JPH09148175A - Ceramic capacitor - Google Patents

Ceramic capacitor

Info

Publication number
JPH09148175A
JPH09148175A JP7311009A JP31100995A JPH09148175A JP H09148175 A JPH09148175 A JP H09148175A JP 7311009 A JP7311009 A JP 7311009A JP 31100995 A JP31100995 A JP 31100995A JP H09148175 A JPH09148175 A JP H09148175A
Authority
JP
Japan
Prior art keywords
ceramic capacitor
dielectric
stabilized zirconia
barium titanate
batio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7311009A
Other languages
Japanese (ja)
Other versions
JP3199616B2 (en
Inventor
Tetsuya Kimura
哲也 木村
Shoji Kosaka
祥二 高坂
Takeshi Takenoshita
健 竹之下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP31100995A priority Critical patent/JP3199616B2/en
Publication of JPH09148175A publication Critical patent/JPH09148175A/en
Application granted granted Critical
Publication of JP3199616B2 publication Critical patent/JP3199616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance a ceramic capacitor in mechanical strength without influencing it in electrical properties as a dielectric ceramic. SOLUTION: This ceramic capacitor is formed through such a manner that dielectric layers 2 mainly formed of barium titanate (BaTiO3 ) and inner electrode layers 3 are alternately laminated for the formation of a laminated ceramic capacitor 4, outer layers 7 and 8 formed of material composed of compound mainly consisting of barium titanate (BaTiO3 ) and 40 to 90% by weight of stabilized zirconia are provided to the upside 5 and underside 6 of the ceramic capacitor 4 respectively, and a terminal electrode 9 is provided to each edge face of the ceramic capacitor 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、民生用または産業
用電子機器に使用する電子回路基板や電子部品等に適用
される高誘電率系のセラミックコンデンサに関するもの
で、とりわけ車載用の各種制御装置の電子部品、例え
ば、共振器、コンデンサ、LCフィルター等に好適なセ
ラミックコンデンサである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high dielectric constant type ceramic capacitor applied to an electronic circuit board, an electronic component or the like used in a consumer or industrial electronic device, and in particular to various vehicle-mounted control devices. Is a ceramic capacitor suitable for electronic parts such as resonators, capacitors, LC filters and the like.

【0002】[0002]

【従来の技術】従来より誘電体材料として各種誘電体セ
ラミックスが電子回路基板や電子部品等に広く使用され
ており、高誘電率系の誘電体磁器組成物としては、チタ
ン酸バリウム(BaTiO3 )を主体とするものが多用
されてきた。
2. Description of the Related Art Conventionally, various dielectric ceramics have been widely used as a dielectric material in electronic circuit boards, electronic parts and the like. As a dielectric ceramic composition having a high dielectric constant, barium titanate (BaTiO 3 ) is used. The thing mainly made of has been used frequently.

【0003】近年、車載部品のカーステレオやエアバッ
ク、燃料噴射装置等、各種自動車機器の発展と普及に伴
い、それらの制御装置の電子化が進み、車載用の電子回
路基板や電子部品の開発が活発になされ、誘電体セラミ
ックスが積極的に利用されるようになってきた。
In recent years, with the development and popularization of various vehicle equipment such as car stereos, airbags, fuel injection devices, etc., which are mounted on vehicles, computerization of these control devices has progressed, and development of electronic circuit boards and electronic components for vehicles. The dielectric ceramics have come to be actively used.

【0004】しかしながら、前述のようなチタン酸バリ
ウム(BaTiO3 )を主体とする高誘電率系の誘電体
磁器組成物は、誘電率が高く誘電体セラミックスとして
優れた特性を有するものであるが機械的強度が低く、実
装作業時のハンドリングや加熱・冷却、あるいは種々の
外部応力等によりクラックや欠けを発生し易く、誘電体
としての各種電気的特性の劣化と信頼性に劣るという問
題があった。
However, the high-dielectric-constant dielectric ceramic composition mainly composed of barium titanate (BaTiO 3 ) as described above has a high dielectric constant and has excellent characteristics as a dielectric ceramic, but it is mechanical. Has low mechanical strength, is easily cracked or chipped due to handling, heating / cooling during mounting work, various external stresses, etc., resulting in deterioration of various electrical characteristics as a dielectric and poor reliability. .

