JPH0914863A - High-frequency melting apparatus - Google Patents

High-frequency melting apparatus

Info

Publication number
JPH0914863A
JPH0914863A JP18860395A JP18860395A JPH0914863A JP H0914863 A JPH0914863 A JP H0914863A JP 18860395 A JP18860395 A JP 18860395A JP 18860395 A JP18860395 A JP 18860395A JP H0914863 A JPH0914863 A JP H0914863A
Authority
JP
Japan
Prior art keywords
coil
ferromagnetic material
frequency coil
silicon
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18860395A
Other languages
Japanese (ja)
Inventor
Kenichi Sasaya
賢一 笹谷
Kyojiro Kaneko
恭二郎 金子
Yorihiro Kawase
順洋 河瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP18860395A priority Critical patent/JPH0914863A/en
Publication of JPH0914863A publication Critical patent/JPH0914863A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To enhance the utilization efficiency of applied power and to save the power consumption by enclosing a high frequency coil by a ferromagnetic material having high permeability, a high melting point and high resistance except the inner surface of the coil, and forcibly cooling the material. CONSTITUTION: A ferromagnetic material 3 is formed of a cylindrical part 3a disposed at the outside of a high frequency coil 2, first extended parts 3b extended from both the ends to the inside along both end faces of the coil 2, and second extended parts 3c extended from the ends to opposite sides. The parts 3c are so set at the interval to the same height as that of the coil 2 as not to cover the inner surface of the coil 2. That is, the ends of the parts 3b are extended to the opposite side, and the parts 3c are formed to enclose the coil 2. The any part of the material 3 has a refrigerant passage and is forcibly cooled by refrigerant such as water or oil passing the channel. Thus, the magnetic flux amount and density inside the opened coil are increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシリコン、チタンを始め
とする各種金属を高周波誘導加熱により溶解する高周波
溶解装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency melting apparatus for melting various metals such as silicon and titanium by high frequency induction heating.

【0002】[0002]

【従来の技術】近年、太陽電池の素材として用いられる
シリコンの方向性凝固ロッドを得るために、高周波誘導
加熱溶解によるシリコンの連続鋳造法が開発され、その
実用化に向けての研究が続けられている。
2. Description of the Related Art In recent years, in order to obtain a directional solidified rod of silicon used as a material for solar cells, a continuous casting method of silicon by high-frequency induction heating melting has been developed, and research toward its practical use has been continued. ing.

【0003】高周波誘導加熱溶解によるシリコンの連続
鋳造法は、図6に示すように、周方向に分割された無底
るつぼ1と、その外側に配置された高周波コイル2とを
用いて、無底るつぼ1内に投入される粒塊状の原料シリ
コンを高周波誘導加熱溶解し、その溶解シリコン4を無
底るつぼ1から下方へ徐々に引き抜いて凝固させること
により、シリコンロッド5を連続的に製造する。この方
法は高能率であることに加え、溶解シリコン4が無底る
つぼ1に対して非接触の状態で保持されるために、無底
るつぼ1からの不純物汚染が少ないという際立った特徴
を有する。
As shown in FIG. 6, the continuous casting method of silicon by high-frequency induction heating melting uses a bottomless crucible 1 divided in the circumferential direction and a high-frequency coil 2 arranged outside the crucible to form a bottomless crucible. The raw material silicon in the form of agglomerates that is put into the crucible 1 is melted by high-frequency induction heating, and the melted silicon 4 is gradually drawn downward from the bottomless crucible 1 to solidify it, whereby the silicon rod 5 is continuously manufactured. In addition to high efficiency, this method has a distinctive feature that the amount of impurity contamination from the bottomless crucible 1 is small because the molten silicon 4 is held in a non-contact state with the bottomless crucible 1.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、高周波
誘導加熱溶解は単なる誘導加熱の場合と異なり、大量の
電力を消費する。高周波誘導加熱溶解によるシリコンの
連続鋳造法もその例外ではなく、高周波コイル2に大電
流を供給する必要があるため電力費が嵩み、これによる
鋳造コストの上昇が、その鋳造法を実用化する上での大
きな障害の一つになっている。
However, high-frequency induction heating melting consumes a large amount of electric power, unlike the case of simple induction heating. The continuous casting method of silicon by high-frequency induction heating melting is no exception to this, and since a large current needs to be supplied to the high-frequency coil 2, the power cost increases, and this raises the casting cost. It has become one of the major obstacles above.

