JPH09150737A - Circumferentially travelling method for pipe traveling device, and pipe traveling device - Google Patents

Circumferentially travelling method for pipe traveling device, and pipe traveling device

Info

Publication number
JPH09150737A
JPH09150737A JP8049854A JP4985496A JPH09150737A JP H09150737 A JPH09150737 A JP H09150737A JP 8049854 A JP8049854 A JP 8049854A JP 4985496 A JP4985496 A JP 4985496A JP H09150737 A JPH09150737 A JP H09150737A
Authority
JP
Japan
Prior art keywords
traveling
pipe
steering angle
magnetic attraction
vehicle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8049854A
Other languages
Japanese (ja)
Inventor
Takashi Kikuta
隆 菊田
Keiji Kawaguchi
圭史 川口
Keizo Iwao
敬三 巌
Otoo Yoshida
乙雄 吉田
Makoto Kaneuchi
信 金内
Yukio Fukagawa
幸夫 深川
Reizo Miyauchi
礼三 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8049854A priority Critical patent/JPH09150737A/en
Publication of JPH09150737A publication Critical patent/JPH09150737A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/18Appliances for use in repairing pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pipeline Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent omission of check of a weld line burnt in the pipe circumferential direction, by setting the steering angles for satisfying the specified relationship between driving raveling bodies at the front and at the tail end in the mutual opposite directions, and making the driving traveling bodies travel in the pipe in the circumferential direction. SOLUTION: A circumferential position detection means 500 for detecting the inclination ϕ from the vertical lower part of a steering shaft is provided as an attitude detector, the distance L between a pipe inner wall surface 51 and the position of center of gravity, the weights W1 of driving traveling bodies 10a, 10b, the weights W2 of driven traveling bodies 20a, 20b, the relationship; W=W1+W2, attracting force P of a pair of magnetic attracting ring bodies 13, the attaching width S, and the total attracting force K of permanent magnets per driven traveling body are stored in a storing means 501, the angles are set from the data so as to satisfy the expression; θ1=cos<-1> (W1×L×sinϕ/(SP×L×sinϕ/(SP×+S×W1×cosϕ/2)) and θ2= sin<-1> ((W1×sinϕ×(2×P+K+W×sinϕ)×μ)/(2×F)), and the steering angles θare made in the mutual opposite directions, and the driving traveling bodies travel in the pipe in the circumferential direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、管径、配管姿勢
(水平、垂直)が変化し、また、弁等が設けられる管内
を、管軸方向に走行面に付着しながら走行し、管内の点
検を行う管内走行装置の周方向走行方法及びこのような
走行をおこなうことができる管内走行装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention changes the pipe diameter and the posture of the pipe (horizontal, vertical), and travels inside a pipe provided with a valve and the like while adhering to a traveling surface in the axial direction of the pipe. The present invention relates to a circumferential traveling method of an in-pipe traveling device to be inspected, and a in-pipe traveling device capable of performing such traveling.

【0002】[0002]

【従来の技術】従来、ティーズ等の分岐を有し、広範囲
で管径が異なる配管内(例えば200A〜600A)に
適用でき、長距離(例えば500m)走行できる管内走
行装置としては、磁気吸着力により管内壁面に吸着しな
がら管内を走行する走行車体を直列に多数体連結した磁
気車輪式管内走行装置がある。この管内走行装置は、車
軸の両端側に一対備えられる磁気吸着輪体で走行する走
行機構と、前記車軸中心を操舵し、磁気吸着輪体を管軸
方向または管周方向に向ける操舵機構と、配管内部を点
検するカメラを備えた駆動走行車体を、最前列と最後尾
に配置し、その中間に、走行に必要なケーブルリール、
蓄電池等の機器を収納し、管内壁面に対して非接触に設
けた永久磁石で管内面に吸着し、駆動走行車体に牽引さ
れて球状車輪で走行する従動走行車体を配置し、各走行
車体を1自由度の回転支持機構を介した軸で連結した装
置であり、前記操舵機構により、磁気吸着輪体を管軸方
向に合わせ、管内前方の配管状況をカメラにより観察し
ながら管長手方向に走行し、管周方向に施工されている
溶接線の点検時には、前記操舵機構により車軸中心を回
転させて磁気吸着輪体を管周方向と平行に向けて周方向
の走行を行う。
2. Description of the Related Art Conventionally, a magnetic attraction force has been used as an in-pipe traveling device that has branches such as teeth and can be applied in a wide range of pipe diameters (for example, 200 A to 600 A) and can travel a long distance (for example, 500 m) Therefore, there is a magnetic wheel type in-pipe traveling device in which a plurality of traveling vehicle bodies traveling in the pipe while being attracted to the inner wall surface of the pipe are connected in series. This in-pipe traveling device is a traveling mechanism that travels with a pair of magnetic attraction wheels provided at both ends of the axle, and a steering mechanism that steers the axle center and directs the magnetic attraction wheel in the pipe axis direction or the pipe circumferential direction, The driving vehicle body equipped with a camera for inspecting the inside of the piping is arranged in the front row and the rearmost, and in the middle, the cable reel necessary for traveling,
It stores equipment such as storage batteries, and attracts it to the inner surface of the pipe with a permanent magnet that is provided in non-contact with the inner wall surface of the pipe, and arranges a driven vehicle body that is pulled by the driving vehicle body and travels with spherical wheels. It is a device connected by a shaft via a 1-degree-of-freedom rotation support mechanism. The steering mechanism adjusts the magnetic attraction wheel body to the pipe axis direction, and runs in the pipe longitudinal direction while observing the pipe condition in front of the pipe with a camera. Then, at the time of inspecting the welding line constructed in the pipe circumferential direction, the steering mechanism rotates the axle center to run the magnetic attraction wheel in the circumferential direction parallel to the pipe circumferential direction.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、駆動走
行車体の操舵機構が車軸中心を回転させて磁気吸着輪体
を管周方向と並行となるように操舵するため、前車軸と
後車軸の磁気吸着輪体が、管断面方向から見た状態では
図12に示すように磁気吸着輪体による支持が一点支持
となりやすく、走行車体本体自重により発生するモーメ
ント力を受けられず、走行車体を安定した姿勢で周方向
に走行させることができず、最悪の場合、落下、横転す
る等の不具合があった。上記の不具合を解消するため
に、磁気吸着輪体の駆動機構及び操舵機構を4WD、4
WS構成とし、各磁気吸着輪体を車軸中心でなく、磁気
吸着輪体廻りで管軸に対して直角に操舵して、磁気吸着
輪体による支持を、二点支持として管周方向に走行する
方法が考えられる。しかしながら、4WD、4WS構成
とするためには、磁気吸着輪体回転軸に回転駆動手段
を、かつ、磁気吸着輪体回転軸と直交する軸に操舵手段
を設ける必要があり、各磁気吸着輪体を独立に制御する
場合には、最大8軸の駆動源が必要となり、構造が複雑
になる。さらに、管内走行装置の体積、重量が増し、管
内の限られたスペースでは駆動源を設けることが困難で
ある。本発明では、上記問題点を解決するために、走行
装置の体積、重量を増加させることなく、簡易な構造で
容易に管の周方向に走行できる方法および、このような
方法を採ることができる管内走行装置を提供することを
目的とする。
However, since the steering mechanism of the drive traveling vehicle body rotates the center of the axle to steer the magnetic attraction wheel body in parallel with the circumferential direction of the vehicle, the magnetic attraction of the front and rear axles. As shown in FIG. 12, when the wheel body is viewed from the pipe cross-section direction, the magnetic attraction wheel body is apt to support the point at a single point, and the momentary force generated by the weight of the vehicle body itself is not received. Therefore, in the worst case, there was a problem such as falling or overturning. In order to solve the above-mentioned problems, the drive mechanism and steering mechanism of the magnetic attraction wheel body are 4WD and 4WD.
With the WS configuration, the magnetic attraction wheels are steered around the magnetic attraction wheels not at the center of the axle and at right angles to the tube axis, and the support by the magnetic attraction wheels is run in the pipe circumferential direction as two-point support. A method can be considered. However, in order to have the 4WD and 4WS configurations, it is necessary to provide a rotation driving means on the rotation axis of the magnetic attraction wheel body and a steering means on an axis orthogonal to the rotation axis of the magnetic attraction wheel body. In the case of independently controlling the motors, a drive source with a maximum of 8 axes is required, and the structure becomes complicated. Furthermore, the volume and weight of the in-pipe traveling device increase, and it is difficult to provide a drive source in a limited space inside the pipe. In order to solve the above-mentioned problems, the present invention can adopt a method capable of easily traveling in the circumferential direction of the pipe with a simple structure without increasing the volume and weight of the traveling device, and such a method. An object is to provide a traveling device in a pipe.

【0004】[0004]

【課題を解決するための手段】前述の課題を解決するた
め、本発明による管内走行装置の周方向走行方法の特
徴、構成を以下の通りとした。
In order to solve the above-mentioned problems, the characteristics and configuration of the circumferential traveling method of the in-pipe traveling device according to the present invention are as follows.

【0005】〔構成〕即ち請求項1に係わる管内走行装
置の周方向走行方法の特徴手段は、磁気吸着力により管
内壁面に吸着しながら管内を走行する走行車体を直列に
多数体連結して構成され、車軸の両端側に備えられる一
対の磁気吸着輪体により管内壁面に吸着し、前記一対の
磁気吸着輪体を駆動する駆動手段と、前記磁気吸着輪体
を、車体の前後方向及び磁気吸着輪体の軸に直角な操舵
軸廻りに操舵する操舵手段とを備えた走行体を一対、車
体の前方部位と後方部位とに振り分けして備えた駆動走
行車体と、前記管内壁面に対して非接触に設けた永久磁
石で前記管内壁面に吸着する吸着手段と、前記駆動走行
車体に牽引されて球状車輪で走行する走行手段とを備え
た従動走行車体とを備え、前記駆動走行車体を最前列と
最後尾に配置し、その中間に、前記従動走行車体を配置
し、各走行車体を車体幅方向の軸廻りで1自由度の回転
支持機構を介して軸で連結した管内走行装置の周方向走
行をおこなう場合に、下記のようにおこなうのである。
即ち、各々の駆動走行車体の自重をW1、管内壁面から
重心位置までの距離をL、一対の磁気吸着輪体の吸着力
をP、取付け幅をS、従動走行車体全ての自重を2×W
2、W=W1+W2、永久磁石の1従動走行車体当たり
の合計吸着力をK、管内壁面と磁気吸着輪体との摩擦係
数をμ、駆動手段において1駆動手段により発生できる
走行力をF、前記操舵軸の鉛直下方からの傾きをφとし
た場合に、管軸方向に対する操舵角θを、その絶対値が
[Structure] That is, the characteristic means of the circumferential traveling method of the in-pipe traveling device according to claim 1 is that a plurality of traveling vehicle bodies traveling in the pipe while being attracted to the inner wall surface of the pipe by magnetic attraction are connected in series. Drive means for adsorbing to the inner wall surface of the pipe by a pair of magnetic attraction wheels provided at both ends of the axle, and driving the pair of magnetic attraction wheels with the magnetic attraction wheels in the longitudinal direction of the vehicle body and the magnetic attraction. A drive traveling vehicle body provided with a pair of traveling bodies provided with steering means for steering around a steering axis perpendicular to the axis of the wheel body, which is divided into a front portion and a rear portion of the vehicle body, and a non-conducting portion with respect to the pipe inner wall surface. The driven traveling vehicle body is provided with a driven vehicle body provided with an adsorbing means for adsorbing to the inner wall surface of the pipe by a permanent magnet provided in contact with the driven traveling vehicle body and traveling means driven by spherical wheels. And place it at the end, In the case where the driven traveling vehicle body is arranged in the middle of each of the traveling vehicle bodies and the traveling vehicle bodies are circumferentially traveled in a circumferential direction, the in-pipe traveling device in which the traveling vehicle bodies are connected by a shaft through a rotation support mechanism having one degree of freedom around the shaft in the vehicle body width direction is used. It is done like this.
That is, the weight of each driving vehicle body is W1, the distance from the inner wall surface of the tube to the center of gravity is L, the attraction force of the pair of magnetic attraction wheels is P, the mounting width is S, and the weight of all the driven vehicles is 2 × W.
2, W = W1 + W2, the total attraction force of the permanent magnet per driven vehicle body is K, the friction coefficient between the inner wall surface of the pipe and the magnetic attraction wheel body is μ, and the running force that can be generated by one driving means in the driving means is F, When the inclination of the steering shaft from below vertically is φ, the absolute value of the steering angle θ with respect to the pipe axis direction is

【数7】θ≦cos-1(W1×L×sinφ/(S×P
+S×W1×cosφ/2)) θ≧sin-1((W×sinφ+(2×P+K+W×c
osφ)×μ)/(2×F)) を満足する角度とし、最前列と最後尾の駆動走行車体の
操舵角θを、互いに相反する方向に設定し、管内を周方
向に走行するのである。
[Equation 7] θ ≦ cos −1 (W1 × L × sin φ / (S × P
+ S × W1 × cos φ / 2)) θ ≧ sin −1 ((W × sin φ + (2 × P + K + W × c
osφ) × μ) / (2 × F)), and the steering angles θ of the front-row and rear-most driving traveling vehicle bodies are set in mutually opposite directions, and the vehicle travels in the pipe in the circumferential direction. .