【0005】ましてや前述の車載用ともなると振動やエ
ンジンの発する高熱等により、十分な機械的強度や耐熱
性が必要であり、昨今の傾向として車両重量の軽減化と
車載部品の小型化のために、前記各種制御装置をエンジ
ンルーム内に設置することが検討されており、車載用電
子部品の環境はますます厳しくなっており、機械的強度
の改善が要求されていた。
Furthermore, in the case of the above-mentioned vehicle-mounted type, it is necessary to have sufficient mechanical strength and heat resistance due to vibration and high heat generated by the engine. As a recent tendency, in order to reduce the weight of the vehicle and downsize the vehicle-mounted parts. The installation of the above-mentioned various control devices in the engine room is being considered, and the environment of electronic components for vehicles has become more and more severe, and improvement in mechanical strength has been required.

【0006】そこで、かかる問題を解消するために、原
料粉末を微細化したり、金属酸化物等の添加物を加えて
高誘電率系誘電体磁器組成物の機械的強度を向上せんと
することが提案されている(特開平5−279117号
公報、特開平6−96987号公報参照)。
Therefore, in order to solve such a problem, the raw material powder may be made finer, or additives such as metal oxides may be added to improve the mechanical strength of the high dielectric constant type dielectric ceramic composition. It has been proposed (see JP-A-5-279117 and JP-A-6-96987).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記原
料粉末を微細化して組織を緻密化する方法では最終組成
が変化しないため、誘電体磁器の誘電率等の電気的特性
は維持されるものの、機械的強度は3点曲げ強度で18
0MPa以下と小さく、また、前記金属酸化物を添加物
として用いる方法は、材料自体の電気的特性に微妙な影
響を与える可能性が大きく、しかも機械的強度も120
MPa程度と強度向上の効果も小さく、前述の厳しい要
求を満足するものではなかった。
However, since the final composition does not change in the method of refining the raw material powder to densify the structure, the electrical characteristics such as the dielectric constant of the dielectric ceramic are maintained, but Strength is 18 at 3-point bending strength
The method is as small as 0 MPa or less, and the method of using the metal oxide as an additive has a large possibility of delicately affecting the electrical characteristics of the material itself, and also has a mechanical strength of 120.
The effect of improving the strength was small at about MPa, and the above-mentioned strict requirements were not satisfied.

【0008】[0008]

【発明の目的】本発明は前記課題を解消せんとして成さ
れたもので、その目的は、高誘電率系の誘電体磁器とし
て電気的特性を損なうような影響を与えることなく、十
分な機械的強度の向上を図ることができるセラミックコ
ンデンサ及びその誘電体材料を提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above problems, and its purpose is to provide a high dielectric constant porcelain with sufficient mechanical properties without affecting electrical characteristics. It is an object of the present invention to provide a ceramic capacitor and its dielectric material that can improve strength.

【0009】[0009]

【課題を解決するための手段】本発明者等は前記目的を
達成するために、主成分であるチタン酸バリウム(Ba
TiO3 )よりも機械的強度が高く、該チタン酸バリウ
ム(BaTiO3 )と熱膨張係数が近似した材料を種々
検討し、安定化ジルコニアをチタン酸バリウム(BaT
iO3 )を主成分とする誘電体組成物に含有した高強度
の誘電体材料で、機械的強度が低い積層コンデンサの少
なくとも上下面を挟んで外表層とした構造とすることに
より、電気的特性を損なうような影響を与えることな
く、機械的強度が大幅に向上することを見出した。
In order to achieve the above-mentioned object, the present inventors have found that barium titanate (Ba) which is the main component is used.
TiO 3 ), which has a higher mechanical strength than that of barium titanate (BaTiO 3 ), and a coefficient of thermal expansion similar to that of barium titanate (BaTiO 3 ).
(iO 3 ) is a high-strength dielectric material contained in a dielectric composition, and the outer surface layer is formed by sandwiching at least the upper and lower surfaces of a multilayer capacitor having low mechanical strength, thereby providing electrical characteristics. It has been found that the mechanical strength is significantly improved without giving an adverse effect on the strength.

