JPH09147634A - Coaxial cable - Google Patents

Coaxial cable

Info

Publication number
JPH09147634A
JPH09147634A JP7303942A JP30394295A JPH09147634A JP H09147634 A JPH09147634 A JP H09147634A JP 7303942 A JP7303942 A JP 7303942A JP 30394295 A JP30394295 A JP 30394295A JP H09147634 A JPH09147634 A JP H09147634A
Authority
JP
Japan
Prior art keywords
outer conductor
coaxial cable
groove
heat
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7303942A
Other languages
Japanese (ja)
Inventor
Hiroshi Kubota
浩 久保田
Toshio Takahashi
利男 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDOUTAI TSUSHIN SENTAN GIJUTSU
IDOUTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Original Assignee
IDOUTAI TSUSHIN SENTAN GIJUTSU
IDOUTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDOUTAI TSUSHIN SENTAN GIJUTSU, IDOUTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK filed Critical IDOUTAI TSUSHIN SENTAN GIJUTSU
Priority to JP7303942A priority Critical patent/JPH09147634A/en
Publication of JPH09147634A publication Critical patent/JPH09147634A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Abstract

PROBLEM TO BE SOLVED: To effectively and sufficiently restrict heat transmission without deteri orating the electric characteristics by forming grooves which are opened to the outside and continued in the circumferential direction in the outer conductor. SOLUTION: An outer conductor 10 of a coaxial cable is formed with a groove 13. This groove 13 is formed by large barrel parts 10a of the outer conductor 10 and narrow barrel parts 10b, which are respectively pinched between the large barrel parts 10a. In such a coaxial cable, heat transmission is mainly performed through the outer conductor 10. A center conductor 11 and a dielectric 12 are also concerned to the heat transmission, but since the degree thereof is about 1/10 in the case of the conductor 11, and about 1/1000-1/5000 in the case of the dielectric 12, it can be disregarded. Cross sectional area of the narrow barrel part 10b is smaller than the cross sectional area of the large barrel part 10a. Transmission of heat can be restricted by the groove 13 on the basis of the Wiedemann-Franz's law between the heat conductivity and the electric conductivity, and the transmission of signal is performed through the inner peripheral surface of the outer conductor 10 by the skin effect independently of the influence of the groove 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、同軸ケーブルに関
し、特に、一定の温度環境下に置かれたデバイスへの信
号伝達に用いて好適な同軸ケーブルに関する。同軸ケー
ブルは、円筒状の外部導体とその中央にある中心導体と
からなる同軸心を束ねたケーブルで、平衡形ケーブルに
比べて、その構造上、高周波における伝送損失が少な
い、漏話特性が良い、インピーダンス均等性の確保が容
易であるといった優れた特性を有している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coaxial cable, and more particularly to a coaxial cable suitable for transmitting a signal to a device placed under a constant temperature environment. A coaxial cable is a cable that bundles a coaxial core consisting of a cylindrical outer conductor and a central conductor at the center of the outer conductor. It has excellent characteristics such as easy impedance uniformity.

【0002】[0002]

【従来の技術】図5は同軸ケーブルの一使用例を示す図
である。この使用例では、円筒状の外部導体1とその中
央にある中心導体2、及び、両導体1、2間を絶縁する
誘電体3からなる同軸心を束ねた構造を有する同軸ケー
ブル4の一端を、恒温槽5の内部に設けられた図示を略
したデバイスに接続している。
2. Description of the Related Art FIG. 5 is a diagram showing an example of use of a coaxial cable. In this use example, one end of a coaxial cable 4 having a structure in which a coaxial core composed of a cylindrical outer conductor 1 and a center conductor 2 at the center thereof, and a dielectric 3 insulating between the two conductors 1 and 2 is bundled. , Connected to a device (not shown) provided inside the thermostat 5.