【0006】〔作用及び効果〕この管内走行装置は、走
行装置の最前列と最後尾に駆動走行車体を備え、それら
の中間に従動走行車体を備えて構成される。そして、こ
れらは、車体幅方向の軸廻りで1自由度の回転式機構を
介して軸で連結される。従って、前後一対の駆動走行車
体が管周方向に移動する状態にあっては、従動走行車体
もこれに追随して、移動する。管内走行装置は、複数の
走行車体が、夫々直線状に配列した状態(図1に模式的
に、図5に具体的に示している)で、所定位置までの管
軸方向に移動をおこなってくる。そして、本願の方法を
使用して、管周方向の走行をおこなう。この方法にあっ
ては、管内走行装置に於ける最前列と最後尾に配設され
る駆動走行車体の操舵角(車体前後方向に対する輪体の
移動方向のなす角で、0以上90度以下)θに特徴があ
る。即ち、図1に示すように、最前列と最後尾におい
て、これらが所定の同一角度でありながら、互いに相反
する方向に設定づけられる。従って、図1にも示すよう
に、駆動手段により磁気吸着輪体を回転駆動すると、最
前列と最後尾との走行車体夫々において、管周方向の走
行力F1と管軸方向の走行力F2が発生する。そして、
操舵角の関係から、最前列と最後尾との走行車体間にお
いて、管軸方向の走行力F2は打ち消され、管周方向の
走行力F1のみが残る。従って、管内走行装置は、管周
方向に走行できる。さらに、前記の操舵角の選択にあた
っては、数7に示す条件を満たすように設定する。この
場合、この角度は、後に詳細に説明するように、磁気吸
着輪体の支持スパンによる転倒防止可能なモーメント力
が得られ、さらに、管周方向の走行力を得られる条件を
満たすものである。結果、管内走行装置は良好な管周方
向走行を行える。
[Operation and Effect] This in-pipe traveling device is provided with a drive traveling vehicle body at the front row and the rearmost portion of the traveling device, and a driven traveling vehicle body in between. These are connected by a shaft around a shaft in the vehicle width direction via a rotary mechanism having one degree of freedom. Therefore, when the pair of front and rear driving traveling vehicle bodies move in the circumferential direction of the pipe, the driven traveling vehicle body also follows this movement. The in-pipe traveling device moves a plurality of traveling bodies in a pipe axis direction to a predetermined position in a state where each of the traveling vehicle bodies is linearly arranged (schematically shown in FIG. 1 and specifically shown in FIG. 5). come. Then, using the method of the present application, traveling in the pipe circumferential direction is performed. According to this method, the steering angle of the driving traveling vehicle body arranged in the front row and the rearmost row in the in-pipe traveling device (the angle formed by the moving direction of the wheel body with respect to the vehicle body front-rear direction is 0 to 90 degrees). There is a feature in θ. That is, as shown in FIG. 1, the front row and the rearmost row are set in directions opposite to each other even though they have the same predetermined angle. Therefore, as shown in FIG. 1, when the magnetic attraction wheel is driven to rotate by the driving means, the traveling force F1 in the pipe circumferential direction and the traveling force F2 in the pipe axial direction are respectively generated in the traveling vehicle bodies in the front row and the rearmost one. Occur. And
Due to the relationship of the steering angle, the traveling force F2 in the pipe axis direction is canceled between the traveling vehicle bodies in the front row and the rearmost one, and only the traveling force F1 in the pipe circumferential direction remains. Therefore, the in-pipe traveling device can travel in the pipe circumferential direction. Furthermore, in selecting the steering angle, the steering angle is set so as to satisfy the condition shown in Expression 7. In this case, this angle satisfies the condition that a moment force capable of preventing tipping due to the support span of the magnetic attraction wheel body can be obtained and a traveling force in the pipe circumferential direction can be obtained, as will be described later in detail. . As a result, the in-pipe traveling device can perform good traveling in the pipe circumferential direction.

【0007】さて、このような管周方向の走行をおこな
うことが可能な管内走行装置としては、上記の構成の管
内走行装置において、操舵軸の鉛直下方からの傾きφ
(0以上180度以下)を検出する周方向位置検出手段
を備え、
As an in-pipe traveling device capable of performing such traveling in the pipe circumferential direction, in the in-pipe traveling device having the above-mentioned configuration, the inclination φ of the steering shaft from the vertically downward direction is φ.
A circumferential position detecting means for detecting (0 to 180 degrees) is provided,

【数8】θ1=cos-1(W1×L×sinφ/(S×
P+S×W1×cosφ/2)) で表される上限操舵角θ1を導出する上限操舵角導出手
段と、
[Equation 8] θ1 = cos −1 (W1 × L × sin φ / (S ×
P + S × W1 × cos φ / 2)) upper limit steering angle deriving means for deriving an upper limit steering angle θ1

【数9】θ2=sin-1((W×sinφ+(2×P+
K+W×cosφ)×μ)/(2×F)) で表される下限操舵角θ2を導出する下限操舵角導出手
段とを備え、上限操舵角θ1及び下限操舵角θ2の中間
の値を導出操舵角として導出する操舵角決定手段を備
え、最前列と最後尾の駆動走行車体の管軸方向に対する
る操舵角θを、絶対値が前記導出操舵角で、互いに相反
する方向に設定する操舵角設定手段を備えておけばよ
い。このようにしておくと、周方向位置検出手段によっ
て検出された操舵軸の鉛直下方からの傾きφに従って、
上限操舵角導出手段と下限操舵角導出手段とにより、上
限操舵角θ1及び下限操舵角θ2が導出されるととも
に、これらから走行車体の姿勢に適した導出操舵角を導
出して、この値の操舵角を取ることにより、良好な管周
方向の走行をおこなうことができる。
[Equation 9] θ2 = sin −1 ((W × sin φ + (2 × P +
K + W × cos φ) × μ) / (2 × F)) and a lower limit steering angle deriving means for deriving a lower limit steering angle θ2, and a steering intermediate between the upper limit steering angle θ1 and the lower limit steering angle θ2 Steering angle setting means for deriving as steering angle, and steering angle setting for setting steering angles θ with respect to the pipe axis direction of the front row and the rearmost driving vehicle body in directions opposite to each other with the absolute value being the derived steering angle Means should be provided. With this arrangement, according to the inclination φ of the steering shaft from below in the vertical direction detected by the circumferential position detecting means,
By the upper limit steering angle deriving means and the lower limit steering angle deriving means, the upper limit steering angle θ1 and the lower limit steering angle θ2 are derived, and a derived steering angle suitable for the posture of the traveling vehicle body is derived from these, and steering of this value is performed. By taking a corner, it is possible to perform good traveling in the pipe circumferential direction.

【0008】〔構成〕請求項3に係わる管内走行装置の
周方向走行方法の特徴手段は、磁気吸着力により管内壁
面に吸着しながら管内を走行する走行車体を備え、車軸
の両端側に備えられる一対の磁気吸着輪体により管内壁
面に吸着し、前記一対の磁気吸着輪体を駆動する駆動手
段と、前記磁気吸着輪体を車体の前後方向及び磁気吸着
輪体の軸に直角な操舵軸廻りに操舵する操舵手段とを備
えた走行体を駆動走行車体の前方部位と後方部位とに配
置し、前記各走行体の操舵軸を、前記駆動走行車体の前
後方向に振り分け配設した管内走行装置の周方向走行を
おこなう場合に、下記のようにおこなうのである。即
ち、それぞれの駆動走行車体の自重をW1、管内壁面か
ら重心位置までの距離をL、一対の前記磁気吸着輪体の
吸着力をP、取付け幅をS、前記管内壁面と前記磁気吸
着輪体との間の摩擦係数をμ、前記駆動手段を1駆動手
段により発生できる走行力をF、前記操舵軸の鉛直下方
からの傾きをφとした時に、管軸方向に対する操舵角θ
を、その絶対値が
[Structure] The characteristic means of the circumferential traveling method of the in-pipe traveling device according to claim 3 comprises a traveling vehicle body that travels in the pipe while being attracted to the inner wall surface of the pipe by a magnetic attraction force, and is provided at both ends of the axle. A drive means for adsorbing on the inner wall surface of the pipe by a pair of magnetic attraction wheels and driving the pair of magnetic attraction wheels, and a steering shaft around the steering wheel perpendicular to the longitudinal direction of the vehicle body and the axis of the magnetic attraction wheels. In-pipe traveling apparatus in which traveling bodies having steering means for steering to each other are arranged at front and rear portions of a drive traveling vehicle body, and steering shafts of the respective traveling bodies are distributed in the front-rear direction of the drive traveling vehicle body. When traveling in the circumferential direction, the procedure is as follows. That is, the weight of each driving vehicle body is W1, the distance from the tube inner wall surface to the center of gravity is L, the attraction force of the pair of magnetic attraction wheels is P, the mounting width is S, the tube inner wall surface and the magnetic attraction wheel body. Where μ is the friction coefficient between the driving means and F, the running force that can be generated by the driving means by one driving means is F, and the inclination of the steering shaft from the vertical lower side is φ, the steering angle θ with respect to the pipe axis direction.
The absolute value is

【数10】θ≦cos-1(W1×L×sinφ/(S×
P+S×W1×cosφ/2)) θ≧sin-1((W1×sinφ+(2×P+W1×c
osφ)×μ)/(2×F)) の条件を満足する角度とし、前方部位と後方部位との夫
々に配設される走行体の前記操舵角θを、互いに相反す
る方向に設定し、管内を周方向に走行するのである。
[Equation 10] θ ≦ cos −1 (W1 × L × sin φ / (S ×
P + S × W1 × cos φ / 2)) θ ≧ sin −1 ((W1 × sin φ + (2 × P + W1 × c
osφ) × μ) / (2 × F)), and the steering angles θ of the traveling bodies arranged in the front portion and the rear portion are set in mutually opposite directions, It runs in the pipe in the circumferential direction.