【0005】高周波誘導加熱溶解によるシリコンの連続
鋳造法では、溶解金属の形成量が変わらない限り最小限
必要なエネルギーは基本的に一定であり、結局は投入電
力をシリコンの溶解にいかに有効に利用するかというこ
とがポイントになる。チタン粉末を製造する方法の一つ
であるガスアトマイズ法やシリコン単結晶を製造する方
法の一つであるFZ法でも、この高周波誘導加熱溶解は
用いられているが、投入電力の有効利用はやはり重要な
課題の一つになっている。
In the continuous casting method for silicon by high-frequency induction heating melting, the minimum required energy is basically constant unless the amount of molten metal formed changes, and in the end, how effectively the input power is used for melting silicon is used. The point is whether to do it. This high-frequency induction heating melting is also used in the gas atomizing method, which is one of the methods for producing titanium powder, and the FZ method, which is one of the methods for producing silicon single crystals, but effective utilization of input power is still important. Has become one of the challenges.

【0006】本発明の目的は、投入電力の利用効率を高
めて電力消費量の節減を図る高周波溶解装置を提供する
ことにある。
An object of the present invention is to provide a high-frequency melting apparatus for improving the utilization efficiency of input power and reducing the power consumption.

【0007】[0007]

【課題を解決するための手段】本発明の高周波溶解装置
は、高周波コイルの内側に供給される金属材料を高周波
コイルにより誘導加熱して溶解する高周波誘導加熱溶解
装置において、高周波コイルを高透磁率・高融点・高抵
抗の強磁性体によりコイル内面を残して包囲し、且つ強
磁性体を強制冷却するものである。
The high-frequency induction melting apparatus of the present invention is a high-frequency induction heating melting apparatus for inductively heating and melting a metal material supplied to the inside of a high-frequency coil by the high-frequency coil. The ferromagnetic material with a high melting point and high resistance surrounds the inner surface of the coil, leaving the inner surface of the coil to be forcibly cooled.

【0008】[0008]

【作用】高周波コイルを高透磁率・高融点・高抵抗の強
磁性体によりコイル内面を残して包囲すると、強磁性体
に磁路が形成され、開放されたコイル内側において磁束
量および磁束密度が増大する。その結果、コイル内側の
金属材料に強い磁力線が作用し、金属材料の溶解効率が
上がる。また、磁束の漏洩も防止される。
[Function] When a high-frequency coil is surrounded by a ferromagnetic material having a high magnetic permeability, a high melting point, and a high resistance while leaving the inner surface of the coil, a magnetic path is formed in the ferromagnetic material, and the magnetic flux amount and the magnetic flux density are increased inside the opened coil. Increase. As a result, strong magnetic lines of force act on the metal material inside the coil, and the dissolution efficiency of the metal material increases. Also, leakage of magnetic flux is prevented.

【0009】また、強磁性体と言えどもこれを高周波誘
導加熱溶解にそのまま適用することはできない。なぜな
ら、溶解効率を高めるためには高い透磁率が要求される
が、透磁率の高いものほどネール温度が低くなる傾向に
あるので、高温により透磁率が低下し磁気特性が得られ
ないという問題が生じる。しかるに、本発明ではその強
磁性体を水,油等の冷媒を用いて、強制的に冷却するの
で、この問題も生じない。
Further, even a ferromagnetic material cannot be directly applied to high frequency induction heating melting. This is because a high magnetic permeability is required to increase the dissolution efficiency, but the higher the magnetic permeability, the lower the Neel temperature tends to be, so the magnetic permeability decreases due to the high temperature, and the magnetic properties cannot be obtained. Occurs. In the present invention, however, this problem does not occur because the ferromagnetic material is forcibly cooled by using a coolant such as water or oil.