【0003】恒温槽5は、周知のとおりその内部の環境
温度を一定に維持するもので、当然ながら四方を取り囲
む槽壁に充分な断熱対策を施してあるが、この使用例で
は、同軸ケーブル4を通して伝えられる熱の影響によっ
て、内部温度が変動しやすい構造になっている。そこ
で、同軸ケーブル4からの熱の伝達を抑えるために、
(1)同軸ケーブル4の径を小さくする、(2)同軸ケ
ーブル4の全長を長くするといった対策をとっていた。
(1)によれば、外部導体1の断面積を減少でき、ま
た、(2)によれば、熱伝達経路長を長くできるから、
いずれも熱伝達の抑制効果を得ることができる。
[0003] As is well known, the thermostatic bath 5 is for keeping the internal environmental temperature constant. Naturally, a sufficient heat insulation is applied to the bath wall surrounding the four sides. The structure is such that the internal temperature tends to fluctuate due to the effect of heat transmitted through it. Therefore, in order to suppress the transmission of heat from the coaxial cable 4,
Measures were taken such as (1) reducing the diameter of the coaxial cable 4 and (2) increasing the total length of the coaxial cable 4.
According to (1), the cross-sectional area of the outer conductor 1 can be reduced, and according to (2), the heat transfer path length can be lengthened.
In either case, the effect of suppressing heat transfer can be obtained.

【0004】なお、一定の温度環境は、恒温槽の内部に
限らない。例えば、超低温冷却された真空断熱容器内の
環境(超伝導体の動作環境)も相当する。
[0004] The constant temperature environment is not limited to the inside of the thermostat. For example, the environment in a vacuum insulated container that has been cooled at a very low temperature (operating environment of a superconductor) also corresponds to the environment.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、かかる
対策(1)、(2)にあっては、熱伝達の抑制効果の点
で有効なものの、径を小さくするほど、また、全長を長
くするほど、信号減衰量が増大するから、必然的に電気
的特性の劣化を伴うという解決すべき課題があった。こ
れは、熱の伝達と信号の伝達が波動現象的に同じメカニ
ズムで行われているからで、熱伝達を抑制するというこ
とは、言い換えれば、信号伝達を抑制することに他なら
ないからである。
However, although the measures (1) and (2) are effective in suppressing the heat transfer, the smaller the diameter and the longer the total length are. However, since the amount of signal attenuation increases, there is a problem to be solved inevitably accompanied by deterioration of electrical characteristics. This is because the transfer of heat and the transfer of signals are performed by the same mechanism in terms of a wave phenomenon, and thus suppressing heat transfer is, in other words, suppressing signal transfer.

【0006】そこで、本発明は、電気的特性を劣化せず
に、充分な熱伝達の抑制効果を得ることを目的とする。
Therefore, an object of the present invention is to obtain a sufficient heat transfer suppressing effect without deteriorating the electrical characteristics.

【0007】[0007]

【課題を解決するための手段】上記目的は、円筒状の外
部導体と、該外部導体の軸心に位置する中心導体と、両
導体間に介在する誘電体とを備えた同軸ケーブルにおい
て、前記外部導体に、外部に開放しかつ周方向に連続す
る溝を形成することにより、又は、前記溝を、ケーブル
の長手方向に複数設けることにより達成できる。
The above object is to provide a coaxial cable provided with a cylindrical outer conductor, a central conductor located at the axial center of the outer conductor, and a dielectric material interposed between the two conductors. This can be achieved by forming a groove that is open to the outside and is continuous in the circumferential direction in the outer conductor, or by providing a plurality of the grooves in the longitudinal direction of the cable.

【0008】その理由は、熱の主たる伝達経路である外
部導体の断面積が溝の部分で減少するため、熱抵抗が大
きくなって熱の伝達が抑制されるからであり、これに対
して、信号は表皮効果によって外部導体の内周面を伝わ
るため、電気的特性の劣化が生じないからである。
The reason is that the cross-sectional area of the outer conductor, which is the main heat transfer path, is reduced in the groove, so that the heat resistance is increased and the heat transfer is suppressed. This is because the signal propagates on the inner peripheral surface of the outer conductor due to the skin effect, so that the electrical characteristics do not deteriorate.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例を図面に基
づいて説明する。図1は本発明に係る同軸ケーブルの一
実施例を示す外観図であり、図2はその断面図である。
図1、図2において、10は円筒状の外部導体、11は
中心導体であり、この中心導体11は誘電体12を介
し、外部導体10と同心状に配置されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an external view showing an embodiment of the coaxial cable according to the present invention, and FIG. 2 is a sectional view thereof.
In FIGS. 1 and 2, 10 is a cylindrical outer conductor, 11 is a center conductor, and this center conductor 11 is arranged concentrically with the outer conductor 10 via a dielectric 12.