【0009】〔作用及び効果〕この管内走行装置の駆動
走行車体には、前方部位と後方部位とに一対の走行体が
備えられる。そして、これら一対の走行体の操舵角(車
体前後方向に対する輪体の移動方向のなす角)θに特徴
がある。即ち、図10、図11に示すように、単一の走
行車体に於ける、その前方部位と後方部位との走行体に
おいて、これらが所定の角度でありながら、互いに相反
する方向に設定づけられる。従って、図10にも示すよ
うに、駆動手段により磁気吸着輪体を駆動すると、前方
部位と後方部位との走行体夫々において、管周方向の走
行力F1と管軸方向の走行力F2が発生する。そして、
操舵角の関係から、前方部位と後方部位との走行体間に
おいて、管軸方向の走行力F2は打ち消され、管周方向
の走行力F1のみが残る。従って、管内走行装置は、管
周方向に走行できる。さらに、前記の操舵角の選択にあ
たっては、数10に示す条件を満たす場合は、この角度
が、後に詳細に説明するように、磁気吸着輪体の支持ス
パンによるモーメント力が得られ、さらに、管周方向の
走行力を得られる条件を満たすものとなる。結果、良好
な管周方向走行を行える。
[Operation and Effect] The driving traveling vehicle body of the in-pipe traveling device is provided with a pair of traveling bodies at a front portion and a rear portion. The steering angle (angle formed by the moving direction of the wheel body with respect to the vehicle body front-rear direction) θ of the pair of traveling bodies is characteristic. That is, as shown in FIG. 10 and FIG. 11, in the traveling body of the front portion and the rear portion of the single traveling vehicle body, these are set in opposite directions although they are at a predetermined angle. . Therefore, as shown in FIG. 10, when the magnetic attraction wheel body is driven by the driving means, the traveling force F1 in the pipe circumferential direction and the traveling force F2 in the pipe axis direction are generated in the traveling bodies at the front portion and the rear portion, respectively. To do. And
Due to the relationship of the steering angle, the traveling force F2 in the pipe axis direction is canceled between the traveling bodies of the front portion and the rear portion, and only the traveling force F1 in the pipe circumferential direction remains. Therefore, the in-pipe traveling device can travel in the pipe circumferential direction. Further, when the steering angle is selected, if the condition shown in Formula 10 is satisfied, this angle provides a moment force due to the support span of the magnetic attraction wheel body, as will be described later in detail, and further, This satisfies the condition that the running force in the circumferential direction can be obtained. As a result, good traveling in the pipe circumferential direction can be performed.

【0010】さて、このような管周方向の走行をおこな
うことが可能な管内走行装置としては、上記の構成の管
内走行装置において、操舵軸の鉛直下方からの傾きφを
検出する周方向位置検出手段を備え、
As an in-pipe traveling device capable of traveling in such a pipe circumferential direction, in the in-pipe traveling device having the above-mentioned configuration, a circumferential position detection for detecting an inclination φ of the steering shaft from vertically below is detected. Equipped with means,

【数11】θ1=cos-1(W1×L×sinφ/(S
×P+S×W1×cosφ/2)) で表される上限操舵角θ1を導出する上限操舵角導出手
段と、
[Equation 11] θ1 = cos −1 (W1 × L × sin φ / (S
× P + S × W1 × cos φ / 2)), which is an upper limit steering angle deriving means for deriving an upper limit steering angle θ1.

【数12】θ2=sin-1((W1×sinφ+(2×
P+W1×cosφ)×μ)/(2×F)) で表される下限操舵角θ2を導出する下限操舵角導出手
段とを備え、前記上限操舵角θ1及び下限操舵角θ2の
中間値を導出操舵角θとして導出する操舵角決定手段を
備え、前記前方部位と後方部位との夫々に配設される前
記走行体の管軸方向に対する操舵角θを、絶対値が前記
導出操舵角で、互いに相反する方向に設定する操舵角設
定手段を備えておけばよい。このようにしておくと、周
方向位置検出手段によって検出された操舵軸の鉛直下方
からの傾きφに従って、上限操舵角導出手段と下限操舵
角導出手段とにより、上限操舵角θ1及び下限操舵角θ
2が導出されるとともに、これらから走行車体の姿勢に
適した導出操舵角を導出して、この値の操舵角を取るこ
とにより、良好な管周方向の走行をおこなうことができ
る。
[Equation 12] θ2 = sin −1 ((W1 × sin φ + (2 ×
P + W1 × cos φ) × μ) / (2 × F)) and a lower limit steering angle deriving means for deriving a lower limit steering angle θ2, and an intermediate value between the upper limit steering angle θ1 and the lower limit steering angle θ2 is derived and steered. The steering angle determining means for deriving the angle θ is provided, and the steering angle θ with respect to the pipe axis direction of the traveling body disposed in each of the front portion and the rear portion has an absolute value which is the derived steering angle and is a reciprocal of the steering angle θ. It suffices to provide a steering angle setting means for setting the steering angle. With this configuration, the upper limit steering angle derivation unit and the lower limit steering angle derivation unit determine the upper limit steering angle θ1 and the lower limit steering angle θ according to the inclination φ of the steering shaft from the vertically downward direction detected by the circumferential position detection unit.
2 is derived, a derived steering angle suitable for the posture of the traveling vehicle body is derived from these, and the steering angle of this value is taken, so that good traveling in the pipe circumferential direction can be performed.

【0011】結果、いずれの場合にあっても、前述の様
な構成、方法としているため、 1.管周方向に対してオフセットなる角度を持たせて磁
気吸着輪体を操舵しているため、管断面方向においても
磁気吸着輪体が二点支持となり走行車体自重により発生
するモーメント力を受けることができるため、機構が簡
易な車軸中心に回転させる操舵機構を採用しても安定し
た姿勢を維持しながら周方向に走行することができる。 2.さらに、磁気吸着輪体の走行力の分力が管軸方向及
び管周方向に作用する。そして、請求項1、2に係わる
場合は、最前列と最後尾の駆動走行車体間の、請求項
3、4に係わる場合は、単一車体に於ける前方部位と後
方部位の走行体間の操舵角を相反する方向としているた
め、周方向の走行力を適切なものとすることができる。 即ち、請求項1、2に係わる場合は、最前列と最後尾の
駆動走行車体間の磁気吸着輪体による管周方向の走行力
の合力が作用し、また、管軸方向の走行力は、従動走行
車体を引っ張り上げる方向に作用するため、走行装置が
見かけ上一体となって管周方向に走行させることが可能
となる。一方、請求項3、4に係わる場合は、前方部位
と後方部位との走行体間の磁気吸着輪体による管周方向
の走行力の合力が作用し、同様な作用・効果を得ること
ができる。
As a result, in any case, since the structure and method are as described above, Since the magnetic attraction wheel is steered with an angle offset with respect to the pipe circumferential direction, the magnetic attraction wheel is supported at two points even in the pipe cross-section direction, and the moment force generated by the traveling vehicle body weight may be received. Therefore, it is possible to travel in the circumferential direction while maintaining a stable posture even if a steering mechanism that rotates the mechanism around a simple axle is adopted. 2. Further, the component force of the traveling force of the magnetic attraction wheel body acts in the pipe axis direction and the pipe circumferential direction. In the case of claims 1 and 2, it is between the front row and the rearmost drive traveling vehicle body, and in the case of claims 3 and 4, it is between the front and rear traveling bodies of a single vehicle body. Since the steering angles are in opposite directions, the traveling force in the circumferential direction can be made appropriate. That is, in the case of claims 1 and 2, the resultant force of the traveling force in the pipe circumferential direction by the magnetic attraction wheels between the front row and the rearmost drive traveling vehicle body acts, and the traveling force in the pipe axis direction is Since the driven traveling vehicle body acts in a pulling-up direction, it becomes possible for the traveling device to integrally travel in the circumferential direction of the pipe. On the other hand, according to claims 3 and 4, the resultant force of the traveling force in the pipe circumferential direction by the magnetic attraction wheel between the traveling bodies of the front portion and the rear portion acts, and the same action and effect can be obtained. .

【0012】さて、このような管内走行装置にあって
は、これまで説明してきた上限操舵角θ1と下限操舵角
θ2は、それぞれ、操舵軸の傾きφの関数となる。請求
項1、2に対応する場合(図1、図5に示す構造を採用
する場合)にあって、W、W1、W2、P、K、L、
F、Sとして、所定の値の組みを採用した場合の例を、
図4(イ)(ロ)に示した。図上、横軸が操舵軸の鉛直
方向からの傾きφを示しており、縦軸が操舵角を示して
いる。そして、実線が上限操舵角θ1の変化状況を、さ
らに破線が下限操舵角θ2の変化状況を示している。そ
して、図4(ロ)には、実際の操舵角設定値として、上
限操舵角θ1と下限操舵角θ2との平均値(これが、導
出操舵角の1種である)を取った場合の値の変化を、二
点鎖線で示している。このような図から判明するよう
に、本来操舵角は、前記傾きφに係わる値として、これ
が選択されるべきであり、このようにして、φの変化に
伴って操舵角を変更しながら、走行装置の周方向走行を
おこなうことが好ましく、これが、最も安定な走行状態
を与えることとなる。ここで、φの変化に伴って操舵角
を変更しながら、走行装置の周方向走行をおこなう場合
にあっては、これまで説明してきた上限操舵角θ1と下
限操舵角θ2とを、検出されるφを基準に求めて、これ
らの値の間の値として、操舵角を設定することが好まし
い。
In such a pipe running apparatus, the upper limit steering angle θ1 and the lower limit steering angle θ2 described above are functions of the steering shaft inclination φ, respectively. In the case corresponding to claims 1 and 2 (when adopting the structure shown in FIGS. 1 and 5), W, W1, W2, P, K, L,
An example of a case where a predetermined set of values is adopted as F and S is
This is shown in FIGS. In the figure, the horizontal axis represents the inclination φ of the steering shaft from the vertical direction, and the vertical axis represents the steering angle. Then, the solid line shows the changing situation of the upper limit steering angle θ1, and the broken line shows the changing situation of the lower limit steering angle θ2. In FIG. 4B, the actual steering angle set value is shown as an average value of the upper limit steering angle θ1 and the lower limit steering angle θ2 (this is one of the derived steering angles). The change is indicated by a chain double-dashed line. As can be seen from such a figure, the steering angle should be originally selected as a value related to the inclination φ, and in this way, while changing the steering angle in accordance with the change of φ, traveling It is preferable to run the device in the circumferential direction, which gives the most stable running condition. Here, in the case where the traveling device travels in the circumferential direction while changing the steering angle in accordance with the change of φ, the upper limit steering angle θ1 and the lower limit steering angle θ2 described so far are detected. It is preferable that the steering angle is determined with φ as a reference and a value between these values is set.