【0010】漏洩磁束をなくす磁気シールド自体は周知
であるが、一般の磁気シールドはアルミニウム板、銅板
といった非磁性体であり、高周波誘導加熱溶解に用いて
も磁路を形成しないので、かえって溶解効率を低下させ
る。また自己の渦電流による発熱のために高温となって
実際に使用することも困難である。
Although a magnetic shield itself for eliminating leakage magnetic flux is well known, a general magnetic shield is a non-magnetic material such as an aluminum plate or a copper plate and does not form a magnetic path even when used for high frequency induction heating melting, so that the melting efficiency is rather increased. Lower. In addition, it is difficult to actually use because the temperature becomes high due to heat generation by its own eddy current.

【0011】強磁性体としては、高透磁率・高融点・高
抵抗を兼ね備え、これらのレベルが特に高い複合フェラ
イトが望ましい。代表的な複合フェライトの磁気特性を
表1に示す。
As the ferromagnetic material, a composite ferrite having a high magnetic permeability, a high melting point and a high resistance and having particularly high levels thereof is desirable. Table 1 shows the magnetic properties of typical composite ferrites.

【0012】複合フェライトの透磁率は溶解効率を高め
るために高い方が望ましく、具体的には初比透磁率で1
×102 以上が望ましい。抵抗率については自己の渦電
流損を抑えるために高い方が望ましく、具体的には1×
105 Ω・cm以上が望ましい。これらを満足する複合
フェライトとしてはMgZn,CuZnなどがある。
It is desirable that the magnetic permeability of the composite ferrite is high in order to improve the melting efficiency. Specifically, the initial relative magnetic permeability is 1
× 10 2 or more is desirable. It is desirable that the resistivity be high in order to suppress own eddy current loss, specifically 1 ×
10 5 Ω · cm or more is desirable. Examples of composite ferrites that satisfy these requirements include MgZn and CuZn.

【0013】強磁性体の冷却構造としては、強磁性体に
冷媒の流路を形成するのが代表的であるが、これに限る
ものではない。
As a cooling structure for a ferromagnetic material, a cooling medium flow path is typically formed in the ferromagnetic material, but the cooling structure is not limited to this.

【0014】強磁性体の形状としては、高周波コイルの
内面を残してそのコイルを出来るだけ広く包囲するもの
が望ましく、具体的には高周波コイルの外側に位置する
筒部と、筒部の両端部から内側へ延出した第1延出部
と、第1延出部の各先端から対向側へ延出した第2延出
部とからなるものが望ましい。
The shape of the ferromagnetic material is preferably such that the inner surface of the high frequency coil is left and the coil is surrounded as wide as possible. Specifically, the cylindrical portion located outside the high frequency coil and both end portions of the cylindrical portion are preferable. It is preferable that the first extension part extends inwardly from the first extension part and the second extension part extends from each tip of the first extension part to the opposite side.

【0015】[0015]

【表1】 μi 初比透磁率、 Is 飽和磁化、 Hc 保持力 δ 磁壁の幅、 Tc ネール温度、ρ 抵抗率[Table 1] μ i initial relative permeability, I s saturation magnetization, H c coercive force δ domain wall width, T c nail temperature, ρ resistivity

【0016】[0016]

【実施例】以下に本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の1実施例を示すシリコン連
続鋳造装置の側面図である。この鋳造装置は無底るつぼ
1と、その外側に配置された高周波コイル2と、高周波
コイル2を包囲する強磁性体3とを具備する。無底るつ
ぼ1は水冷銅からなり、軸方向の一部を残して周方向に
複数分割されている。高周波コイル2は数ターンの水冷
銅コイルである。
FIG. 1 is a side view of a silicon continuous casting apparatus showing one embodiment of the present invention. This casting apparatus comprises a bottomless crucible 1, a high-frequency coil 2 arranged outside the crucible 1, and a ferromagnetic body 3 surrounding the high-frequency coil 2. The bottomless crucible 1 is made of water-cooled copper and is divided into a plurality of pieces in the circumferential direction while leaving a part in the axial direction. The high frequency coil 2 is a water-cooled copper coil having several turns.