【0010】本実施例の同軸ケーブルは、外部導体10
に溝13を形成したことが特徴である。この溝13は、
外部導体10の太胴部10aと太胴部10aの間に挟ま
れた細胴部10bによって形成される。細胴部10bの
胴回りの形状は、太胴部10aと同様に円形であり、そ
の直径は太胴部10aより少なく、かつ、細胴部10b
の外周面は、太胴部10aの外周面とともに外部に露出
している。ここに、外部とは、同軸ケーブル周囲の雰囲
気(大気又は真空若しくは任意のガス)である。 な
お、図示の例では、溝13の形状を凹形にしているが、
これに限らない。例えば、図3(a)に示すように逆台
形にしてもよいし、同図(b)に示すように半円形又は
U字形にしてもよい。あるいは、同図(c)に示すよう
にV字形にしてもよい。
The coaxial cable of the present embodiment has an outer conductor 10
The feature is that the groove 13 is formed in the groove. This groove 13
The outer conductor 10 is formed by the thick body portion 10a and the thin body portion 10b sandwiched between the thick body portion 10a. The thin body portion 10b has a circular shape around the waist, like the thick body portion 10a, and has a diameter smaller than that of the thick body portion 10a.
The outer peripheral surface of is exposed to the outside together with the outer peripheral surface of the thick body portion 10a. Here, the outside is the atmosphere (atmosphere or vacuum or any gas) around the coaxial cable. In the illustrated example, the groove 13 has a concave shape,
Not limited to this. For example, it may have an inverted trapezoidal shape as shown in FIG. 3A, or may have a semicircular or U-shaped shape as shown in FIG. 3B. Alternatively, it may be V-shaped as shown in FIG.

【0011】このような改良構造の同軸ケーブルにおい
て、熱の伝達は、主として外部導体10を介して行われ
る。なお、中心導体11や誘電体12も熱伝達に関与す
るが、その関与程度は、中心導体11の場合でおよそ1
/10、誘電体12の場合でおよそ1/1000〜1/
5000であるから、充分に無視できる。今、ケーブル
の一端側から他端側へと熱伝達が行われていると仮定す
ると、この熱伝達の経路中には、いくつかの太胴部10
aといくつかの細胴部10bが介在する。これら二種類
の胴部10a、10bの断面積Sを比較すると、太胴部
10aの断面積よりも細胴部10bの断面積の方が少な
い。
In the coaxial cable having the improved structure as described above, heat is mainly transferred through the outer conductor 10. The central conductor 11 and the dielectric 12 also participate in heat transfer, but the degree of involvement is about 1 in the case of the central conductor 11.
/ 10 and the dielectric 12 is approximately 1/1000 to 1 /
Since it is 5000, it can be sufficiently ignored. Assuming that heat is being transferred from one end side to the other end side of the cable, some of the thick body portions 10 are included in the heat transfer path.
a and some thin barrel portions 10b intervene. Comparing the cross-sectional areas S of these two types of body portions 10a and 10b, the cross-sectional area of the thin body portion 10b is smaller than that of the thick body portion 10a.