【発明の実施の形態】本発明による管内走行装置の管周
方向走行方法の実施の形態を図面に基づいて説明する。
図1は、管周方向の走行方法の概念図及び操舵角の設定
系統図を示し、 図2、図3は、操舵角の関係図 図5は、管内走行装置の側面図 図6は、走行機構の断面図 図7は、操舵機構の断面図 図8は、従動走行車体の底面図 図9は、従動走行車体の吸着作用図 図12は、従来の管周方向での不具合説明図を示す。ま
ず、管内走行装置1の構成について説明する。図5にお
いて、管内走行装置1は、最前列と最後尾に車軸12の
両端側に一対の磁気吸着輪体13を備えた駆動走行車体
10a,10bと、その中間に球状車輪21及び管内5
0の壁面51に対し非接触に取付けられる永久磁石22
を備えた従動走行車体20a,20bとで構成されてお
り、夫々の各車体間10a−20a,20a−20b,
20b−10bを車体幅方向の軸廻りに回転自在の軸受
け30を介して連結棒31にて連結され管内50の壁面
51に吸着しながら管内50を走行する。さらに駆動走
行車体10a,10bには、車体先端に設けられ管内5
0の前方の状況及び溶接線を点検、観察するカメラ1
1、車軸12を回転駆動する走行機構14、車軸を操舵
する操舵機構15、駆動走行車10a,10b本体の姿
勢を検出する姿勢検出器16、マイクロコンピュータ、
ドライバを内蔵し各センサの検出情報の処理、各モータ
に対しての制御を司る制御装置17が具備されている。
また、従動走行車体20aには、管内走行装置1本体あ
るいは各モータへの電力を供給する蓄電池23が具備さ
れ、従動走行車体20bには、図示しない地上部に設け
られる監視制御装置と接続される光ケーブル25を巻取
り、送り出すケーブルリール26、伝送する信号形態を
変換するE/O,O/Eを内蔵しケーブルリール26を
駆動するモータをドライブするドライバ27が具備され
ている。さらに、従動走行車体20a,20b本体の側
面〜底面〜側面に渡ってテフロンシート28が備えられ
ている。図6において、走行機構14は、走行機構ケー
ス70内に内蔵される走行用モータ71、走行用減速機
72から構成され、走行用モータ71からの動力は、走
行用モータ71の出力軸と走行用減速機72の入力軸と
噛み合う一対のギヤ73〜走行用減速機72〜走行用減
速機72の出力軸と車軸12と噛み合う一対のギヤ74
と伝達される。車軸12には、磁石75が内蔵され磁気
吸着輪体13に接続される。磁気吸着輪体13は、内部
輪体80と、この内部輪体80を収容し相互移動自在な
中空外部輪体81で構成され、磁石75の磁力が内部輪
体80、中空外部輪体81を介して管内壁面51に導か
れ、駆動走行車体10a,10bを吸着させることがで
き、走行用モータ71を駆動することにより、車軸12
を介して磁気吸着輪体13が回転し管内50を走行でき
る。また、この時、走行用モータ71に設けられるホー
ルセンサの信号を処理し走行用モータ71の回転数を検
出することにより駆動走行車体10a,10bの走行距
離が検出される。図7において、操舵機構15は、操舵
機構ケース90内に内蔵される操舵用モータ91、操舵
用減速機92から構成され、操舵用モータ91からの動
力は、操舵用モータ91の出力軸と操舵用減速機92の
入力軸と噛み合う一対のギヤ93〜操舵用減速機92〜
操舵用減速機92の出力軸に取付けられる走行機構ケー
ス70と伝達される。さらに、操舵用減速機92の出力
軸の回転量即ち操舵角を検出する操舵角検出器930が
操舵機構ケース90に具備され、操舵用減速器92の出
力軸と噛み合う一対のギヤ94で接続されている。操舵
用モータ91を駆動することにより走行機構14全体を
操舵し、磁石吸着輪体13を、管軸方向または管周方向
に向けることができる。また、磁気吸着輪体13の駆動
走行車体10a,10bに対する操舵角は、操舵角検出
器930によって検出される。以上説明してきたよう
に、車軸12の両端側に一対の磁気吸着輪体13により
管内壁面51に吸着し、前記磁気吸着輪体13を駆動す
る駆動手段と、前記磁気吸着輪体13を、駆動走行車体
の前後方向及び磁気吸着輪体の軸に直角な軸廻りに操舵
する操舵手段とを備えた機構を走行体と呼ぶ。これらの
走行体は、駆動走行車体10a,10bの幅方向のセン
ター上で、車体の前方部位と後方部位とに、振り分け均
等配置されている。さらに、先に説明した操舵機構15
に於ける操舵軸Z(図1、図2、図7参照)は、このセ
ンター線上にあり、車軸12のセンター(この車軸12
に備えられる一対の磁気吸着輪体13の中央位置)に設
けられている。さらに、この操舵軸Zの配設方向は、駆
動走行車体の上下方向と一致されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a pipe circumferential direction traveling method for a pipe traveling device according to the present invention will be described based on the drawings.
FIG. 1 shows a conceptual diagram of a traveling method in a pipe circumferential direction and a steering angle setting system diagram, and FIGS. 2 and 3 are relationship diagrams of a steering angle. FIG. 5 is a side view of a pipe traveling device. FIG. 7 is a sectional view of the steering mechanism. FIG. 7 is a sectional view of the steering mechanism. FIG. 8 is a bottom view of the driven traveling vehicle body. FIG. 9 is an adsorption action diagram of the driven traveling vehicle body. . First, the configuration of the in-pipe travel device 1 will be described. In FIG. 5, the in-pipe traveling device 1 includes drive traveling vehicle bodies 10a and 10b each having a pair of magnetic attraction wheels 13 on both ends of the axle 12 at the front row and the rearmost row, a spherical wheel 21 and an in-pipe 5 in the middle.
Permanent magnet 22 that is attached in a non-contact manner to the wall surface 51 of 0
And a driven traveling vehicle body 20a, 20b each including a vehicle body 10a-20a, 20a-20b,
20b-10b are connected by a connecting rod 31 via a bearing 30 which is rotatable around an axis in the width direction of the vehicle body and run in the pipe 50 while adsorbing to the wall surface 51 of the pipe 50. Further, in the driving traveling vehicle bodies 10a and 10b, the inside of the pipe 5 is provided at the tip of the vehicle body.
Camera 1 for checking and observing the situation and welding line in front of 0
1, a traveling mechanism 14 that rotationally drives the axle 12, a steering mechanism 15 that steers the axle, a posture detector 16 that detects the posture of the driving traveling vehicles 10a and 10b, a microcomputer,
A control device 17 which includes a driver and processes detection information of each sensor and controls each motor is provided.
Further, the driven traveling vehicle body 20a is provided with a storage battery 23 for supplying electric power to the main body of the in-pipe traveling apparatus 1 or each motor, and the driven traveling vehicle body 20b is connected to a monitoring control device provided on a ground portion (not shown). A cable reel 26 that winds up and sends out the optical cable 25, and a driver 27 that incorporates E / O and O / E that convert the signal form to be transmitted and that drives a motor that drives the cable reel 26 are provided. Further, a Teflon sheet 28 is provided over the side surfaces, the bottom surface, and the side surfaces of the main bodies of the driven traveling vehicle bodies 20a and 20b. In FIG. 6, the traveling mechanism 14 includes a traveling motor 71 and a traveling speed reducer 72 which are housed in the traveling mechanism case 70. The power from the traveling motor 71 travels along with the output shaft of the traveling motor 71 and the traveling motor 71. Pair of gears 73 meshing with the input shaft of the speed reducer 72-traveling speed reducer 72-a pair of gears 74 meshing with the output shaft of the speed reducer 72 for running and the axle 12
Is communicated. A magnet 75 is built in the axle 12 and is connected to the magnetic attraction wheel body 13. The magnetic attraction wheel body 13 is composed of an inner wheel body 80 and a hollow outer wheel body 81 that accommodates the inner wheel body 80 and is mutually movable, and the magnetic force of the magnet 75 causes the inner wheel body 80 and the hollow outer wheel body 81 to move. The driving traveling vehicle bodies 10a and 10b can be attracted by being guided to the inner wall surface 51 of the pipe via the driving shaft, and the driving motor 71 can be driven to drive the axle 12
The magnetic attraction wheel body 13 is rotated via this and can travel in the pipe 50. At this time, the traveling distance of the driving traveling vehicle bodies 10a and 10b is detected by processing the signal of the hall sensor provided in the traveling motor 71 and detecting the number of revolutions of the traveling motor 71. In FIG. 7, the steering mechanism 15 is composed of a steering motor 91 and a steering speed reducer 92 which are built in a steering mechanism case 90, and the power from the steering motor 91 is applied to the output shaft of the steering motor 91 and the steering shaft. Pair of gears 93 meshing with the input shaft of the speed reducer 92 for steering-Speed reducer 92 for steering-
It is transmitted to the traveling mechanism case 70 attached to the output shaft of the steering speed reducer 92. Furthermore, a steering angle detector 930 that detects the amount of rotation of the output shaft of the steering reduction gear 92, that is, the steering angle is provided in the steering mechanism case 90, and is connected by a pair of gears 94 that mesh with the output shaft of the steering reduction gear 92. ing. By driving the steering motor 91, the entire traveling mechanism 14 can be steered, and the magnet attraction wheel body 13 can be oriented in the pipe axis direction or the pipe circumferential direction. Further, the steering angle of the magnetic attraction wheel body 13 with respect to the driving traveling vehicle bodies 10 a and 10 b is detected by the steering angle detector 930. As described above, the pair of magnetic attraction wheels 13 on both ends of the axle 12 attract the inner wall surface 51 of the tube to drive the magnetic attraction wheels 13 and the magnetic attraction wheels 13. A mechanism provided with a steering means for steering around the axis perpendicular to the longitudinal direction of the traveling vehicle body and the axis of the magnetic attraction wheel is called a traveling body. These traveling bodies are distributed and evenly arranged on the center in the width direction of the drive traveling vehicle bodies 10a and 10b, in the front portion and the rear portion of the vehicle body. Furthermore, the steering mechanism 15 described above
The steering shaft Z (see FIG. 1, FIG. 2, and FIG. 7) in the vehicle is on this center line, and the center of the axle 12 (this axle 12
It is provided at the center position of the pair of magnetic attraction wheels 13 provided in. Further, the disposing direction of the steering axis Z coincides with the vertical direction of the driving traveling vehicle body.

【0013】図8において、球状車輪21は、従動走行
車体20a,20bの下部に適数個(実施形態では4
個)取付けられ、その球状車輪21の間には磁石ケース
100に内蔵された薄い円筒状の永久磁石22が壁面5
1とギャップを設けて適数個(実施形態では3個)取付
けてあり、永久磁石22の磁力が図9に示すように壁面
51を通り従動走行車体20a,20bを吸着させるこ
とができる。なお、永久磁石22の磁力はほぼギャップ
の2乗に比例して弱くなるが、永久磁石22の断面積が
最も最大となる面(磁力が最も最大となる面)を壁面5
1に対向させているので充分な吸着力が得られる。ま
た、テフロンシート28を永久磁石22の表面に取付け
ているため管内50の錆の付着を防止することができ
る。従動走行車体20a,20bの吸着手段、走行手段
を上述の構成とすることにより、操舵機構を必要とせず
に管軸方向または管周方向の走行が駆動走行車体10
a,10bに牽引されて可能となり、また、薄い円筒状
の永久磁石22によって吸着できるため、従動走行車本
体20a,20bを低床構造とすることができ車体空間
を最大限にとれ長距離走行に必要充分な蓄電池23を搭
載できる。
In FIG. 8, a suitable number of spherical wheels 21 are provided under the driven vehicles 20a and 20b.
A thin cylindrical permanent magnet 22 built in the magnet case 100 is mounted between the spherical wheels 21 on the wall surface 5.
1, a proper number (three in the embodiment) are attached with a gap provided, and the magnetic force of the permanent magnet 22 can pass through the wall surface 51 and attract the driven vehicle bodies 20a and 20b as shown in FIG. Although the magnetic force of the permanent magnet 22 becomes weaker in proportion to the square of the gap, the wall having the largest cross-sectional area of the permanent magnet 22 (the surface having the largest magnetic force) is formed on the wall surface 5.
Since it is opposed to 1, sufficient suction force can be obtained. Further, since the Teflon sheet 28 is attached to the surface of the permanent magnet 22, it is possible to prevent rust from adhering to the inside of the pipe 50. By configuring the suction means and the traveling means of the driven traveling vehicle bodies 20a and 20b as described above, traveling in the pipe axial direction or the pipe circumferential direction is driven without the need for a steering mechanism.
It becomes possible by being pulled by a and 10b, and can be attracted by the thin cylindrical permanent magnet 22, so that the driven vehicle bodies 20a and 20b can have a low floor structure and the vehicle body space can be maximized to travel a long distance. Therefore, the necessary and sufficient storage battery 23 can be mounted.