【0010】本発明のセラミックコンデンサは、チタン
酸バリウム(BaTiO3 )を主成分とする誘電体層と
内部電極層が交互に積層されて成る積層コンデンサの少
なくとも上下面に、チタン酸バリウム(BaTiO3
を主成分とする誘電体組成物に40〜90重量%のイッ
トリア安定化ジルコニア(YSZ)やマグネシア安定化
ジルコニア(以下、MSZと記す)、またはカルシア安
定化ジルコニア(以下、CSZと記す)を含有した誘電
体から成る外表層を一体化して成るもので、特に外表層
の前記安定化ジルコニアの含有量が50〜75重量%で
あることがより望ましいものであり、更に、前記安定化
ジルコニアが8モル%イットリア安定化ジルコニア(8
YSZ)であることが最も好適なものである。
[0010] Ceramic capacitors of the present invention, at least the upper and lower surfaces of the stacked capacitor dielectric layers and internal electrode layers mainly composed of barium titanate (BaTiO 3) are laminated alternately, barium titanate (BaTiO 3 )
40 to 90% by weight of yttria-stabilized zirconia (YSZ), magnesia-stabilized zirconia (hereinafter referred to as MSZ), or calcia-stabilized zirconia (hereinafter referred to as CSZ) in a dielectric composition whose main component is It is preferable that the outer surface layer of the above-mentioned dielectric is integrated, and it is more preferable that the content of the stabilized zirconia in the outer surface layer is 50 to 75% by weight. Mol% yttria stabilized zirconia (8
Most preferred is YSZ).

【0011】前記安定化ジルコニアは、その含有量が4
0重量%未満の場合には、機械的強度が従来例と同等程
度であり強度の向上効果が見られず、また90重量%を
越えると、誘電体層との接合力が弱く、外表層が剥離し
てしまう。
The content of the stabilized zirconia is 4
When the amount is less than 0% by weight, the mechanical strength is comparable to that of the conventional example and the effect of improving the strength is not observed, and when the amount exceeds 90% by weight, the bonding force with the dielectric layer is weak and the outer surface layer is It peels off.

【0012】従って、前記安定化ジルコニアの含有量は
40〜90重量%に特定され、機械的強度の向上と誘電
体層との密着性という観点からは50〜75重量%が最
も好ましい。
Therefore, the content of the above-mentioned stabilized zirconia is specified to be 40 to 90% by weight, and 50 to 75% by weight is most preferable from the viewpoint of improvement of mechanical strength and adhesion to the dielectric layer.

【0013】また、一般にジルコニア(ZrO2 )は変
態する際に大きく体積変化して破壊してしまうため、カ
ルシア(CaO)、マグネシア(MgO)、イットリア
(Y2 3 )等の安定化剤を固溶させて結晶相を立方晶
あるいは正方晶とした安定化ジルコニアとして使用され
るが、なかでもイットリア安定化ジルコニア(YSZ)
はヤング率が比較的高く、高強度化には最も適してい
る。
Further, in general, zirconia (ZrO 2 ) undergoes a large volume change and breaks during transformation, and therefore stabilizers such as calcia (CaO), magnesia (MgO) and yttria (Y 2 O 3 ) are used. It is used as a stabilized zirconia that is made into a solid solution to form a cubic or tetragonal crystal phase. Among them, yttria-stabilized zirconia (YSZ)
Has a relatively high Young's modulus and is most suitable for increasing strength.

【0014】また、前記イットリア安定化ジルコニア
(YSZ)は熱膨張係数が9.0〜11.0×10-6
℃であり、チタン酸バリウム(BaTiO3 )を主成分
とする積層コンデンサの熱膨張係数が約10.8×10
-6/℃と比較的近似していることから、熱膨張差による
クラックや剥離等の発生が回避でき、例えば、3モル%
イットリア安定化ジルコニア(以下、3YSZと記す)
の熱膨張係数が約9.0×10-6/℃を示し、8YSZ
の熱膨張係数が約10.4×10-6/℃であることか
ら、熱膨張係数の整合性の点からは8モル%イットリア
安定化ジルコニア(8YSZ)が最も望ましい。
The yttria-stabilized zirconia (YSZ) has a thermal expansion coefficient of 9.0 to 11.0 × 10 -6 /
C., and the coefficient of thermal expansion of a multilayer capacitor containing barium titanate (BaTiO 3 ) as a main component is about 10.8 × 10.
Since it is relatively close to −6 / ° C., it is possible to avoid the occurrence of cracks and peeling due to the difference in thermal expansion.
Yttria-stabilized zirconia (hereinafter referred to as 3YSZ)
Has a thermal expansion coefficient of about 9.0 × 10 -6 / ° C.
Since the coefficient of thermal expansion is about 10.4 × 10 −6 / ° C., 8 mol% yttria-stabilized zirconia (8YSZ) is most desirable from the viewpoint of consistency of coefficient of thermal expansion.