【0012】一般に、金属では、電気伝導に寄与する自
由電子によって熱流が運ばれるため、熱伝導率λと電気
伝導率σとの間には、ウィーデマン−フランツ則(一定
の温度下において金属の熱伝導率λと電気伝導率σの比
λ/σは金属の種類によらず一定である)として知られ
る経験則が成立する。したがって、熱伝導率λの逆数で
ある「熱抵抗」に対しても、近似的にマティーセンの規
則(金属の電気抵抗率ρはその金属の種類やその金属に
含まれる不純物の濃度より一律に定まる)が成立するか
ら、次式に示す電気抵抗Rの式を適用でき、結局、熱
抵抗は、熱伝達経路の断面積Sに反比例することにな
る。
In general, in a metal, a heat flow is carried by free electrons that contribute to electric conduction. Therefore, between the thermal conductivity λ and the electrical conductivity σ, the Wiedemann-Franz law (metal temperature at a constant temperature A empirical rule known as “the ratio λ / σ of the conductivity λ and the electric conductivity σ is constant regardless of the type of metal” is established. Therefore, even for “thermal resistance”, which is the reciprocal of thermal conductivity λ, approximately Mathisen's rule (the electrical resistivity ρ of a metal is uniformly determined by the type of the metal and the concentration of impurities contained in the metal) ) Is satisfied, the equation of the electric resistance R shown below can be applied, and the thermal resistance is in inverse proportion to the cross-sectional area S of the heat transfer path.

【0013】R=ρ(Ι/S)〔Ω〕 ……… ここに、ρは電気抵抗率、Ιは導線の長さ、Sは導線の
断面積である。したがって、本実施例における熱伝達経
路の最小断面積は、細胴部10bの断面積で与えられる
ため、それだけ熱抵抗を大きくすることができ、熱の伝
達を抑えることができるのである。これに対して、信号
の伝達はいわゆる表皮効果により、外部導体10の内周
面(すなわち誘電体12との接触面)に沿って行われる
ため、溝13の影響は受けない。なお、表皮効果は、信
号の周波数にもよるが外部導体10の内周面から所定の
深さまで及ぶため、溝13の底面から誘電体12までの
厚さDの設定に際しては、少なくともその表皮効果の及
ぶ深さ以上にする必要がある。
R = ρ (Ι / S) [Ω] Here, ρ is the electrical resistivity, Ι is the length of the conducting wire, and S is the cross-sectional area of the conducting wire. Therefore, since the minimum cross-sectional area of the heat transfer path in this embodiment is given by the cross-sectional area of the thin barrel portion 10b, the heat resistance can be increased by that much and the heat transfer can be suppressed. On the other hand, since the signal is transmitted along the inner peripheral surface of the outer conductor 10 (that is, the contact surface with the dielectric 12) by the so-called skin effect, the groove 13 is not affected. The skin effect extends from the inner peripheral surface of the outer conductor 10 to a predetermined depth depending on the frequency of the signal, so at least when the thickness D from the bottom surface of the groove 13 to the dielectric 12 is set. It must be more than the depth of reach.

【0014】上記実施例では、溝13の数を複数個とし
ている。これは、熱伝達の抑制効果と、ケーブル全長に
対する溝13の占める割合との間に、指数関数的な比例
関係が成立するからである。図4は本願発明者によって
行われた実験結果を示す特性図である。縦軸は単位面積
・単位時間あたりに移動する熱量q(いわゆる熱流
束)、横軸はケーブル全長に対する溝13の占める割合
Pである。なお、実験は、外部導体10に0.26mm
厚のCu(銅)、誘電体12に0.58mm厚のPTF
E(ポリ・テトラ・フロロ・エチレン)、中心導体11
に半径0.255mmの銀めっき銅覆鋼線を用い、Dを
40μmにするという条件下で行った。
In the above embodiment, the number of the grooves 13 is plural. This is because an exponential proportional relationship is established between the effect of suppressing heat transfer and the ratio of the groove 13 to the total cable length. FIG. 4 is a characteristic diagram showing a result of an experiment conducted by the inventor of the present application. The vertical axis represents the amount of heat q (so-called heat flux) that moves per unit area / unit time, and the horizontal axis represents the ratio P of the groove 13 to the total cable length. In addition, in the experiment, the outer conductor 10 is 0.26 mm.
Thick Cu (copper), 0.58 mm thick PTF on the dielectric 12
E (poly, tetra, fluoro, ethylene), central conductor 11
Was performed using a silver-plated copper-clad steel wire with a radius of 0.255 mm and D was 40 μm.