【0018】本発明で重要な強磁性体3は、高周波コイ
ル2の外側に位置する筒部3aと、その両端部から高周
波コイル2の両端面に沿って内側へ延出した第1延出部
3b,3bと、第1延出部3b,3bの各先端から対向
側へ延出した第2延出部3c,3cとからなる。第2延
出部3c,3cは高周波コイル2の内面を覆わないよう
に、その間隔が高周波コイル2の高さと同じに設定され
ている。
The ferromagnetic material 3 important in the present invention includes a cylindrical portion 3a located outside the high-frequency coil 2 and a first extending portion extending inward from both end portions along both end surfaces of the high-frequency coil 2. 3b, 3b and second extending portions 3c, 3c extending from the respective tips of the first extending portions 3b, 3b to the opposite side. The intervals between the second extending portions 3c and 3c are set to be the same as the height of the high frequency coil 2 so as not to cover the inner surface of the high frequency coil 2.

【0019】図2は本発明の他の実施例を示すシリコン
連続鋳造装置の側面図である。図1の鋳造装置とは強磁
性体3が第2延出部3c,3cを持たない点で相違して
いる。すなわち、図2の鋳造装置では強磁性体3が高周
波コイル2の外面および両端面のみを覆い、コイル内側
を全面的に開放するのに対し、図1の鋳造装置では第1
延出部3b,3bの各先端部が対向側へ延出して第2延
出部3c,3cを形成し、図2の場合より更に広く高周
波コイルを包囲する。
FIG. 2 is a side view of a silicon continuous casting apparatus showing another embodiment of the present invention. The casting apparatus of FIG. 1 is different in that the ferromagnetic body 3 does not have the second extending portions 3c and 3c. That is, in the casting apparatus of FIG. 2, the ferromagnetic material 3 covers only the outer surface and both end surfaces of the high frequency coil 2 and completely opens the inside of the coil, whereas the casting apparatus of FIG.
The tip portions of the extending portions 3b, 3b extend to the opposite side to form the second extending portions 3c, 3c, and surround the high frequency coil more widely than in the case of FIG.

【0020】強磁性体3の材質はいずれの鋳造装置にお
いても複合フェライトが用いられている。また、強磁性
体3のいずれの部分も冷媒の流路を有し、該流路を通る
水,油等の冷媒により強制的に冷却される。
As the material of the ferromagnetic material 3, composite ferrite is used in any casting apparatus. Further, every part of the ferromagnetic body 3 has a flow path for a refrigerant, and is forcibly cooled by a refrigerant such as water or oil passing through the flow path.

【0021】いずれの鋳造装置においても、無底るつぼ
1内に原料シリコンを投入し、高周波コイル2に高周波
電流を供給することにより、無底るつぼ1を介してるつ
ぼ内の原料シリコンに渦電流が生じ、そのシリコンが溶
解する。溶解シリコン4は、無底るつぼ1からその下方
に徐々に引き抜かれて凝固し、シリコンロッド5とな
る。このときの磁気ポテンシャル分布例を、強磁性体が
ない従来装置の場合と比較して図3に示す。
In any of the casting apparatuses, by feeding the raw material silicon into the bottomless crucible 1 and supplying a high frequency current to the high frequency coil 2, an eddy current is generated in the raw material silicon in the crucible via the bottomless crucible 1. Occurs and the silicon melts. The molten silicon 4 is gradually pulled out from the bottomless crucible 1 downward and solidified to become a silicon rod 5. An example of the magnetic potential distribution at this time is shown in FIG. 3 in comparison with the case of a conventional device without a ferromagnetic material.