【0014】次に上記構成とした管内走行装置の管周方
向の走行方法について説明する。 図1に示すように、最前列の駆動走行車体10aと
最後尾の駆動走行車体10bの操舵機構15により、管
軸に対して最前列と最後尾の磁気吸着輪体を相反する方
向にθ度操作する。 なお、操舵角θのとりうる範囲は、以下の条件によ
って決められる。 1) 磁気吸着輪体の支持スパン 駆動走行車体本体10a,10bの自重W1より発生す
るモーメント力を受けるためには、左右の磁気吸着輪体
13にスパンdを設け二点で支持する必要がある。最大
モーメント力Mは、図2において、管壁面(走行面)か
ら駆動走行車体10a,10bの重心位置までの距離を
L、さらに走行車体の鉛直下方からの傾きである操舵軸
の傾きをφとすれば、
Next, a traveling method in the pipe circumferential direction of the in-pipe traveling device configured as described above will be described. As shown in FIG. 1, the steering mechanism 15 of the front-most driving traveling vehicle body 10a and the rearmost driving traveling vehicle body 10b causes θ degrees in a direction in which the frontmost row and the rearmost magnetic adsorption wheels are opposite to the tube axis. Manipulate. The range that the steering angle θ can take is determined by the following conditions. 1) Support span of magnetic attraction wheel body In order to receive a moment force generated by the weight W1 of the drive traveling vehicle body 10a, 10b, it is necessary to provide spans d on the left and right magnetic attraction wheel bodies 13 and support them at two points. . 2, the maximum moment force M is L, the distance from the pipe wall surface (travel surface) to the position of the center of gravity of the driving traveling vehicle bodies 10a and 10b, and φ is the inclination of the steering shaft, which is the inclination from below the traveling vehicle body in the vertical direction. if,

【数13】M=W1×sinφ×L で表される。一方それを支持するための必要スパンd
は、磁石75により発生する吸着力をPとすれば、前後
軸に磁石75があるため、駆動走行車体10a,10b
の吸着力は2×P/2(図2参照)、さらに駆動走行車
体の重心はスパンdの中点にあるため、
[Expression 13] M = W1 × sin φ × L On the other hand, the required span d to support it
If the attraction force generated by the magnet 75 is P, the magnet 75 is located in the front-rear axis, and therefore, the driving traveling vehicle bodies 10a and 10b.
2 × P / 2 (see FIG. 2), and since the center of gravity of the driving traveling vehicle body is at the midpoint of span d,

【数14】 d≧M/(2×P/2+W1×cosφ/2)= W1×L×sinφ/(P+W1×cosφ/2) となる。また、スパンdは操舵角θの関数で、磁気吸着
輪体13の取付け幅をSとすれば、
## EQU14 ## d ≧ M / (2 × P / 2 + W1 × cos φ / 2) = W1 × L × sin φ / (P + W1 × cos φ / 2) Further, the span d is a function of the steering angle θ, and if the mounting width of the magnetic attraction wheel body 13 is S,

【数15】d=Scosθ の関係がある。よって、磁気吸着輪体13の支持スパン
によりモーメント力を受けるための操舵角θの条件は、
(15) There is a relationship of d = Scos θ. Therefore, the condition of the steering angle θ for receiving the moment force by the support span of the magnetic attraction wheel body 13 is as follows.

【0015】[0015]

【数16】θ≦cos-1(W1×L×sinφ/(S×
P+S×W1×cosφ/2))
[Equation 16] θ ≦ cos −1 (W1 × L × sin φ / (S ×
P + S × W1 × cosφ / 2))

【0016】となる。なお、従動走行車体20a,20
bは、球状車輪21を二点で支持する位置に配置してあ
り、永久磁石22の吸着力と球状車輪21の取付けスパ
ンにより、従動走行車体20a,20bのモーメント力
を受けることができる。 2) 磁気吸着輪体による管周走行力 磁気吸着輪体13の走行力は、管軸方向及び管周方向に
作用し、管周方向の走行力は、駆動走行車体10a,1
0b及び従動走行車体20a,20bの自重、並びに永
久磁石22及び磁石75の吸着力によって作用する力を
加算した抵抗力以上とする必要がある。最大抵抗力R
は、従動走行車体20a,20bの個々の自重をW2
(全体で2×W2)、永久磁石22の1従動走行車体当
たりの合計吸着力をK、摩擦係数をμとすれば、
## EQU1 ## The driven vehicles 20a, 20
b is arranged at a position that supports the spherical wheel 21 at two points, and the attraction force of the permanent magnet 22 and the mounting span of the spherical wheel 21 can receive the moment force of the driven traveling vehicle bodies 20a and 20b. 2) Pipe circumferential traveling force by magnetic attraction wheel body The traveling force of the magnetic attraction wheel body 13 acts in the pipe axis direction and the pipe circumferential direction, and the traveling force in the pipe circumferential direction is the driving traveling vehicle body 10a, 1a.
0b and the own weight of the driven traveling vehicle bodies 20a and 20b, and the force acting by the attraction force of the permanent magnet 22 and the magnet 75 must be equal to or more than the resistance force. Maximum resistance R
Is the weight of each of the driven vehicles 20a and 20b.
(2 × W2 in total), K is the total attractive force of the permanent magnet 22 per driven vehicle body, and μ is the friction coefficient,

【数17】R=2×(W1+W2)×sinφ+2×
(2×P+K+(W1+W2)×cosφ)×μ で表される。一方、それを駆動するための管周方向の必
要走行力Fpは、モータトルク、減速比及び磁気吸着輪
体13の半径で求められる駆動力をFとすれば、最前列
と最後尾の駆動軸数が計4本あるため、
## EQU17 ## R = 2 × (W1 + W2) × sin φ + 2 ×
It is represented by (2 × P + K + (W1 + W2) × cos φ) × μ. On the other hand, the required traveling force Fp in the pipe circumferential direction for driving the driving shaft is the frontmost row and the rearmost driving shaft, where F is the driving force obtained from the motor torque, the reduction ratio and the radius of the magnetic attraction wheel body 13. Because there are a total of four,

【数18】Fp=4×F1=4×Fsinθ で表され、抵抗力R以上の管周方向の走行力Fpを得る
ための操舵角θの条件は、
[Expression 18] Fp = 4 × F1 = 4 × Fsin θ, and the condition of the steering angle θ for obtaining the running force Fp in the pipe circumferential direction that is equal to or greater than the resistance R is:

【数19】Fp≧Rであるから、Since Fp ≧ R,

【数20】θ≧sin-1((W×sinφ+(2×P+
K+W×cosφ)×μ)/(2×F)) となる。
[Equation 20] θ ≧ sin −1 ((W × sin φ + (2 × P +
K + W × cos φ) × μ) / (2 × F)).

【0017】3) 上記の関係をφ=90度の場合に図
示したのが図3であり、横軸に操舵角θを、縦軸に支持
スパンd、管周方向の走行力Fpをとったもので、操舵
角θは、モーメント力により定まる操舵角の上限値θ1
及び、抵抗力によって定まる操舵角の下限値θ2とに挟
まれる領域の角度となる。 従って、本願の管内走行装置にあっては、図1に示
すように、先に説明した姿勢検出器16の1種として、
操舵軸の鉛直下方からの傾きφを検出する周方向位置検
出手段500を備えている。さらに、先に説明した制御
装置17内に、先に示した、L、W1、W2、W、P、
S、Kの値を記憶する記憶手段501を備え、前記周方
向位置検出手段500により検出された傾きφと記憶手
段501に記憶されたデータから、
3) FIG. 3 illustrates the above relationship when φ = 90 degrees. The horizontal axis represents the steering angle θ, the vertical axis represents the support span d, and the running force Fp in the pipe circumferential direction. The steering angle θ is the upper limit θ1 of the steering angle determined by the moment force.
And the angle between the lower limit value θ2 of the steering angle determined by the resistance force. Therefore, in the in-pipe traveling apparatus of the present application, as shown in FIG. 1, as one kind of the attitude detector 16 described above,
A circumferential position detecting means 500 for detecting the inclination φ of the steering shaft from below in the vertical direction is provided. Furthermore, in the control device 17 described above, L, W1, W2, W, P,
A storage unit 501 that stores the values of S and K is provided, and from the inclination φ detected by the circumferential position detection unit 500 and the data stored in the storage unit 501,

【数21】θ1=cos-1(W1×L×sinφ/(S
×P+S×W1×cosφ/2)) で表される上限操舵角θ1を導出する上限操舵角導出手
段502と、同様に、傾きφと記憶データから、
[Equation 21] θ1 = cos −1 (W1 × L × sin φ / (S
× P + S × W1 × cos φ / 2)) The upper limit steering angle derivation means 502 for deriving the upper limit steering angle θ1 represented by

【数22】θ2=sin-1((W×sinφ+(2×P
+K+W×cosφ)×μ)/(2×F)) で表される下限操舵角θ2を導出する下限操舵角導出手
段503とを備え、上限操舵角θ1及び下限操舵角θ2
の中間の値(図示する場合は平均値)を導出操舵角とし
て導出する操舵角決定手段504を備え、最前列と最後
尾の駆動走行車体10a、10bの管軸方向に対するる
操舵角θを、絶対値が前記導出操舵角で、互いに相反す
る方向に設定する操舵角設定手段505を備えている。
このような構造を採用することにより、操舵角設定手段
505の設定指令が、各々の操舵機構15に出力され
る。ここで、記憶手段501、上限操舵角導出手段50
2、下限操舵角導出手段503、操舵角決定手段50
4、操舵角設定手段505は、これが、周方向位置検出
手段500により検出される傾きφに基づいて、走行体
の管軸方向に対する操舵角θを設定制御するため、図1
に示すように、纏めて走行体操舵角制御手段510と呼
ぶ。このように構成することにより、所定の関係で求め
られる操舵角とし、磁気吸着輪体13を駆動することに
より、姿勢を維持しながら、かつ、管軸方向の分力F2
により、従動走行車体を引っ張る作用力が発生するた
め、管内走行装置1が一体となって管周方向に走行しな
がらカメラによる溶接線の点検をすることができる。
[Equation 22] θ2 = sin −1 ((W × sin φ + (2 × P
+ K + W × cos φ) × μ) / (2 × F)) The lower limit steering angle deriving means 503 for deriving the lower limit steering angle θ2, and the upper limit steering angle θ1 and the lower limit steering angle θ2.
A steering angle determining means 504 for deriving an intermediate value (average value in the case shown) as a derived steering angle is provided, and a steering angle θ with respect to the pipe axis direction of the front row and the rearmost drive traveling vehicle bodies 10a, 10b is The steering angle setting means 505 is provided for setting the derived steering angle in an absolute value in mutually opposite directions.
By adopting such a structure, the setting command of the steering angle setting means 505 is output to each steering mechanism 15. Here, the storage means 501 and the upper limit steering angle derivation means 50
2, lower limit steering angle derivation means 503, steering angle determination means 50
4. The steering angle setting means 505 controls the setting of the steering angle θ with respect to the pipe axis direction of the traveling body based on the inclination φ detected by the circumferential position detecting means 500.
As shown in FIG. 5, the traveling body steering angle control means 510 is collectively referred to. With this configuration, the steering angle is obtained in a predetermined relationship, and the magnetic attraction wheel body 13 is driven to maintain the posture and the component force F2 in the tube axis direction.
As a result, an action force for pulling the driven traveling vehicle body is generated, so that the welding line can be inspected by the camera while the in-pipe traveling device 1 is integrally traveling in the pipe circumferential direction.