【0015】P=0%、すなわち溝13を形成しない
(従来技術)場合の熱流束qを100%とし、Pを徐々
に増やしていくと、熱流束qが指数関数的に減少する傾
向が確認された。この特性図によれば、最小の熱流束q
は、Pを100%にしたときに得られる。熱の伝達抑制
だけに注目すれば、Pは限りなく100%に近い方がよ
い。しかしながら、Pの増加に伴って外部導体10の強
度が失われ、誘電体12の変形、例えば熱膨張を抑える
ことができなくなり、電気的特性の劣化を招くから、実
用的なPの範囲は、特に限定しないが50%前後であろ
う。
When P = 0%, that is, when the heat flux q when the groove 13 is not formed (prior art) is 100% and P is gradually increased, the heat flux q tends to decrease exponentially. Was done. According to this characteristic diagram, the minimum heat flux q
Is obtained when P is 100%. If attention is paid only to suppression of heat transfer, P should be as close to 100% as possible. However, as P increases, the strength of the outer conductor 10 is lost, deformation of the dielectric 12 such as thermal expansion cannot be suppressed, and electrical characteristics deteriorate. Therefore, the practical range of P is Although not particularly limited, it will be around 50%.

【0016】Pの値は溝13の数でも調節できるし、溝
13の数を1個としてその幅Lでも調節できる。特に、
溝13の数で調節した場合には、その数が増えるにつれ
て特性線が下方移動(矢印A参照)するため、同じ値の
Pであっても、より少ない熱量束qを得られるから好ま
しい。また、上記実施例では、一重の外部導体10への
適用例を示したが、これに限らない。二重構造又はそれ
以上の多重構造の場合には、最も外側に位置する外部導
体に溝を形成すればよい。
The value of P can be adjusted by the number of the grooves 13 or the width L with one groove 13. Especially,
When the number of the grooves 13 is adjusted, the characteristic line moves downward (see arrow A) as the number increases, so that a smaller heat quantity flux q can be obtained even with the same value P. Further, in the above embodiment, the example of application to the single outer conductor 10 is shown, but the present invention is not limited to this. In the case of a double structure or a multiple structure of more than that, a groove may be formed in the outermost outer conductor.

【0017】[0017]

【発明の効果】本発明によれば、熱の主たる伝達経路で
ある外部導体の熱抵抗を大きくでき、電気的劣化を生じ
ることなく、熱の伝達を抑制できるという、従来技術に
はない有利な効果が得られる。
According to the present invention, the heat resistance of the outer conductor, which is the main heat transfer path for heat, can be increased, and heat transfer can be suppressed without causing electrical deterioration, which is an advantage over the prior art. The effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一実施例の同軸ケーブルの外観図である。FIG. 1 is an external view of a coaxial cable according to an embodiment.

【図2】一実施例の同軸ケーブルの断面図である。FIG. 2 is a cross-sectional view of the coaxial cable of one embodiment.

【図3】溝の他の形状図である。FIG. 3 is another shape view of the groove.

【図4】一実施例の同軸ケーブルの特性図FIG. 4 is a characteristic diagram of a coaxial cable according to an embodiment.

【図5】従来の同軸ケーブルとその使用例を示す図であ
る。
FIG. 5 is a diagram showing a conventional coaxial cable and an example of its use.

【符号の説明】[Explanation of symbols]

10:外部導体 11:中心導体 12:誘電体 13:溝 10: outer conductor 11: center conductor 12: dielectric 13: groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】円筒状の外部導体と、該外部導体の軸心に
位置する中心導体と、両導体間に介在する誘電体とを備
えた同軸ケーブルにおいて、前記外部導体に、外部に開
放しかつ周方向に連続する溝を形成したことを特徴とす
る同軸ケーブル。
1. A coaxial cable comprising a cylindrical outer conductor, a central conductor located at the axial center of the outer conductor, and a dielectric material interposed between the two conductors, the outer conductor being open to the outside. A coaxial cable characterized in that a continuous groove is formed in the circumferential direction.
【請求項2】前記溝を、ケーブルの長手方向に複数設け
たことを特徴とする請求項1記載の同軸ケーブル。
2. The coaxial cable according to claim 1, wherein a plurality of the grooves are provided in a longitudinal direction of the cable.
JP7303942A 1995-11-22 1995-11-22 Coaxial cable Pending JPH09147634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7303942A JPH09147634A (en) 1995-11-22 1995-11-22 Coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7303942A JPH09147634A (en) 1995-11-22 1995-11-22 Coaxial cable