【0022】強磁性体3がない従来の鋳造装置の場合、
高周波コイル2の外側に磁力線が広がるので、高周波コ
イル2の内側における磁束密度は小さい。強磁性体3で
高周波コイル2を包囲した図1の装置および図2の装置
では、強磁性体3に磁路が形成され、磁束がしぼられる
こと及び磁束の形成が促進されることにより、高周波コ
イル2の内側においては磁束量および磁束密度がともに
増大する。その結果、無底るつぼ1およびその内側のシ
リコンに強い磁力線が作用し、シリコン溶解効率が向上
する。
In the case of a conventional casting machine without the ferromagnetic material 3,
Since magnetic lines of force spread outside the high-frequency coil 2, the magnetic flux density inside the high-frequency coil 2 is small. In the device of FIG. 1 and the device of FIG. 2 in which the high-frequency coil 2 is surrounded by the ferromagnetic material 3, a magnetic path is formed in the ferromagnetic material 3, and the magnetic flux is squeezed and the formation of the magnetic flux is promoted. Inside the coil 2, both the amount of magnetic flux and the magnetic flux density increase. As a result, strong magnetic lines of force act on the bottomless crucible 1 and the silicon inside thereof, and the silicon melting efficiency is improved.

【0023】この効果は、高周波コイル2を強磁性体3
でより広く包囲する図1の装置の方が大きい。
This effect is obtained by connecting the high frequency coil 2 to the ferromagnetic material 3.
The device of FIG.

【0024】図1および図2の各装置おいて、強磁性体
3としてMnZn(μi =3×103 )、MgMn、N
iZnを用い、誘導周波数20kHz、コイル電流密度
5.0×106 AT/m2 の誘導加熱溶解条件でシリコン
の連続鋳造を行う場合に、無底るつぼ及びるつぼ内のシ
リコンに生じる渦電流損を表2に示す。また、比較のた
めに強磁性体を用いない場合についてもその渦電流損を
示す。更に表3には、それぞれについて同量の溶解シリ
コンを形成するのに必要なコイルの消費電力を示す。
In each of the devices shown in FIGS. 1 and 2, the ferromagnetic material 3 is MnZn (μ i = 3 × 10 3 ), MgMn, N.
Using iZn, induction frequency 20 kHz, coil current density
Table 2 shows the eddy current loss generated in the bottomless crucible and the silicon in the crucible when performing continuous casting of silicon under the induction heating melting condition of 5.0 × 10 6 AT / m 2 . For comparison, the eddy current loss is also shown when a ferromagnetic material is not used. In addition, Table 3 shows the power consumption of the coil required to form the same amount of molten silicon for each.

【0025】表2および表3からわかるように、強磁性
体で高周波コイルを包囲することにより、投入電力が同
一の場合は無底るつぼ内のシリコンに生じる渦電流力が
増大し、その結果、溶解量が同一の場合は消費電力が少
なくなる。この効果は透磁率の大きさに主に対応するこ
とから、強磁性体の材質がNiZnよりMgMnの場合
の方が、またMgMnよりMnZnの場合の方が大き
く、また強磁性体の形状については、図2の場合より図
1の場合の方が大きい。
As can be seen from Tables 2 and 3, by enclosing the high frequency coil with a ferromagnetic material, the eddy current force generated in silicon in the bottomless crucible increases when the input power is the same, and as a result, When the amount of dissolution is the same, power consumption is low. Since this effect mainly corresponds to the magnitude of magnetic permeability, when the material of the ferromagnetic material is MgMn rather than NiZn, and when it is MnZn rather than MgMn, and the shape of the ferromagnetic material is The case of FIG. 1 is larger than that of FIG.

【0026】強磁性体の形状が図1の場合および図2の
場合について、強磁性体の比透磁率を変更したときの渦
電流損の変化を図4に示す。比透磁率が増大するにつれ
て渦電流損が大きくなり、1×102 以上で特に大きい
渦電流損が得られる。また全体に図1の磁性体形状の方
が、図2の磁性体形状より大きい渦電流損が得られる。
FIG. 4 shows changes in eddy current loss when the relative permeability of the ferromagnetic material is changed for the cases where the shape of the ferromagnetic material is as shown in FIG. 1 and FIG. The eddy current loss increases as the relative permeability increases, and a particularly large eddy current loss is obtained at 1 × 10 2 or more. In addition, eddy current loss larger than that of the magnetic body shown in FIG. 2 is obtained in the magnetic body shown in FIG. 1 as a whole.