【0015】[0015]

【作用】本発明のセラミックコンデンサは、チタン酸バ
リウム(BaTiO3 )を主成分とする誘電体層と内部
電極層が交互に積層された積層コンデンサの少なくとも
上下面の外表面に、チタン酸バリウム(BaTiO3
を主成分とする誘電体組成物に安定化ジルコニアを40
〜90重量%含有した層を形成したことから、内部電極
の存在する積層コンデンサ部を覆うように密着して外表
層が存在し、直接誘電体としての電気的特性に影響を及
ぼすことなく、前記高強度の層が最も応力が加わる外表
面を補強して機械的強度を向上させる事になる。
In the ceramic capacitor of the present invention, the barium titanate () is formed on at least the upper and lower outer surfaces of the laminated capacitor in which the dielectric layers mainly containing barium titanate (BaTiO 3 ) and the internal electrode layers are alternately laminated. BaTiO 3 )
Stabilized zirconia is added to the dielectric composition containing 40
Since the layer containing ˜90 wt% is formed, the outer surface layer is present in close contact so as to cover the laminated capacitor part in which the internal electrode exists, and the electric characteristics as a dielectric are not directly affected. The high strength layer reinforces the most stressed outer surface to improve the mechanical strength.

【0016】[0016]

【発明の実施の形態】以下、本発明のセラミックコンデ
ンサを図面に基づき詳細に説明する。図1は本発明のセ
ラミックコンデンサの一実施例を示す断面図であり、1
はチタン酸バリウム(BaTiO3 )を主成分とする誘
電体層2と内部電極層3を交互に積層した積層コンデン
サ4の上面5及び下面6に、それぞれチタン酸バリウム
(BaTiO3 )を主成分とする誘電体組成物に安定化
ジルコニアを40〜90重量%含有した外表層7及び8
を一体的に形成し、その両端部に端子電極9を被着形成
したセラミックコンデンサである。
DETAILED DESCRIPTION OF THE INVENTION The ceramic capacitor of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a sectional view showing an embodiment of the ceramic capacitor of the present invention.
Main component on the upper surface 5 and lower surface 6 of the multilayer capacitor 4 obtained by stacking dielectric layers 2 and internal electrode layers 3 composed mainly of barium titanate (BaTiO 3) alternately, each barium titanate (BaTiO 3) The outer surface layers 7 and 8 containing 40 to 90% by weight of stabilized zirconia in the dielectric composition
Are integrally formed, and the terminal electrodes 9 are adhered and formed on both ends of the ceramic capacitor.

【0017】セラミックコンデンサ1は、チタン酸バリ
ウム(BaTiO3 )を主成分とする誘電体粉末と有機
バインダの混練物をシート状に成形した後、該誘電体シ
ート面に内部電極を被着形成したものを複数枚積層し、
その上下面に内部電極を被着形成していない安定化ジル
コニアを所定量含有したチタン酸バリウム(BaTiO
3 )を主成分とする外表層を構成する誘電体シートを積
層して圧着した後、加熱して脱バインダ処理し、続いて
所定の温度で焼成して一体化した後、端子電極9をAg
−Pdペースト等を塗布焼き付け、またはメッキ等によ
り形成して成るものである。
In the ceramic capacitor 1, a kneaded material of a dielectric powder containing barium titanate (BaTiO 3 ) as a main component and an organic binder is formed into a sheet shape, and then an internal electrode is adhered to the surface of the dielectric sheet. Stack multiple objects,
Barium titanate (BaTiO 3) containing a predetermined amount of stabilized zirconia without forming internal electrodes on its upper and lower surfaces.
3 ) A dielectric sheet that is a main component of the outer surface layer is laminated, pressure-bonded, heated to remove the binder, and subsequently baked at a predetermined temperature to be integrated, and then the terminal electrode 9 is Ag.
-Pd paste or the like is applied and baked, or is formed by plating or the like.