Publications (1)

Publication Number Publication Date
JPH09147634A true JPH09147634A (en) 1997-06-06

Family

ID=17927151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7303942A Pending JPH09147634A (en) 1995-11-22 1995-11-22 Coaxial cable

Country Status (1)

Country Link
JP (1) JPH09147634A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1006604A2 (en) * 1998-12-04 2000-06-07 Robert Bosch Gmbh Microwave coaxial line for cooled microwave systems
US6873864B2 (en) 1999-02-26 2005-03-29 Fujitsu Limited Superconductive filter module, superconductive filter assembly and heat insulating type coaxial cable
US6889068B2 (en) 2000-01-31 2005-05-03 Fujitsu Limited Heat cutoff signal transmission unit and superconducting signal transmission apparatus
EP1881553A1 (en) * 1999-02-26 2008-01-23 Fujitsu Limited Superconductive filter module, superconductive filter assembly, and heat insulating type coaxial cable
CN112509734A (en) * 2020-10-14 2021-03-16 科莱斯(天津)电热科技有限公司 Composite continuous heating armored T cable skin effect regulation and control device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933185A (en) * 1972-08-01 1974-03-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933185A (en) * 1972-08-01 1974-03-27

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1006604A2 (en) * 1998-12-04 2000-06-07 Robert Bosch Gmbh Microwave coaxial line for cooled microwave systems
EP1006604A3 (en) * 1998-12-04 2001-11-07 Robert Bosch Gmbh Microwave coaxial line for cooled microwave systems
US6873864B2 (en) 1999-02-26 2005-03-29 Fujitsu Limited Superconductive filter module, superconductive filter assembly and heat insulating type coaxial cable
US7174197B2 (en) 1999-02-26 2007-02-06 Fujitsu Limited Superconductive filter module, superconductive filter assembly and heat insulating type coaxial cable
EP1881553A1 (en) * 1999-02-26 2008-01-23 Fujitsu Limited Superconductive filter module, superconductive filter assembly, and heat insulating type coaxial cable
US6889068B2 (en) 2000-01-31 2005-05-03 Fujitsu Limited Heat cutoff signal transmission unit and superconducting signal transmission apparatus
CN112509734A (en) * 2020-10-14 2021-03-16 科莱斯(天津)电热科技有限公司 Composite continuous heating armored T cable skin effect regulation and control device and method

Similar Documents

Publication Publication Date Title
US9484127B2 (en) Differential signal transmission cable
US5208426A (en) Shielded electric signal cable having a two-layer semiconductor jacket
JPS6147017A (en) Triple coaxial cable
US4021633A (en) Persistent current switch including electrodes forming parallel conductive and superconductive paths
JPH09147634A (en) Coaxial cable
US4754249A (en) Current lead structure for superconducting electrical apparatus
US3264404A (en) Power transmission cable
TW490683B (en) Coaxial cable improved in transmission characteristic
US20050121222A1 (en) Audio and video signal cable
US11264149B2 (en) Twin axial cable with dual extruded dielectric
US1292659A (en) Conductor.
JP2761377B2 (en) coaxial cable
US20040231882A1 (en) Semi-rigid cable
JPH09129041A (en) Coaxial cable
US3317651A (en) Low temperature device with a current supply member
JP2761378B2 (en) coaxial cable
US2034047A (en) Coaxial circuit with stranded inner conductor
JPH11102781A (en) High-frequency forced cooling composite conductor and electromagnetic induction heating coil
US3621479A (en) Apparatus for dissipating wave energy
US2849692A (en) Dielectric guide for electromagnetic waves
US3971880A (en) Phase stable transmission cable
US2778887A (en) Distributed amplifier transmission line terminations
US3544928A (en) Mode attenuating support bead for a coaxial transmission line
JPH0432108A (en) Superconductive cable
US5763822A (en) Coaxial cable