【0027】[0027]

【表2】 (単位kW)[Table 2] (Unit: kW)

【0028】[0028]

【表3】 (単位kW)[Table 3] (Unit: kW)

【0029】図5(a)(b)は本発明の更に別の実施
例を示す装置構成図である。図5(a)の例は、チタン
粉末を製造するガスアトマイズに本発明を適用したもの
である。高周波コイル2によりチタン棒6を誘導加熱溶
解し、その溶解チタンをガス流で細かい液滴とする際
に、高周波コイル2をその内面側を残して強磁性体3に
より包囲することにより、チタン溶解効率を高め、消費
電力を節減することができる。
5 (a) and 5 (b) are device configuration diagrams showing still another embodiment of the present invention. In the example of FIG. 5A, the present invention is applied to gas atomization for producing titanium powder. When the titanium rod 6 is induction-heated and melted by the high-frequency coil 2 and the melted titanium is made into fine droplets by the gas flow, the high-frequency coil 2 is surrounded by the ferromagnetic material 3 while leaving the inner surface side of the titanium rod 6 melted. It can improve efficiency and save power consumption.

【0030】図5(b)の例は、シリコン単結晶を製造
するFZ法に本発明を適用したものである。多結晶のシ
リコンロッド5を高周波コイル2により誘導加熱溶解し
て単結晶化する際に、高周波コイル2をその内面側を残
して強磁性体3により包囲することにより、シリコン溶
解効率を高め、消費電力を節減することができる。
The example of FIG. 5B is one in which the present invention is applied to the FZ method for producing a silicon single crystal. When the polycrystalline silicon rod 5 is induction-heated and melted by the high-frequency coil 2 to be single-crystallized, the high-frequency coil 2 is surrounded by the ferromagnetic material 3 while leaving the inner surface side thereof, so that the silicon melting efficiency is increased and the consumption is increased. Power can be saved.

【0031】[0031]

【発明の効果】以上に説明した通り、本発明の高周波溶
解装置は、高周波コイルのコイル内面を除いてそのコイ
ルを強磁性体にて包囲し、且つその強磁性体を冷却して
高い透磁率の強磁性体の使用を可能としたことにより、
投入電力の有効利用を図り、消費電力の節約に大きな効
果を発揮する。
As described above, in the high frequency melting apparatus of the present invention, the high frequency coil is surrounded by a ferromagnetic material except for the inner surface of the high frequency coil, and the ferromagnetic material is cooled to obtain a high magnetic permeability. By making it possible to use ferromagnetic materials,
It effectively utilizes the input power and exerts a great effect on saving power consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の溶解装置をシリコンの連続鋳造に適用
した場合の装置構成例を示す模式図である。
FIG. 1 is a schematic view showing an example of the apparatus configuration when the melting apparatus of the present invention is applied to continuous casting of silicon.

【図2】本発明の溶解装置をシリコンの連続鋳造に適用
した場合の他の装置構成を示す模式図である。
FIG. 2 is a schematic view showing another apparatus configuration when the melting apparatus of the present invention is applied to continuous casting of silicon.

【図3】本発明の溶解装置における磁気ポテンシャルの
分布例を従来装置の場合と比較して示す模式図である。
FIG. 3 is a schematic diagram showing an example of magnetic potential distribution in the melting apparatus of the present invention in comparison with the case of a conventional apparatus.

【図4】強磁性体の形状および透磁率が溶解効率に及ぼ
す影響を示すグラフである。
FIG. 4 is a graph showing the influence of the shape and magnetic permeability of a ferromagnetic material on the dissolution efficiency.

【図5】本発明の溶解装置をガスアトマイズ法およびF
Z法に適用した場合の装置構成例を示す模式図である。
FIG. 5 shows the melting apparatus of the present invention using a gas atomizing method and F
It is a schematic diagram which shows the example of a device structure when applied to Z method.

【図6】従来の溶解装置を用いたシリコン鋳造装置の装
置構成図である。
FIG. 6 is a device configuration diagram of a silicon casting device using a conventional melting device.