【0018】〔別実施形態〕さて、上記の実施形態にお
いては、走行車体10a,10b,20a,20bが、
直列に多数体連結された構成のものにおいて、その最前
列及び最後尾の走行車体間において、それらの操舵角を
適切に選択し、管軸方向の力をキャンセルしながら、管
周方向に走行する構成を示したが、この走行方法は、単
一の駆動走行車体10a,10bにおいて、その前方部
位に配設される走行体と、後方部位に配設される走行体
との間において、操舵角θを適切に選択する(所定の範
囲内の角度で、さらに、前方部位と後方部位とにある走
行体の操舵角θを互いに相反する方向に設定する)こと
により、同様に、管周方向の走行を良好におこなうこと
ができる。図10に示す実施形態においては、単一の走
行車体を備えた駆動走行車体10a,10bにおいて、
その前後位置にある走行体それぞれの操舵角θを反対に
して、図面上方向に周方向回転する場合を示している。
[Other Embodiment] In the above embodiment, the traveling vehicle bodies 10a, 10b, 20a, 20b are
In a structure in which multiple bodies are connected in series, between the front row and the rearmost traveling vehicle body, the steering angles are appropriately selected, and traveling in the pipe circumferential direction is performed while canceling the force in the pipe axial direction. Although the configuration is shown, this traveling method is such that, in the single drive traveling vehicle body 10a, 10b, the steering angle is provided between the traveling body disposed in the front portion and the traveling body disposed in the rear portion. By appropriately selecting θ (an angle within a predetermined range and further setting steering angles θ of the traveling bodies at the front portion and the rear portion in mutually opposite directions), the pipe circumferential direction is similarly set. It is possible to drive well. In the embodiment shown in FIG. 10, in the drive traveling vehicle bodies 10a and 10b provided with a single traveling vehicle body,
It shows a case where the steering angles θ of the traveling bodies at the front and rear positions are made opposite to each other and the traveling bodies rotate in the circumferential direction in the upward direction in the drawing.

【0019】さて、各走行体の操舵角θが満足すべき条
件は、駆動走行車体の自重をW1、管内面から重心位置
までの距離をL、一対の磁気吸着輪体の吸着力をP、取
付け幅をS、及び摩擦係数をμ、及び駆動手段を1駆動
手段により発生できる走行力をFとした時に、前記操舵
軸の鉛直下方からの傾きをφとした時に、管軸方向に対
する操舵角θを、その絶対値が
The conditions for satisfying the steering angle θ of each traveling body are as follows: the weight of the driving vehicle body is W1, the distance from the inner surface of the pipe to the center of gravity is L, and the attraction force of the pair of magnetic attraction wheels is P. When the mounting width is S, the friction coefficient is μ, and the running force that can be generated by one driving means is F, the steering angle with respect to the pipe axis direction is φ when the inclination from the vertically lower side of the steering shaft is φ. The absolute value of θ is

【数23】θ≦cos-1(W1×L×sinφ/(S×
P+S×W1×cosφ/2)) θ≧sin-1((W1×sinφ+(2×P+W1×c
osφ)×μ)/(2×F)) の条件を満足する角度となる。ここで、前述の数21、
数22の導出との対応について比較すると、駆動車体に
備えられる走行体は、一対であるため、その吸着力は、
単にPとなる。さらに、従動走行車体の自重、吸着力の
項は省かれる。この場合も、管内走行装置系は、図10
に示すように構築することとなる。即ち、先の例と同様
に、操舵軸の鉛直下方からの傾きφを検出する周方向位
置検出手段500を備え、記憶手段501aを備え、
[Equation 23] θ ≦ cos −1 (W1 × L × sin φ / (S ×
P + S × W1 × cos φ / 2)) θ ≧ sin −1 ((W1 × sin φ + (2 × P + W1 × c
osφ) × μ) / (2 × F)). Here, the above equation 21,
Comparing the correspondence with the derivation of Formula 22, since the traveling body provided in the driving vehicle body is a pair, the attraction force is
It simply becomes P. Further, the terms of the self-weight of the driven vehicle body and the attraction force are omitted. Also in this case, the in-pipe traveling device system is shown in FIG.
It will be constructed as shown in. That is, as in the previous example, the circumferential position detecting means 500 for detecting the inclination φ of the steering shaft from the vertically downward direction is provided, and the storage means 501a is provided.

【数24】θ1=cos-1(W1×L×sinφ/(S
×P+S×W1×cosφ/2)) で表される上限操舵角θ1を導出する上限操舵角導出手
段502と、
Θ1 = cos −1 (W1 × L × sin φ / (S
XP + SxW1xcosφ / 2)) upper limit steering angle derivation means 502 for deriving the upper limit steering angle θ1.

【数25】θ2=sin-1((W1×sinφ+(2×
P+W1×cosφ)×μ)/(2×F)) で表される下限操舵角θ2を導出する下限操舵角導出手
段503aとを備え、前記上限操舵角θ1及び下限操舵
角θ2の中間値を導出操舵角θとして導出する操舵角決
定手段504を備え、前記前方部位と後方部位との夫々
に配設される前記走行体の管軸方向に対する操舵角θ
を、絶対値が前記導出操舵角で、互いに相反する方向に
設定する操舵角設定手段505aを備えて、管内走行装
置を構築できる。
Θ2 = sin −1 ((W1 × sin φ + (2 ×
P + W1 × cos φ) × μ) / (2 × F)) and a lower limit steering angle deriving means 503a for deriving a lower limit steering angle θ2, and derives an intermediate value between the upper limit steering angle θ1 and the lower limit steering angle θ2. A steering angle θ with respect to the pipe axis direction of the traveling body provided with a steering angle determination unit 504 that derives as a steering angle θ is provided in each of the front portion and the rear portion.
Can be provided with the steering angle setting means 505a for setting the absolute values of the derived steering angles in mutually opposite directions.

【0020】一方、図11に示す実施形態においては、
管内走行装置1は、先に示した例のように、複数の走行
車体10a,10b,20a,20bを直列に多数連結
して構成されるが、夫々の駆動走行車体10a,10b
内において、それらに備えられる一対の走行体の操舵角
θが、相反するものとされる。この場合も、良好に管周
方向の走行をおこなうことができる。さらに、先に説明
したように、各走行車体間は、車体の幅方向の軸回りに
のみ揺動自在な軸受け30を介して連結軸31で連結さ
れているため、各走行車体の直線配列姿勢を守ったま
ま、管周方向の走行を行える。
On the other hand, in the embodiment shown in FIG.
The in-pipe traveling device 1 is configured by connecting a plurality of traveling vehicle bodies 10a, 10b, 20a, 20b in series as in the example shown above, and each driving traveling vehicle body 10a, 10b.
In the above, the steering angles θ of the pair of traveling bodies provided in them are opposite to each other. Also in this case, traveling in the pipe circumferential direction can be favorably performed. Further, as described above, since the traveling vehicles are connected by the connecting shaft 31 via the bearing 30 which is swingable only about the axis in the width direction of the vehicle body, the linear arrangement posture of each traveling vehicle body You can run in the pipe circumferential direction while keeping the above.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、 1.管内の限られたスペース内に構造を複雑化すること
なく、管内の周方向の走行ができるため、管周方向に施
工されている溶接線の点検もれをなくすることができ
る。 2.最小限の駆動源で管内の周方向の走行が可能なた
め、走行装置の体積、重量を増加させることがないた
め、駆動に必要な蓄電池の数を増やす必要がない。これ
により、配管径が広範囲に変化する配管内径を、任意の
方向で長距離走行させることができる。
As described above, according to the present invention, there are provided: Since traveling in the pipe in the circumferential direction can be performed without complicating the structure in the limited space in the pipe, it is possible to eliminate inspection leaks of the welding line that is constructed in the pipe circumferential direction. 2. Since traveling in the pipe in the circumferential direction is possible with a minimum drive source, the volume and weight of the traveling device are not increased, and it is not necessary to increase the number of storage batteries required for driving. As a result, it is possible to travel a long distance in an arbitrary direction in a pipe inner diameter in which the pipe diameter changes in a wide range.

【0022】尚、特許請求の範囲の項に、図面との対照
を便利にするために符号を記すが、該記入により本発明
は添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の管周方向の走行方法の概念図及び操舵
角の設定系統図を示した図
FIG. 1 is a diagram showing a conceptual diagram of a traveling method in the pipe circumferential direction of the present invention and a system diagram for setting a steering angle.

【図2】操舵角の関係図[Fig. 2] Relational diagram of steering angle

【図3】操舵角の関係図[Fig. 3] Relational diagram of steering angle

【図4】操舵角の関係図[Fig. 4] Relational diagram of steering angle

【図5】管内走行装置の側面図FIG. 5 is a side view of the in-pipe traveling device.

【図6】走行機構の断面図FIG. 6 is a sectional view of the traveling mechanism.

【図7】操舵機構の断面図FIG. 7 is a sectional view of a steering mechanism.

【図8】従動走行車体の底面図FIG. 8 is a bottom view of a driven vehicle body.

【図9】従動走行車体の吸着作用図FIG. 9 is a drawing showing the suction action of the driven vehicle body.

【図10】単独の駆動走行車体に於ける周方向走行方法
の別形態を示す図
FIG. 10 is a diagram showing another embodiment of a circumferential traveling method in a single drive traveling vehicle body.

【図11】走行装置に於ける周方向走行方法の別形態を
示す図
FIG. 11 is a diagram showing another form of the circumferential traveling method in the traveling device.

【図12】従来の管周方向での不具合説明図FIG. 12 is an explanatory view of a defect in the conventional pipe circumferential direction.

【符号の説明】[Explanation of symbols]