【0018】[0018]

【実施例】次に、本発明のセラミックコンデンサを以下
の実施例に基づいて評価した。
EXAMPLES Next, the ceramic capacitors of the present invention were evaluated based on the following examples.

【0019】先ず、誘電体は、静電容量の温度係数が、
−55℃と+125℃の温度範囲で<±15%となるE
IA規格のX7R特性を満足する高誘電率系材料とし
て、チタン酸バリウム(BaTiO3 )100重量部に
対し、表1に示すように添加剤として酸化ニオブ(Nb
2 5 )、炭酸バリウム(BaCO3 )、酸化マンガン
(MnO)を合計1〜5重量部、焼結助剤としてシリカ
(SiO2 )、アルミナ(Al2 3 )を合計0.1〜
0.5重量部添加し、溶媒、有機バインダー、及び分散
剤とともに24時間ボールミルで混合して泥漿を調製し
た。
First, the dielectric has a temperature coefficient of capacitance of
<± 15% in the temperature range of -55 ° C and + 125 ° C E
As a high dielectric constant material satisfying the IA standard X7R characteristics, 100 parts by weight of barium titanate (BaTiO 3 ) is added to niobium oxide (Nb) as an additive as shown in Table 1.
2 O 5 ), barium carbonate (BaCO 3 ), manganese oxide (MnO) in a total amount of 1 to 5 parts by weight, and silica (SiO 2 ) and alumina (Al 2 O 3 ) as a sintering aid in a total amount of 0.1 to 5 parts by weight.
0.5 parts by weight was added and mixed with a solvent, an organic binder, and a dispersant in a ball mill for 24 hours to prepare a slurry.

【0020】次いで、前記泥漿をドクターブレード法に
よりシート状に成形して、厚さ20μmのグリーンシー
トを得た後、該グリーンシート上に銀を主成分とする導
電ペーストを印刷して内部電極を構成するための導電ペ
ースト層を形成した。
Next, the slurry is formed into a sheet by a doctor blade method to obtain a green sheet having a thickness of 20 μm, and a conductive paste containing silver as a main component is printed on the green sheet to form internal electrodes. A conductive paste layer for forming was formed.

【0021】一方、安定化剤としてイットリア、マグネ
シア、カルシアを用いた安定化ジルコニアを表1に示す
組成となるように、前記誘電体と同組成の高誘電率系材
料に種々混合し、前記同様に溶媒、有機バインダー、及
び分散剤を加えて24時間ボールミル混合を行い、スラ
リーを調製した後、ドクターブレード法によりシート状
に成形して厚さ20μmのグリーンシートを作製した。
On the other hand, various kinds of stabilized zirconia using yttria, magnesia, and calcia as stabilizers are mixed with a high dielectric constant material having the same composition as the above dielectric so as to have the composition shown in Table 1, and the same as above. A solvent, an organic binder, and a dispersant were added to the mixture, and the mixture was ball-milled for 24 hours to prepare a slurry, which was then formed into a sheet by the doctor blade method to produce a green sheet having a thickness of 20 μm.

【0022】[0022]

【表1】 [Table 1]

【0023】かくして得られた導電ペースト層を有する
誘電体グリーンシートを10〜15枚積層し、その上下
面に前記安定化ジルコニアを含有したグリーンシートを
各一枚づつ積層して挟んだ後、80℃に加熱しながら2
00kg/cm 2 の圧力で加圧して熱圧着した。その後、加
熱しながら脱バインダし、続いて1300℃〜1400
℃の温度まで昇温してその温度に2時間保持して焼成一
体化した。
Ten to fifteen dielectric green sheets having the conductive paste layer thus obtained are laminated, and one green sheet containing the above-mentioned stabilized zirconia is laminated on each of the upper and lower surfaces thereof and sandwiched, and then 80 2 while heating to ℃
It was pressurized at a pressure of 00 kg / cm 2 and thermocompression bonded. Then, the binder is removed while heating, and subsequently 1300 ° C to 1400 ° C.
The temperature was raised to a temperature of ° C, and the temperature was maintained for 2 hours for firing and integration.