【符号の説明】[Explanation of symbols]

1 無底るつぼ 2 高周波コイル 3 強磁性体 4 溶解シリコン 5 シリコンロッド 6 チタン棒 1 Bottomless crucible 2 High frequency coil 3 Ferromagnetic material 4 Melted silicon 5 Silicon rod 6 Titanium rod

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高周波コイルの内側に供給される金属材
料を高周波コイルにより誘導加熱して溶解する高周波誘
導加熱溶解装置において、 高周波コイルを高透磁率・高融点・高抵抗の強磁性体に
よりコイル内面を残して包囲し、且つ強磁性体を強制的
に冷却することを特徴とする高周波溶解装置。
1. A high-frequency induction heating melting apparatus for inductively heating and melting a metal material supplied to the inside of a high-frequency coil, wherein the high-frequency coil is made of a ferromagnetic material having high magnetic permeability, high melting point and high resistance. A high-frequency melting apparatus which is characterized in that it surrounds an inner surface and forcibly cools a ferromagnetic material.
【請求項2】 強磁性体が、高周波コイルの外側に位置
する筒部と、筒部の両端部から内側へ延出した第1延出
部と、第1延出部の各先端から対向側へ延出した第2延
出部とからなることを特徴とする請求項1に記載の高周
波溶解装置。
2. The ferromagnetic body includes a tubular portion located outside the high frequency coil, a first extending portion extending inward from both end portions of the tubular portion, and a tip end of each of the first extending portions facing each other. The high-frequency melting apparatus according to claim 1, comprising a second extending portion extending to
JP18860395A 1995-06-30 1995-06-30 High-frequency melting apparatus Pending JPH0914863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18860395A JPH0914863A (en) 1995-06-30 1995-06-30 High-frequency melting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18860395A JPH0914863A (en) 1995-06-30 1995-06-30 High-frequency melting apparatus

Publications (1)

Publication Number Publication Date
JPH0914863A true JPH0914863A (en) 1997-01-17

Family

ID=16226564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18860395A Pending JPH0914863A (en) 1995-06-30 1995-06-30 High-frequency melting apparatus

Country Status (1)

Country Link
JP (1) JPH0914863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10766777B2 (en) 2009-11-20 2020-09-08 Consarc Corporation Method for electromagnetic casting of silicon in a conductive crucible using a highest- and lowest-disposed induction coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10766777B2 (en) 2009-11-20 2020-09-08 Consarc Corporation Method for electromagnetic casting of silicon in a conductive crucible using a highest- and lowest-disposed induction coil

Similar Documents

Publication Publication Date Title
US10893600B2 (en) High performance induction plasma torch
JP2008545885A (en) Cold wall type induction nozzle
US20110095018A1 (en) Device For Producing A Single Crystal Composed Of Silicon By Remelting Granules
US4678024A (en) Horizontal electromagnetic casting of thin metal sheets
US2664496A (en) Apparatus for the magnetic levitation and heating of conductive materials
US7796674B2 (en) Cold crucible induction furnace
CN206768218U (en) Remove the laser cladding apparatus of laser cladding layer stomata/field trash
US5495886A (en) Apparatus and method for sidewall containment of molten metal with vertical magnetic fields
JPH0914863A (en) High-frequency melting apparatus
US4522790A (en) Flux concentrator
JP3129076B2 (en) Floating melting apparatus and its tapping method
JPH06273058A (en) Floating melting apparatus
US5191928A (en) Method for continuous casting of steel and apparatus therefor
TA et al. Effect of electromagnetic forces on aluminium cast structure
AT409829B (en) DEVICE AND METHOD FOR THE CASTING OF METAL STRIPS, ESPECIALLY STEEL, IN TWO-ROLLER STRIP CASTING MACHINES
KR20030016869A (en) A electromagnet stirrer in continuous casting machine
JPH1187044A (en) Bottom part molten metal tap type float solution device and its tap method
JP3129078B2 (en) Bottom hole tapping type flotation melting device
JP2000015319A (en) Induction heating device for side part of metal plate
JP3628355B2 (en) High frequency induction heating coil device
JPH0711352A (en) Method for continuously melting and casting high melting point active metal
JPS5848798Y2 (en) induction melting and holding furnace
JPH0714557B2 (en) Impeder for ERW pipe manufacturing
JPH03279780A (en) High frequncy induction type electric furnace
JPS5942199Y2 (en) electromagnetic stirring device