1 管内走行装置 10a 駆動走行車体(最前列) 10b 駆動走行車体(最後尾) 12 車軸 13 磁気吸着輪体 20a 従動走行車体 20b 従動走行車体 21 球状車輪 22 永久磁石 51 管内壁面 500 周方向位置検出手段 502 上限操舵角導出手段 503 下限操舵角導出手段 503a下限操舵角導出手段 504 操舵角決定手段 505 操舵角設定手段 505a操舵角設定手段 510 走行体操舵角制御手段 DESCRIPTION OF SYMBOLS 1 In-pipe traveling device 10a Driven traveling vehicle body (front row) 10b Driven traveling vehicle body (last) 12 Axle 13 Magnetic attraction wheel body 20a Driven traveling vehicle body 20b Driven traveling vehicle body 21 Spherical wheel 22 Permanent magnet 51 Pipe inner wall surface 500 Circumferential position detecting means 502 Upper limit steering angle deriving means 503 Lower limit steering angle deriving means 503a Lower limit steering angle deriving means 504 Steering angle determining means 505 Steering angle setting means 505a Steering angle setting means 510 Traveling body steering angle control means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 乙雄 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 金内 信 兵庫県神戸市兵庫区和田崎町1丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 深川 幸夫 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 宮内 礼三 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Otsuo Yoshida 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Prefecture Osaka Gas Co., Ltd. (72) Inventor Nobu Kanai Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo 1-1-1 Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Inventor Yukio Fukagawa 2-1-1, Niihama, Arai-cho, Takasago-shi, Hyogo Prefecture Mitsubishi Heavy Industries Ltd. Takasago Research Laboratory (72) Inventor Reizo Miyauchi Takasago, Hyogo Prefecture 2-1-1, Niihama, Arai-machi, Yokohama-shi Takasago Laboratory, Mitsubishi Heavy Industries, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 磁気吸着力により管内壁面に吸着しなが
ら管内を走行する走行車体を直列に多数体連結して構成
され、 車軸(12)の両端側に備えられる一対の磁気吸着輪体
(13)により管内壁面(51)に吸着し、前記一対の
磁気吸着輪体(13)を駆動する駆動手段と、前記磁気
吸着輪体(13)を、車体の前後方向及び磁気吸着輪体
(13)の軸に直角な操舵軸廻りに操舵する操舵手段と
を備えた走行体を一対、車体の前方部位と後方部位とに
振り分けして備えた駆動走行車体(10a)(10b)
と、 前記管内壁面(51)に対して非接触に設けた永久磁石
(22)で前記管内壁面(51)に吸着する吸着手段
と、前記駆動走行車体(10a)(10b)に牽引され
て球状車輪(21)で走行する走行手段とを備えた従動
走行車体(20a)(20b)とを備え、 前記駆動走行車体(10a)(10b)を最前列と最後
尾に配置し、その中間に、前記従動走行車体(20a)
(20b)を配置し、各走行車体を車体幅方向の軸廻り
で1自由度の回転支持機構を介して軸で連結した管内走
行装置(1)の周方向走行方法であって、 前記駆動走行車体(10a)(10b)の自重をW1、
前記管内壁面(51)から重心位置までの距離をL、一
対の前記磁気吸着輪体(13)の吸着力をP、取付け幅
をS、前記従動走行車体(20a)(20b)全ての自
重を2×W2、W=W1+W2、前記永久磁石(22)
の1従動走行車体当たりの合計吸着力をK、前記管内壁
面(51)と前記磁気吸着輪体(13)との摩擦係数を
μ、前記駆動手段において1駆動手段により発生できる
走行力をF、前記操舵軸の鉛直下方からの傾きをφとし
た場合に、管軸方向に対する操舵角θを、その絶対値が 【数1】θ≦cos-1(W1×L×sinφ/(S×P
+S×W1×cosφ/2)) θ≧sin-1((W×sinφ+(2×P+K+W×c
osφ)×μ)/(2×F)) を満足する角度とし、 前記最前列と最後尾の駆動走行車体(10a)(10
b)の前記操舵角θを、互いに相反する方向に設定し、
管内を周方向に走行する管内走行装置の周方向走行方
法。
1. A pair of magnetic attraction wheels (13), which are configured by connecting a number of running vehicle bodies running in the pipe in series while attracting to the inner wall surface of the pipe by a magnetic attraction force and provided at both ends of an axle (12). ) Is attached to the pipe inner wall surface (51) to drive the pair of magnetic attraction wheels (13) and the magnetic attraction wheels (13) in the front-back direction of the vehicle body and the magnetic attraction wheels (13). Drive traveling vehicle body (10a) (10b) provided with a pair of traveling bodies provided with steering means for steering around a steering axis perpendicular to the axis of
And attraction means for attracting to the pipe inner wall surface (51) by a permanent magnet (22) provided in a non-contact manner with the pipe inner wall surface (51), and a spherical shape pulled by the driving traveling vehicle body (10a) (10b). A driven traveling vehicle body (20a) (20b) having traveling means for traveling on wheels (21), and the drive traveling vehicle bodies (10a) (10b) are arranged in the front row and the rearmost row, and in the middle thereof, The driven vehicle body (20a)
(20b) is arranged and each traveling vehicle body is connected in a circumferential direction about an axis in the vehicle body width direction through a rotation support mechanism having one degree of freedom by a shaft. The weight of the vehicle body (10a) (10b) is W1,
The distance from the inner wall surface of the pipe (51) to the position of the center of gravity is L, the attraction force of the pair of magnetic attraction wheels (13) is P, the mounting width is S, and the weights of all the driven vehicles (20a) (20b) are 2 × W2, W = W1 + W2, the permanent magnet (22)
K is the total attraction force per driven vehicle, the friction coefficient between the pipe inner wall surface (51) and the magnetic attraction wheel body (13) is μ, and the running force that can be generated by one drive unit in the drive unit is F, When the inclination of the steering shaft from the vertical downward direction is φ, the absolute value of the steering angle θ with respect to the pipe axis direction is as follows: θ ≦ cos −1 (W1 × L × sin φ / (S × P
+ S × W1 × cos φ / 2)) θ ≧ sin −1 ((W × sin φ + (2 × P + K + W × c
osφ) × μ) / (2 × F)), and the front row and the rearmost driving vehicle body (10a) (10)
The steering angle θ of b) is set in mutually opposite directions,
A circumferential traveling method of a traveling device in a pipe that travels in the pipe in the circumferential direction.
【請求項2】 磁気吸着力により管内壁面に吸着しなが
ら管内を走行する走行車体を直列に多数体連結して構成
され、 車軸(12)の両端側に備えられる一対の磁気吸着輪体
(13)により管内壁面(51)に吸着し、前記一対の
磁気吸着輪体(13)を駆動する駆動手段と、 前記磁気吸着輪体(13)を、車体の前後方向及び磁気
吸着輪体(13)の軸に直角な操舵軸廻りに操舵する操
舵手段とを備えた走行体を一対、車体の前方部位と後方
部位とに振り分けして備えた駆動走行車体(10a)
(10b)と、 前記管内壁面(51)に対して非接触に設けた永久磁石
(22)で前記管内壁面(51)に吸着する吸着手段
と、前記駆動走行車体(10a)(10b)に牽引され
て球状車輪(21)で走行する走行手段とを備えた従動
走行車体(20a)(20b)とを備え、 前記駆動走行車体(10a)(10b)を最前列と最後
尾に配置し、その中間に、前記従動走行車体(20a)
(20b)を配置し、各走行車体を車体幅方向の軸廻り
で1自由度の回転支持機構を介して軸で連結した管内走
行装置(1)であって、 前記操舵軸の鉛直下方からの傾きφを検出する周方向位
置検出手段(500)を備え、 前記駆動走行車体(10a)(10b)の自重をW1、
管内壁面(51)から重心位置までの距離をL、一対の
前記磁気吸着輪体(13)の吸着力をP、取付け幅を
S、前記従動走行車体(20a)(20b)全ての自重
を2×W2、W=W1+W2、前記永久磁石(22)の
1従動走行車体当たりの合計吸着力をK、前記管内壁面
(51)と前記磁気吸着輪体(13)との摩擦係数を
μ、前記駆動手段を1駆動手段により発生できる走行力
をFとした場合に、 【数2】θ1=cos-1(W1×L×sinφ/(S×
P+S×W1×cosφ/2)) で表される上限操舵角θ1を導出する上限操舵角導出手
段(502)と、 【数3】θ2=sin-1((W×sinφ+(2×P+
K+W×cosφ)×μ)/(2×F)) で表される下限操舵角θ2を導出する下限操舵角導出手
段(503)とを備え、前記上限操舵角θ1及び下限操
舵角θ2の中間の値を導出操舵角として導出する操舵角
決定手段(504)を備え、 前記最前列と最後尾の駆動走行車体(10a)(10
b)の管軸方向に対するる操舵角θを、絶対値が前記導
出操舵角で、互いに相反する方向に設定する操舵角設定
手段(505)を備えた管内走行装置。
2. A pair of magnetic attraction wheels (13) provided on both ends of an axle (12), which are constructed by connecting a number of running vehicle bodies running in the tube in series while attracting to the inner wall surface of the tube by a magnetic attraction force. ) By a suction means to the inner wall surface (51) of the pipe to drive the pair of magnetic attraction wheels (13), and the magnetic attraction wheels (13) in the longitudinal direction of the vehicle body and the magnetic attraction wheels (13). Drive traveling vehicle body (10a) provided with a pair of traveling bodies provided with steering means for steering around a steering axis that is perpendicular to the axis of the vehicle and divided into a front portion and a rear portion of the vehicle body.
(10b), attraction means for attracting to the pipe inner wall surface (51) by a permanent magnet (22) provided in non-contact with the pipe inner wall surface (51), and towing to the drive traveling vehicle body (10a) (10b). Driven vehicle bodies (20a), (20b) provided with traveling means that are driven by spherical wheels (21), the drive traveling vehicle bodies (10a), (10b) being arranged in the front row and the rearmost, In the middle, the driven vehicle body (20a)
(20b) is arranged and each traveling vehicle body is connected by a shaft around a shaft in the width direction of the vehicle through a rotation support mechanism having one degree of freedom. A circumferential position detecting means (500) for detecting the inclination φ is provided, and the own weight of the driving traveling vehicle body (10a) (10b) is W1,
The distance from the inner wall surface of the pipe (51) to the position of the center of gravity is L, the attraction force of the pair of magnetic attraction wheels (13) is P, the mounting width is S, and the weights of all the driven vehicles (20a) (20b) are 2 × W2, W = W1 + W2, the total attraction force of the permanent magnet (22) per driven vehicle body is K, the friction coefficient between the pipe inner wall surface (51) and the magnetic attraction wheel body (13) is μ, and the drive is performed. When the driving force that can be generated by one driving means is F, the following equation is obtained: θ1 = cos −1 (W1 × L × sin φ / (S ×
P + S × W1 × cos φ / 2)) and an upper limit steering angle derivation means (502) for deriving an upper limit steering angle θ1, and θ2 = sin −1 ((W × sin φ + (2 × P +
K + W × cos φ) × μ) / (2 × F)) The lower limit steering angle deriving means (503) for deriving the lower limit steering angle θ2 represented by A steering angle determining means (504) for deriving a value as a derived steering angle is provided, and the frontmost row and the rearmost drive traveling vehicle body (10a) (10).
An in-pipe traveling device comprising steering angle setting means (505) for setting steering angles θ with respect to the pipe axis direction of b) in directions opposite to each other with the derived steering angles being absolute values.
【請求項3】 磁気吸着力により管内壁面に吸着しなが
ら管内を走行する走行車体を備え、 車軸(12)の両端側に備えられる一対の磁気吸着輪体
(13)により管内壁面(51)に吸着し、前記一対の
磁気吸着輪体(13)を駆動する駆動手段と、前記磁気
吸着輪体(13)を車体の前後方向及び磁気吸着輪体
(13)の軸に直角な操舵軸廻りに操舵する操舵手段と
を備えた走行体を駆動走行車体(10a)(10b)の
前方部位と後方部位とに配置し、前記各走行体の操舵軸
を、前記駆動走行車体(10a)(10b)の前後方向
に振り分け配設した管内走行装置の周方向走行方法であ
って、 前記駆動走行車体(10a)(10b)の自重をW1、
管内壁面から重心位置までの距離をL、一対の前記磁気
吸着輪体(13)の吸着力をP、取付け幅をS、前記管
内壁面(51)と前記磁気吸着輪体(13)との間の摩
擦係数をμ、前記駆動手段を1駆動手段により発生でき
る走行力をF、前記操舵軸の鉛直下方からの傾きをφと
した時に、管軸方向に対する操舵角θを、その絶対値が 【数4】θ≦cos-1(W1×L×sinφ/(S×P
+S×W1×cosφ/2)) θ≧sin-1((W1×sinφ+(2×P+W1×c
osφ)×μ)/(2×F)) の条件を満足する角度とし、 前記前方部位と後方部位との夫々に配設される前記走行
体の前記操舵角θを、互いに相反する方向に設定し、管
内を周方向に走行する管内走行装置の周方向走行方法。
3. A traveling vehicle body that travels in the pipe while being attracted to the inner wall surface of the pipe by a magnetic attraction force, and is attached to the inner wall surface (51) of the pipe by a pair of magnetic attraction wheels (13) provided at both ends of the axle (12). A drive means for adsorbing and driving the pair of magnetic attraction wheels (13), and the magnetic attraction wheel body (13) in the front-back direction of the vehicle body and around the steering axis perpendicular to the axis of the magnetic attraction wheel body (13). Traveling bodies equipped with steering means for steering are arranged at front and rear portions of the drive traveling vehicle bodies (10a), (10b), and the steering axes of the respective traveling bodies are set at the drive traveling vehicle bodies (10a), (10b). A method for traveling in a circumferential direction of a traveling device in a pipe arranged in the front-rear direction of the vehicle, wherein the self-weight of the drive traveling vehicle body (10a) (10b) is W1,
Between the inner wall surface of the pipe (51) and the magnetic attraction ring (13), the distance from the inner wall surface of the tube to the position of the center of gravity is L, the attraction force of the pair of magnetic attraction ring bodies (13) is P, the mounting width is S. Where μ is the friction coefficient, F is the traveling force that can be generated by the drive means by one drive means, and φ is the inclination of the steering shaft from below vertically, the steering angle θ with respect to the pipe axis direction has an absolute value of Equation 4 θ ≦ cos −1 (W1 × L × sin φ / (S × P
+ S × W1 × cos φ / 2) θ ≧ sin −1 ((W1 × sin φ + (2 × P + W1 × c
osφ) × μ) / (2 × F)), and the steering angles θ of the traveling bodies arranged in the front portion and the rear portion are set in mutually opposite directions. Then, a method of traveling in the pipe in the circumferential direction of the traveling device in the pipe in the circumferential direction.
【請求項4】 磁気吸着力により管内壁面に吸着しなが
ら管内を走行する走行車体を備え、 車軸(12)の両端側に備えられる一対の磁気吸着輪体
(13)により管内壁面(51)に吸着し、前記一対の
磁気吸着輪体(13)を駆動する駆動手段と、前記磁気
吸着輪体(13)を、車体の前後方向及び磁気吸着輪体
(13)の軸に直角な操舵軸廻りに操舵する操舵手段と
を備えた走行体を駆動走行車体(10a)(10b)の
前方部位と後方部位とに配置し、前記各走行体の操舵軸
を、前記駆動走行車体(10a)(10b)の前後方向
に振り分け配設した管内走行装置であって、 前記操舵軸の鉛直下方からの傾きφを検出する周方向位
置検出手段(500)を備え、 前記駆動走行車体(10a)(10b)の自重をW1、
管内壁面から重心位置までの距離をL、一対の前記磁気
吸着輪体(13)の吸着力をP、取付け幅をS、前記管
内壁面(51)と前記磁気吸着輪体(13)との間の摩
擦係数をμ、前記駆動手段を1駆動手段により発生でき
る走行力をFとした時に、 【数5】θ1=cos-1(W1×L×sinφ/(S×
P+S×W1×cosφ/2)) で表される上限操舵角θ1を導出する上限操舵角導出手
段(502)と、 【数6】θ2=sin-1((W1×sinφ+(2×P
+W1×cosφ)×μ)/(2×F)) で表される下限操舵角θ2を導出する下限操舵角導出手
段(503a)とを備え、 前記上限操舵角θ1及び下限操舵角θ2の中間値を導出
操舵角θとして導出する操舵角決定手段(504)を備
え、 前記前方部位と後方部位との夫々に配設される前記走行
体の管軸方向に対する操舵角θを、絶対値が前記導出操
舵角で、互いに相反する方向に設定する操舵角設定手段
(505a)を備えた管内走行装置。
4. A traveling vehicle body that travels inside the pipe while being attracted to the inner wall surface of the pipe by a magnetic attraction force. The pair of magnetic attraction wheels (13) provided at both ends of the axle (12) is attached to the inner wall surface (51) of the pipe. A drive means for adsorbing and driving the pair of magnetic attraction wheels (13), and the magnetic attraction wheel body (13) around the steering shaft perpendicular to the longitudinal direction of the vehicle body and the axis of the magnetic attraction wheel body (13). A traveling body having steering means for steering the vehicle is arranged at a front portion and a rear portion of the driving traveling vehicle body (10a) (10b), and the steering shaft of each traveling body is set to the driving traveling vehicle body (10a) (10b). ) Is arranged in the front-rear direction and is provided in the pipe traveling device, which is provided with a circumferential position detecting means (500) for detecting an inclination φ of the steering shaft from a vertically downward direction, and the driving traveling vehicle body (10a) (10b). Weight of W1,
Between the inner wall surface of the pipe (51) and the magnetic attraction ring (13), the distance from the inner wall surface of the tube to the position of the center of gravity is L, the attraction force of the pair of magnetic attraction ring bodies (13) is P, the mounting width is S. Where μ is the friction coefficient and F is the running force that can be generated by one driving means, θ1 = cos −1 (W1 × L × sin φ / (S ×
P + S × W1 × cos φ / 2)) upper limit steering angle derivation means (502) for deriving an upper limit steering angle θ1, and θ2 = sin −1 ((W1 × sin φ + (2 × P
+ W1 × cos φ) × μ) / (2 × F)) and a lower limit steering angle derivation means (503a) for deriving a lower limit steering angle θ2, and an intermediate value between the upper limit steering angle θ1 and the lower limit steering angle θ2. Is provided as a derived steering angle θ, and the absolute value of the steering angle θ with respect to the pipe axis direction of the traveling body disposed in each of the front part and the rear part is derived. An in-pipe traveling device comprising steering angle setting means (505a) for setting steering angles in mutually opposite directions.
【請求項5】 磁気吸着力により管内壁面に吸着しなが
ら管内を走行する走行車体を備え、 車軸(12)の両端側に備えられる一対の磁気吸着輪体
(13)により管内壁面(51)に吸着し、前記一対の
磁気吸着輪体(13)を駆動する駆動手段と、前記磁気
吸着輪体(13)を車体の前後方向及び磁気吸着輪体
(13)の軸に直角な操舵軸廻りに操舵する操舵手段と
を備えた一対の走行体を、車体前方部位と車体後方部位
とに振り分けて備えた駆動走行車体(10a)(10
b)を備えた管内走行装置(1)であって、 前記操舵軸の鉛直下方からの傾きφを検出する周方向位
置検出手段(501)を備え、前記周方向位置検出手段
(501)により検出される前記傾きφに基づいて、前
記走行体の管軸方向に対する操舵角θを設定制御する走
行体操舵角制御手段(510)を備えた管内走行装置。
5. A traveling vehicle body that travels in the pipe while being attracted to the inner wall surface of the pipe by a magnetic attraction force, and is formed on the inner wall surface (51) of the pipe by a pair of magnetic attraction wheels (13) provided at both ends of the axle (12). A drive means for adsorbing and driving the pair of magnetic attraction wheels (13), and the magnetic attraction wheel body (13) in the front-back direction of the vehicle body and around the steering axis perpendicular to the axis of the magnetic attraction wheel body (13). A drive traveling vehicle body (10a) (10) provided with a pair of traveling bodies provided with a steering means for steering, which are divided into a vehicle body front portion and a vehicle body rear portion.
b) A traveling device (1) including a circumferential position detecting means (501) for detecting an inclination φ of the steering shaft from a vertically downward direction, which is detected by the circumferential position detecting means (501). An in-pipe traveling apparatus comprising traveling body steering angle control means (510) for setting and controlling a steering angle θ of the traveling body with respect to a pipe axis direction based on the inclination φ.
【請求項6】 前記走行体操舵角制御手段(510)
が、 前記駆動走行車体(10a)(10b)の自重と前記磁
気吸着輪体(13)の吸着力に関し、前記周方向位置検
出手段(501)により検出される前記傾きφに基づい
て、いずれかの前記磁気吸着輪体(13)回りのモーメ
ントバランスから決定される上限操舵角θ1を導出する
上限操舵角導出手段(502)と、 前記駆動走行車体(10a)(10b)に掛かる重量負
荷と磁気吸着負荷に関し、前記周方向位置検出手段(5
01)により検出される前記傾きφに基づいて、走行抵
抗力から決定される下限操舵角θ2を導出する下限操舵
角導出手段(503)(503a)とを備え、 前記上限操舵角θ1と前記下限操舵角θ2との間の値
に、前記走行体の前記操舵角θを設定制御する請求項5
記載の管内走行装置。
6. The vehicle steering angle control means (510)
Which is based on the inclination φ detected by the circumferential position detecting means (501) with respect to the own weight of the driving traveling vehicle body (10a) (10b) and the attraction force of the magnetic attraction wheel body (13). Upper limit steering angle derivation means (502) for deriving the upper limit steering angle θ1 determined from the moment balance around the magnetic attraction wheel body (13), and the weight load and the magnetism applied to the drive traveling vehicle bodies (10a) (10b). Regarding the suction load, the circumferential position detecting means (5
01), the lower limit steering angle deriving means (503) (503a) for deriving the lower limit steering angle θ2 determined from the traveling resistance force, based on the inclination φ detected by the traveling resistance force. The control for setting the steering angle θ of the traveling body to a value between the steering angle θ2 and the steering angle θ2.
The in-pipe traveling device according to any one of the preceding claims.
JP8049854A 1995-09-27 1996-03-07 Circumferentially travelling method for pipe traveling device, and pipe traveling device Pending JPH09150737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8049854A JPH09150737A (en) 1995-09-27 1996-03-07 Circumferentially travelling method for pipe traveling device, and pipe traveling device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-249378 1995-09-27
JP24937895 1995-09-27
JP8049854A JPH09150737A (en) 1995-09-27 1996-03-07 Circumferentially travelling method for pipe traveling device, and pipe traveling device