【0024】次いで、前記焼結体の両端面にそれぞれ銀
を主成分とする電極材料を塗布して、大気中、約800
℃の温度で焼き付けを行い、内部電極と電気的に接続し
た端子電極を形成して、幅1.6mm、長さ3.2m
m、厚さが1.2mmの評価用のセラミックコンデンサ
−を作製した。
Then, an electrode material containing silver as a main component is applied to both end faces of the sintered body, and the mixture is exposed to about 800 in the air.
Baking at a temperature of ℃, to form a terminal electrode electrically connected to the internal electrode, width 1.6mm, length 3.2m
A ceramic capacitor for evaluation having a thickness of m and a thickness of 1.2 mm was produced.

【0025】かくして得られた評価用のセラミックコン
デンサを用いて3点曲げ強度試験を行うのに先立ち、自
動ブリッジ式測定器を用い、端子電極間に1kHz、1
Vrmsの電圧を引加して、誘電率ε、誘電損失tan
δを測定し、次に−55℃及び、+125℃における静
電容量の変化率TCC(%)を測定した。
Prior to conducting a three-point bending strength test using the thus-obtained ceramic capacitor for evaluation, an automatic bridge type measuring device was used, and 1 kHz between the terminal electrodes, 1
Vrms voltage is applied, permittivity ε, dielectric loss tan
δ was measured, and then the rate of change in capacitance TCC (%) at −55 ° C. and + 125 ° C. was measured.

【0026】その後、前記誘電特性を評価した試料を用
いて3点曲げによる抗折強度を測定した。
Then, the bending strength by three-point bending was measured using the sample whose dielectric properties were evaluated.

【0027】[0027]

【表2】 [Table 2]

【0028】表2から明らかなように、安定化ジルコニ
アの含有量が90重量%を越える試料番号2は、積層コ
ンデンサ部と外表層との密着性が悪く界面から剥離して
強度向上に寄与せず、またその含有量が35重量%未満
の試料番号14、15はいずれも抗折強度が従来例の試
料番号1より低くなっているのに対して、本発明の試料
はいずれも電気特性については比較例と同等の値を維持
しており、しかも抗折強度はいずれも従来例の175M
Paを越えており、強度向上の効果が顕著に認められ
る。
As is apparent from Table 2, Sample No. 2 having a stabilized zirconia content of more than 90% by weight has poor adhesion between the laminated capacitor portion and the outer surface layer and is peeled from the interface to contribute to the improvement of strength. Sample Nos. 14 and 15 each having a content of less than 35% by weight have a lower bending strength than Sample No. 1 of the conventional example, whereas all of the samples of the present invention have electrical characteristics. Maintains the same value as the comparative example, and the bending strength is 175M of the conventional example.
Since it exceeds Pa, the effect of improving the strength is remarkably recognized.

【0029】尚、本発明は前記詳述した実施例に何ら限
定されるものではない。
The present invention is not limited to the above-described embodiments.

【0030】[0030]

【発明の効果】叙上の如く、本発明のセラミックコンデ
ンサは、チタン酸バリウム(BaTiO3 )を主成分と
する誘電体層と内部電極層が交互に積層されて成る積層
コンデンサの少なくとも上下面に、チタン酸バリウム
(BaTiO3 )を主成分とする誘電体組成物に40〜
90重量%の安定化ジルコニアを含有した誘電体から成
る外表層を一体化したことから、誘電体としての電気特
性を劣化させるような影響を与えることなく、機械的強
度が優れた高誘電率のセラミックコンデンサを得ること
ができるため、高い信頼性を必要とする車載用電子部品
として極めて有用であり、特に車載用積層コンデンサ等
に好適である。
As described above, according to the ceramic capacitor of the present invention, at least upper and lower surfaces of a multilayer capacitor in which dielectric layers containing barium titanate (BaTiO 3 ) as a main component and internal electrode layers are alternately laminated. 40 to a dielectric composition containing barium titanate (BaTiO 3 ) as a main component.
Since the outer surface layer made of a dielectric material containing 90% by weight of stabilized zirconia is integrated, it has a high dielectric constant of excellent mechanical strength without affecting the electrical characteristics of the dielectric material. Since a ceramic capacitor can be obtained, it is extremely useful as an in-vehicle electronic component that requires high reliability, and is particularly suitable for an in-vehicle laminated capacitor and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のセラミックコンデンサの一実施例を示
す断面図である。
FIG. 1 is a sectional view showing an embodiment of a ceramic capacitor of the present invention.

