2、3又は4記載の熱可塑性樹脂複合材
料の製造方法。
5. The method for producing a thermoplastic resin composite material according to claim 1, 2, 3 or 4, wherein the thermoplastic resin (c) is a polyamide resin.
【請求項6】 熱可塑性樹脂(c)がエチレン−ビニル
アルコール共重合体、エチレン−アクリル酸共重合体又
はエチレン−メタアクリル酸共重合体である請求項1、
2、3又は4記載の熱可塑性樹脂複合材料の製造方法。
6. The thermoplastic resin (c) is an ethylene-vinyl alcohol copolymer, an ethylene-acrylic acid copolymer or an ethylene-methacrylic acid copolymer.
The method for producing a thermoplastic resin composite material according to 2, 3, or 4.
【請求項7】 請求項1、2、3、4、5又は6記載の
製造方法により得られる熱可塑性樹脂複合材料。
7. A thermoplastic resin composite material obtained by the manufacturing method according to claim 1, 2, 3, 4, 5 or 6.
JP7311214A 1995-11-29 1995-11-29 Production of thermoplastic resin composite material and thermoplastic resin composite material Pending JPH09151316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7311214A JPH09151316A (en) 1995-11-29 1995-11-29 Production of thermoplastic resin composite material and thermoplastic resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7311214A JPH09151316A (en) 1995-11-29 1995-11-29 Production of thermoplastic resin composite material and thermoplastic resin composite material

Publications (1)

Publication Number Publication Date
JPH09151316A true JPH09151316A (en) 1997-06-10

Family

ID=18014481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7311214A Pending JPH09151316A (en) 1995-11-29 1995-11-29 Production of thermoplastic resin composite material and thermoplastic resin composite material

Country Status (1)

Country Link
JP (1) JPH09151316A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522556A (en) * 2002-04-12 2005-07-28 キャボット コーポレイション Process for producing modified pigments
JP2007238786A (en) * 2006-03-09 2007-09-20 Tokai Carbon Co Ltd Surface-modified carbon black for electronic paper and method of manufacturing the same
JP2007238785A (en) * 2006-03-09 2007-09-20 Tokai Carbon Co Ltd Surface-modified dispersible carbon black
JP2007308582A (en) * 2006-05-18 2007-11-29 Tokai Carbon Co Ltd Surface-modified carbon black, method for producing the same and dispersion thereof
WO2008146410A1 (en) * 2007-05-29 2008-12-04 Tokai Carbon Co., Ltd. Dispersible surface-modified carbon black
JP2009120640A (en) * 2007-11-12 2009-06-04 Tokai Carbon Co Ltd Hydrophilic resin dispersion type carbon black and method for producing aqueous dispersion of hydrophilic resin dispersion type carbon black
JPWO2007142168A1 (en) * 2006-06-02 2009-10-22 東海カーボン株式会社 Aqueous carbon black pigment and its aqueous dispersion
WO2010113888A1 (en) * 2009-03-30 2010-10-07 株式会社クラレ Resin composition and multi-layered structure
WO2012020611A1 (en) * 2010-08-12 2012-02-16 東海カーボン株式会社 Polyurethane resin addition pigment, process for producing polyurethane resin addition pigment, pigment dispersion composition, and jet printing ink composition
WO2012108400A1 (en) * 2011-02-07 2012-08-16 東海カーボン株式会社 Process for producing pigment dispersion composition
CN113861668A (en) * 2021-11-17 2021-12-31 尼伦化学(上海)有限公司 High-refractive-index and high-wear-resistance TPU (thermoplastic polyurethane) particle and preparation method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005522556A (en) * 2002-04-12 2005-07-28 キャボット コーポレイション Process for producing modified pigments
JP2007238786A (en) * 2006-03-09 2007-09-20 Tokai Carbon Co Ltd Surface-modified carbon black for electronic paper and method of manufacturing the same
JP2007238785A (en) * 2006-03-09 2007-09-20 Tokai Carbon Co Ltd Surface-modified dispersible carbon black
JP2007308582A (en) * 2006-05-18 2007-11-29 Tokai Carbon Co Ltd Surface-modified carbon black, method for producing the same and dispersion thereof
JP5120757B2 (en) * 2006-06-02 2013-01-16 東海カーボン株式会社 Aqueous carbon black pigment and its aqueous dispersion
JPWO2007142168A1 (en) * 2006-06-02 2009-10-22 東海カーボン株式会社 Aqueous carbon black pigment and its aqueous dispersion
WO2008146410A1 (en) * 2007-05-29 2008-12-04 Tokai Carbon Co., Ltd. Dispersible surface-modified carbon black
JP2009120640A (en) * 2007-11-12 2009-06-04 Tokai Carbon Co Ltd Hydrophilic resin dispersion type carbon black and method for producing aqueous dispersion of hydrophilic resin dispersion type carbon black
WO2010113888A1 (en) * 2009-03-30 2010-10-07 株式会社クラレ Resin composition and multi-layered structure
US8877865B2 (en) 2009-03-30 2014-11-04 Kuraray Co., Ltd. Resin composition and multilayered structure
WO2012020611A1 (en) * 2010-08-12 2012-02-16 東海カーボン株式会社 Polyurethane resin addition pigment, process for producing polyurethane resin addition pigment, pigment dispersion composition, and jet printing ink composition
JP2012041374A (en) * 2010-08-12 2012-03-01 Tokai Carbon Co Ltd Polyurethane resin-added pigment, production method for polyurethane resin-added pigment, pigment dispersed composition, and inkjet ink composition
US9102840B2 (en) 2010-08-12 2015-08-11 Tokai Carbon Co., Ltd. Polyurethane resin addition pigment, process for producing polyurethane resin addition pigment, pigment dispersion composition, and jet printing ink composition
WO2012108400A1 (en) * 2011-02-07 2012-08-16 東海カーボン株式会社 Process for producing pigment dispersion composition
CN103370382A (en) * 2011-02-07 2013-10-23 东海炭素株式会社 Process for producing pigment dispersion composition
US9018317B2 (en) 2011-02-07 2015-04-28 Tokai Carbon Co., Ltd. Process for producing pigment dispersion composition
CN113861668A (en) * 2021-11-17 2021-12-31 尼伦化学(上海)有限公司 High-refractive-index and high-wear-resistance TPU (thermoplastic polyurethane) particle and preparation method thereof
CN113861668B (en) * 2021-11-17 2023-02-28 尼伦化学(上海)有限公司 High-refractive-index and high-wear-resistance TPU (thermoplastic polyurethane) particle and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH09151316A (en) Production of thermoplastic resin composite material and thermoplastic resin composite material
JP4546030B2 (en) Surface-treated chalk and carbon black filled adhesive
JPH09118821A (en) Production of composite material of thermosetting resin and composite material of thermosetting resin
JP2004083696A (en) Primer composition
JP2002012645A (en) One-package moisture-curing polyurethane composition
CN112812543B (en) Compatibilization method of silicon-based thermoplastic elastomer and silicon-based thermoplastic elastomer obtained by compatibilization method
JPH09151274A (en) Production of thermoplastic resin composite material and thermoplastic resin composite material
JPH05331321A (en) Dynamically crosslinked polyolefin
JPH09118829A (en) Production of thermosetting resin composite material and thermosetting resin composite material produced thereby
JPS62236879A (en) Epoxy-resin-base adhesive composition
JPH06293863A (en) Method for treating surfance of inorfanic filler, inorganic filler and composite material
JP3654619B2 (en) Polycarbodiimide copolymer and method for producing the same
JP2002363438A (en) Inorganic reinforcing filler and thermoplastic resin composition containing the same
JP2800308B2 (en) Method for producing water-swellable rubber composition
JPH0977851A (en) Production of immobilized catalyst, immobilized catalyst and new thermosetting resin composition
JPH05170988A (en) Polypropylene-based resin composition
JPH0397750A (en) Thermoplastic elastomer
JPH08143850A (en) One-can type cold-curable adhesive composition
WO2003062320A1 (en) Polyamide resin composition
JPH10237314A (en) Production of wood-based molded product
CN117089139A (en) Modified polypropylene composition
JPH04239542A (en) Polypropylene resin composition
JPH09157405A (en) Sliding elastomer molding product
JPH09316304A (en) Epoxy resin composition for semiconductor sealing
JPS63196648A (en) Plastic molding material