Publications (1)

Publication Number Publication Date
JPH09150737A true JPH09150737A (en) 1997-06-10

Family

ID=26390300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8049854A Pending JPH09150737A (en) 1995-09-27 1996-03-07 Circumferentially travelling method for pipe traveling device, and pipe traveling device

Country Status (1)

Country Link
JP (1) JPH09150737A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020106108A (en) * 2018-12-28 2020-07-09 東京電力ホールディングス株式会社 Separation connector of tester of conduit conduction test
CN115095735A (en) * 2022-07-29 2022-09-23 福建建利达工程技术有限公司 Pipeline robot detection device and pipeline fault detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020106108A (en) * 2018-12-28 2020-07-09 東京電力ホールディングス株式会社 Separation connector of tester of conduit conduction test
CN115095735A (en) * 2022-07-29 2022-09-23 福建建利达工程技术有限公司 Pipeline robot detection device and pipeline fault detection method
CN115095735B (en) * 2022-07-29 2024-05-07 福建建利达工程技术有限公司 Pipeline robot detection device and pipeline fault detection method

Similar Documents

Publication Publication Date Title
US5355807A (en) Vehicle adapted to freely travel three-dimensionally by magnetic force and wheel for the vehicle
US4223753A (en) Omni-directional transport device
JP6465887B2 (en) Magnetic omni wheel
EP0526900B1 (en) Vehicle for use in pipes
EP2597021B1 (en) Omnidirectional vehicle
JP2020526449A (en) Small magnetic crawler vehicle with anti-sway support
JP2011121579A (en) Vehicle for independent inspection of inner space with restricted access
CN101143600A (en) Real wheel toe angle control system of vehicle
CN202686558U (en) Magnetic adsorption universal wheel device for magnetically adsorbing wall-climbing robot
JPH09150737A (en) Circumferentially travelling method for pipe traveling device, and pipe traveling device
JP2019006265A (en) Wiring structure of in-wheel motor power line
JPH0989855A (en) Wall surface inspection system
JPH0930408A (en) In-pipe running device
JP2010058681A (en) Suspension with steering device
JP4548917B2 (en) Inspection system for chimney cylinders, etc.
JPH0623959Y2 (en) Attitude control device for in-pipe monitoring camera
JP2007248265A (en) Traveling truck of magnetic attraction type
EP0960769A2 (en) Heavy transport vehicles
JP6884382B2 (en) In-pipe traveling device
JP2644078B2 (en) A work vehicle that can handle uneven terrain
CN112498471A (en) Multi-angle driving vehicle
JPH0930409A (en) Driven running body
KR20220050881A (en) Apparatus and method for balancing the barrel of a vehicle-mounted weapon system
JP3897399B2 (en) Car running in the jurisdiction
JPH03154790A (en) Working vehicle maneuverable responsively to undulating terrain