【符号の説明】[Explanation of symbols]

1 セラミックコンデンサ 2 誘電体層 3 内部電極層 4 積層コンデンサ 5 上面 6 下面 7、8 外表層 1 Ceramic Capacitor 2 Dielectric Layer 3 Internal Electrode Layer 4 Multilayer Capacitor 5 Upper Surface 6 Lower Surface 7, 8 Outer Surface Layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】チタン酸バリウム(BaTiO3 )を主成
分とする誘電体層と内部電極層が交互に積層された積層
コンデンサの少なくとも上下面に、チタン酸バリウム
(BaTiO3 )を主成分とする誘電体組成物に安定化
ジルコニアを40〜90重量%含有した外表層を形成し
て成ることを特徴とするセラミックコンデンサ。
To claim 1, wherein at least upper and lower surfaces of the multilayer capacitor dielectric layers and internal electrode layers mainly composed of barium titanate (BaTiO 3) are alternately stacked, composed mainly of barium titanate (BaTiO 3) A ceramic capacitor comprising an outer surface layer containing 40 to 90% by weight of stabilized zirconia in a dielectric composition.
【請求項2】前記安定化ジルコニアの含有量が50〜7
5重量%であることを特徴とする請求項1記載のセラミ
ックコンデンサ。
2. The content of the stabilized zirconia is 50 to 7
The ceramic capacitor according to claim 1, wherein the ceramic capacitor is 5% by weight.
【請求項3】前記安定化ジルコニアが8モル%イットリ
ア安定化ジルコニア(以下、8YSZと記す)であるこ
とを特徴とする請求項1または請求項2記載のセラミッ
クコンデンサ。
3. The ceramic capacitor according to claim 1, wherein the stabilized zirconia is 8 mol% yttria-stabilized zirconia (hereinafter referred to as 8YSZ).
JP31100995A 1995-11-29 1995-11-29 Ceramic capacitors Expired - Fee Related JP3199616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31100995A JP3199616B2 (en) 1995-11-29 1995-11-29 Ceramic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31100995A JP3199616B2 (en) 1995-11-29 1995-11-29 Ceramic capacitors

Publications (2)

Publication Number Publication Date
JPH09148175A true JPH09148175A (en) 1997-06-06
JP3199616B2 JP3199616B2 (en) 2001-08-20

Family

ID=18012031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31100995A Expired - Fee Related JP3199616B2 (en) 1995-11-29 1995-11-29 Ceramic capacitors

Country Status (1)

Country Link
JP (1) JP3199616B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098092A1 (en) * 2005-03-14 2006-09-21 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
WO2009037292A1 (en) * 2007-09-18 2009-03-26 Epcos Ag Electrical multilayer component
JP2010183024A (en) * 2009-02-09 2010-08-19 Ngk Spark Plug Co Ltd Multilayer capacitor
JP2013102241A (en) * 2013-03-04 2013-05-23 Murata Mfg Co Ltd Multilayer ceramic capacitor
JP2014183188A (en) * 2013-03-19 2014-09-29 Murata Mfg Co Ltd Multilayer ceramic capacitor
WO2016067746A1 (en) * 2014-10-30 2016-05-06 日立オートモティブシステムズ株式会社 Laminated capacitor and in-vehicle control device
US10008329B2 (en) 2015-01-23 2018-06-26 Tdk Corporation Multilayer capacitor having first internal electrodes and second internal electrodes alternately disposed
CN110867321A (en) * 2019-12-02 2020-03-06 深圳三环电子有限公司 Multilayer ceramic capacitor and preparation method thereof
JP2020198419A (en) * 2019-06-03 2020-12-10 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic electronic component and mounting board thereof
KR20240026579A (en) 2022-08-22 2024-02-29 삼성전기주식회사 Multilayer electronic component

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098092A1 (en) * 2005-03-14 2006-09-21 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
JPWO2006098092A1 (en) * 2005-03-14 2008-08-21 株式会社村田製作所 Multilayer ceramic capacitor
US7859822B2 (en) 2005-03-14 2010-12-28 Murata Manufacturing Co., Ltd. Monolithic ceramic capacitor
JP4636084B2 (en) * 2005-03-14 2011-02-23 株式会社村田製作所 Multilayer ceramic capacitor
WO2009037292A1 (en) * 2007-09-18 2009-03-26 Epcos Ag Electrical multilayer component
US8203824B2 (en) 2007-09-18 2012-06-19 Epcos Ag Electrical multilayer component
JP2010183024A (en) * 2009-02-09 2010-08-19 Ngk Spark Plug Co Ltd Multilayer capacitor
JP2013102241A (en) * 2013-03-04 2013-05-23 Murata Mfg Co Ltd Multilayer ceramic capacitor
US9460852B2 (en) 2013-03-19 2016-10-04 Murata Manufacturing Co., Ltd. Laminated ceramic capacitor
JP2014183188A (en) * 2013-03-19 2014-09-29 Murata Mfg Co Ltd Multilayer ceramic capacitor
WO2016067746A1 (en) * 2014-10-30 2016-05-06 日立オートモティブシステムズ株式会社 Laminated capacitor and in-vehicle control device
CN106796844A (en) * 2014-10-30 2017-05-31 日立汽车系统株式会社 Stacked capacitor and on-vehicle control apparatus
JPWO2016067746A1 (en) * 2014-10-30 2017-08-03 日立オートモティブシステムズ株式会社 Multilayer capacitor and in-vehicle control device
EP3214629A4 (en) * 2014-10-30 2018-07-04 Hitachi Automotive Systems, Ltd. Laminated capacitor and in-vehicle control device
US10446326B2 (en) 2014-10-30 2019-10-15 Hitachi Automotive Systems, Ltd. Laminated capacitor and in-vehicle control device
US10008329B2 (en) 2015-01-23 2018-06-26 Tdk Corporation Multilayer capacitor having first internal electrodes and second internal electrodes alternately disposed
JP2020198419A (en) * 2019-06-03 2020-12-10 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic electronic component and mounting board thereof
CN110867321A (en) * 2019-12-02 2020-03-06 深圳三环电子有限公司 Multilayer ceramic capacitor and preparation method thereof
KR20240026579A (en) 2022-08-22 2024-02-29 삼성전기주식회사 Multilayer electronic component
EP4345856A1 (en) * 2022-08-22 2024-04-03 Samsung Electro-Mechanics Co., Ltd. Multilayer electronic component

Also Published As

Publication number Publication date
JP3199616B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
KR100201202B1 (en) Monolithic ceramic capacitor
JP3908715B2 (en) Multilayer ceramic capacitor
KR100313232B1 (en) Dielectric Ceramic Composition and Laminated Ceramic Capacitor
KR100651065B1 (en) Multilayer ceramic condenser
JP3039397B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
KR100313003B1 (en) Dielectric ceramic composition and monolithic ceramic capacitor using same
JP3180690B2 (en) Multilayer ceramic capacitors
US7439203B2 (en) Electronic device, dielectric ceramic composition and the production method
KR100324721B1 (en) Anti-reducing dielectric ceramic composition and monolithic ceramic capacitor using the same
KR20070118551A (en) Electronic components, dielectric ceramic composition and method of manufacturing the same
KR101358488B1 (en) Dielectric ceramic composition and electronic device
JPH113834A (en) Multilayer ceramic capacitor and its manufacture
JP2001039765A (en) Dielectric ceramic composition and multilayer ceramic capacitor
KR20070118556A (en) Electronic components, dielectric ceramic composition and method of manufacturing the same
KR20110035901A (en) Laminated ceramic electronic component and method for producing laminated ceramic electronic component
JP2007217205A (en) Electronic component, dielectric porcelain composition, and its production method
JPH09171938A (en) Multilayered ceramic capacitor
JPH10199748A (en) Laminated ceramic capacitor
JP2007022819A (en) Dielectric porcelain composition and electronic parts
JP3199616B2 (en) Ceramic capacitors
JP3961454B2 (en) Low temperature fired dielectric ceramic composition and multilayer ceramic capacitor using the same
KR101504583B1 (en) Layered ceramic capacitor and method for producing layered ceramic capacitor
JPH1025157A (en) Dielectric ceramic composition and multilayer capacitor
JPH1192220A (en) Dielectric porcelain composition and laminated ceramic capacitor
JPH1050545A (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees