JPH09145644A - Analyzer having detecting element such that temperature adjustment is required - Google Patents

Analyzer having detecting element such that temperature adjustment is required

Info

Publication number
JPH09145644A
JPH09145644A JP30007795A JP30007795A JPH09145644A JP H09145644 A JPH09145644 A JP H09145644A JP 30007795 A JP30007795 A JP 30007795A JP 30007795 A JP30007795 A JP 30007795A JP H09145644 A JPH09145644 A JP H09145644A
Authority
JP
Japan
Prior art keywords
temperature
vicinity
temperature sensor
measured
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30007795A
Other languages
Japanese (ja)
Inventor
Shingo Sumi
心吾 角
Kazuyoshi Nakajima
和義 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP30007795A priority Critical patent/JPH09145644A/en
Publication of JPH09145644A publication Critical patent/JPH09145644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Control Of Temperature (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an analyzer, which can stably operate a detecting element without using heat insulating material. SOLUTION: Temperatures TH and TL in the vicinity of a Peltier element 2h and in the vicinity of the detecting part of a photomultiplier 2e are measured with a first temperature sensor 2f and a second temperature sensor 2g. A target temperature TLd in the vicinity of the Peltier element 2h is determined by the following expression TLd=TL+(THd-TH) by using the temperatures TH and TL measured with S1 and the target temperature THd in the vicinity of the detecting part of the photomultiplier 2e. When the target temperature TLd in the vicinity of the Peltier element 2h is determined, the current, which is supplied to the Peltier element 2h, is controlled so that the temperature TL measured with the first temperature sensor 2f becomes the determined target temperature TLd. When the temperature TL measured with the first temperature sensor 2f becomes the determined target temperature TLd, the step is returned to S1, and the operations of above described S1-S3 are repeatedly performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、温度調節が必要な
検出素子を有する分析計、特に、化学発光式窒素酸化物
分析計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analyzer having a detection element which requires temperature control, and more particularly to a chemiluminescence type nitrogen oxide analyzer.

【0002】[0002]

【従来技術】温度調節が必要な検出素子を有する代表的
な分析計として、例えば、化学発光式窒素酸化物分析計
が存在する。かかる化学発光式窒素酸化物分析計は、工
場の燃焼炉における燃焼や自動車のエンジン内における
燃焼などにより生じる人体に有害な窒素酸化物(NOx
)の濃度を測定する装置であり、被測定ガス(大気か
ら採取したサンプル、排ガスなど)とオゾン(O3 )ガ
スとを測定装置の反応槽内で接触させ、被測定ガス中の
一酸化窒素(NO)とオゾンが化学反応を起こす際に発
生する光を光検出器で検出することにより、被測定ガス
中の一酸化窒素の含有量を定量測定するものである。
2. Description of the Related Art As a typical analyzer having a detection element that requires temperature control, there is, for example, a chemiluminescence type nitrogen oxide analyzer. Such a chemiluminescent nitrogen oxide analyzer is a nitrogen oxide (NOx) that is harmful to the human body due to combustion in a combustion furnace of a factory or combustion in an engine of an automobile.
) Is a device for measuring the concentration of a gas to be measured (a sample collected from the atmosphere, an exhaust gas, etc.) and ozone (O3) gas are brought into contact with each other in a reaction tank of the measuring device, and nitric oxide ( The amount of nitric oxide contained in the gas to be measured is quantitatively measured by detecting the light generated when NO) and ozone chemically react with each other with a photodetector.

【0003】図4は、従来の化学発光式窒素酸化物計の
反応部及びその反応部で生じた光を検出する検出部を示
す概略図である。すなわち、同図において、反応槽20
aにおいて、オゾン(O3 )ガスと被測定ガス中の一酸
化窒素(NO)とが化学反応を起こす際に発生した光
は、光透過窓20cを介してホトマルチプライヤ20e
によって検出される。ホトマルチプライヤ20eは、A
lやCuなどの熱伝導性の良いブロック20dで覆われ
ており、このブロック20dには冷却手段であるペルチ
ェ素子20hの冷却側が取り付けられている。そして、
ブロック20d全体は、その温度が一定となるよう断熱
材20bで覆われており、断熱材20bの外部にペルチ
ェ素子20hの発熱側に取り付けられた冷却フィン20
h’が設けられ、ファン20jによりその放熱がなされ
ている。
FIG. 4 is a schematic view showing a reaction part of a conventional chemiluminescence type nitrogen oxide meter and a detection part for detecting light generated in the reaction part. That is, in FIG.
In a, the light generated when the ozone (O3) gas and the nitric oxide (NO) in the gas to be measured cause a chemical reaction is emitted from the photomultiplier 20e through the light transmission window 20c.
Is detected by Photomultiplier 20e is A
It is covered with a block 20d having a good thermal conductivity such as 1 or Cu, and the cooling side of a Peltier element 20h which is a cooling means is attached to this block 20d. And
The entire block 20d is covered with a heat insulating material 20b so that its temperature is constant, and the cooling fins 20 attached to the heat generating side of the Peltier element 20h outside the heat insulating material 20b.
h'is provided and the heat is dissipated by the fan 20j.

【0004】また、ブロック20dのペルチェ素子20
h近傍には温度センサ20fが組み込まれており、温度
制御手段20kにより、温度センサ20fにより計測さ
れる温度がホトマルチプライヤ20eが安定動作するた
めの所望温度となるよう制御されている。
Further, the Peltier element 20 of the block 20d
A temperature sensor 20f is incorporated in the vicinity of h, and the temperature control means 20k controls the temperature measured by the temperature sensor 20f to a desired temperature for the stable operation of the photomultiplier 20e.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うに温度調整のためのブロック20dを保温材である断
熱材20bにより覆う従来の構成では、分析装置全体が
大がかりとなり、装置のコンパクト化が図れない。ま
た、保温材である断熱材20bとブロック20dとの隙
間に大気中の水分が侵入することによりブロック表面が
結露し、ペルチェ素子に水分が入り込んで破損するなど
の故障の原因になっていた。
However, in the conventional structure in which the block 20d for temperature adjustment is covered with the heat insulating material 20b as a heat insulating material in this way, the whole analyzer becomes large in size and the apparatus cannot be made compact. . In addition, moisture in the atmosphere enters the gap between the heat insulating material 20b, which is a heat insulating material, and the block 20d, which causes dew condensation on the surface of the block, causing moisture to enter the Peltier element and damage it.

【0006】一方、断熱材を用いない場合、検出素子で
あるホトマルチプライヤ20eの冷却素子近傍と実際の
光検出部の近傍とでは、周囲温度による温度差が生じる
ため、温度センサ20fを冷却素子であるペルチェ素子
2h近傍に取り付けたのでは、ホトマルチプライヤ20
eの光検出部近傍を所望とする温度に制御できないこと
となる。さらに、温度センサ20fをホトマルチプライ
ヤ20eの光検出部近傍に取り付けることも考えられる
が、ペルチェ素子2hとの距離が離れるため、温度制御
の際に多大なリップルが発生し、安定した温度制御がで
きない。
On the other hand, when a heat insulating material is not used, a temperature difference occurs between the cooling element of the photomultiplier 20e, which is a detection element, and the vicinity of the actual photodetection section due to the ambient temperature. The photomultiplier 20 is installed near the Peltier device 2h.
Therefore, the temperature in the vicinity of the photodetector of e cannot be controlled to a desired temperature. Further, it is conceivable to attach the temperature sensor 20f in the vicinity of the photodetector of the photomultiplier 20e, but since the distance from the Peltier element 2h is large, a large ripple occurs during temperature control, and stable temperature control is achieved. Can not.

【0007】そこで、本発明はかかる問題点を解消する
ために創案されたもので、保温材を用いることなく検出
素子を安定動作させることができる分析計の提供を目的
とする。
Therefore, the present invention was devised to solve such problems, and an object thereof is to provide an analyzer capable of stably operating a detection element without using a heat insulating material.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明にかかる温度調節が必要な検出素子を有する
分析計は、物理量を検出する検出素子と、この検出素子
を加熱又は冷却する温度調整素子と、この検出素子の冷
却素子近傍の温度計測を行う第1の温度センサと、この
検出素子の物理量検出部近傍の温度計測を行う第2の温
度センサと、この検出素子の物理量検出部近傍の目標温
度、第2の温度センサで計測された温度、及び前記第1
の温度センサで計測された温度とから、前記検出素子の
冷却素子近傍の目標温度を決定し、前記第1の温度セン
サで得られる温度がこの決定された目標温度となるよう
前記温度調整素子を制御する温度制御手段と、を備えた
ことを特徴とする。
In order to achieve the above object, an analyzer according to the present invention having a detection element which requires temperature adjustment, detects a physical quantity and heats or cools this detection element. A temperature adjustment element, a first temperature sensor that measures the temperature near the cooling element of the detection element, a second temperature sensor that measures the temperature near the physical quantity detection unit of the detection element, and a physical quantity detection of the detection element. Part temperature, the temperature measured by the second temperature sensor, and the first temperature
From the temperature measured by the temperature sensor, the target temperature in the vicinity of the cooling element of the detection element is determined, and the temperature adjustment element is set so that the temperature obtained by the first temperature sensor becomes the determined target temperature. And a temperature control unit for controlling the temperature.

【0009】また、前記検出素子は、熱伝導性の高い材
料で形成されたブロックで覆われており、さらに、前記
第1の温度センサと第2の温度センサは、このブロック
に組み込まれ、このブロック全体が、密閉容器に密封さ
れ、この密閉容器内には、ドライガスが充填されている
ことを特徴とする。
The detection element is covered with a block made of a material having high thermal conductivity, and the first temperature sensor and the second temperature sensor are incorporated in this block. The entire block is hermetically sealed in a hermetic container, and the hermetic container is filled with dry gas.

【0010】前記温度制御手段は、検出素子の物理量検
出部近傍の目標温度と第2の温度センサで計測された温
度との差と、前記第1の温度センサで計測された温度と
から、前記検出素子の冷却素子近傍の目標温度を決定
し、前記第1の温度センサで得られる温度がこの決定さ
れた目標温度となるよう前記温度調整素子を制御するよ
う構成されていても良い。
The temperature control means determines the difference between the target temperature in the vicinity of the physical quantity detecting portion of the detecting element and the temperature measured by the second temperature sensor and the temperature measured by the first temperature sensor. A target temperature near the cooling element of the detection element may be determined, and the temperature adjustment element may be controlled so that the temperature obtained by the first temperature sensor becomes the determined target temperature.

【0011】さらに、前記温度制御手段は、検出素子の
物理量検出部近傍の目標温度と第2の温度センサで計測
された温度との差と、前記第1の温度センサで計測され
た温度との和を前記検出素子の冷却素子近傍の目標温度
として決定し、前記第1の温度センサで得られる温度が
この決定された目標温度となるよう前記温度調整素子を
制御するよう構成されていても良い。
Further, the temperature control means sets the difference between the target temperature in the vicinity of the physical quantity detecting portion of the detecting element and the temperature measured by the second temperature sensor and the temperature measured by the first temperature sensor. The sum may be determined as a target temperature near the cooling element of the detection element, and the temperature adjustment element may be controlled so that the temperature obtained by the first temperature sensor becomes the determined target temperature. .

【0012】[0012]

【発明の実施の形態】以下、本発明の一実施例を図1〜
図3に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will now be described with reference to FIGS.
This will be described with reference to FIG.

【0013】図1は、温度調節が必要な検出素子を有す
る代表的な分析計である、化学発光式窒素酸化物分析計
の全体概略図を示している。同図において、被測定ガス
を導入するガス導入部1と不図示の光電検出部(図2で
図示)が一体的に結合された反応セル2との間が流路ラ
イン3で配管されている。この流路ライン3には、二酸
化窒素をNOに変換するコンバータ4、前処理部5及び
流量制御部6が接続されている。他方、反応セル2には
オゾン発生部9からオゾンガスを供給するためのオゾン
ガス供給ライン11が配管接続されている。また、この
反応セル2には、排出ガス中のオゾンを分解するための
オゾン分解器12と検出されたNOガス濃度を指示する
指示計12が接続されている。
FIG. 1 shows an overall schematic view of a chemiluminescence nitrogen oxide analyzer, which is a typical analyzer having a detection element which requires temperature control. In the figure, a flow path line 3 is provided between a gas introduction part 1 for introducing a gas to be measured and a reaction cell 2 integrally connected with a photoelectric detection part (not shown) (illustrated in FIG. 2). . A converter 4, which converts nitrogen dioxide into NO, a pretreatment unit 5, and a flow rate control unit 6 are connected to the flow path line 3. On the other hand, an ozone gas supply line 11 for supplying ozone gas from the ozone generation unit 9 is connected to the reaction cell 2 by piping. Further, the reaction cell 2 is connected to an ozone decomposer 12 for decomposing ozone in exhaust gas and an indicator 12 for indicating the detected NO gas concentration.

【0014】かかる構成の化学発光式窒素酸化物分析計
において、ガス導入部1から導入されたNO2 ガスとN
Oガスが共存する被測定ガスを還元触媒が設けられたN
O2−NOコンバータ4を通すことでNO2 がNOに変
換され、そのガス中のNO濃度が反応セル2において検
出される。一方、被測定ガスをNO2 −NOコンバータ
4を通さずにそのガス中のNO濃度を検出することで、
それらのNOガス濃度間の差からNO2 ガス濃度が算出
される。
In the chemiluminescence type nitrogen oxide analyzer having the above structure, the NO 2 gas and N
The gas to be measured coexisting with O gas is N provided with a reduction catalyst.
NO2 is converted into NO by passing through the O2-NO converter 4, and the NO concentration in the gas is detected in the reaction cell 2. On the other hand, by detecting the NO concentration in the measured gas without passing it through the NO2-NO converter 4,
The NO2 gas concentration is calculated from the difference between the NO gas concentrations.

【0015】図2は、反応セル2の詳細図であり、反応
槽2aにおいて、オゾン(O3 )ガスと被測定ガス中の
一酸化窒素(NO)とが化学反応を起こす際に発生した
光は、密閉容器2bに形成された光透過窓2cを介して
ホトマルチプライヤ2eによって検出される。ホトマル
チプライヤ2eは、AlやCuなどの熱伝導性の良いブ
ロック2dで覆われ、ドライガスが充填された密閉容器
2b内に配設されており、このブロック2dには冷却手
段であるペルチェ素子2hの冷却側が取り付けられてい
る。そして、密閉容器2bの外部にペルチェ素子2hの
発熱側に取り付けられた冷却フィン2h’が設けられ、
ファン2jによりその放熱がなされている。
FIG. 2 is a detailed view of the reaction cell 2, in which the light generated when the ozone (O3) gas and the nitric oxide (NO) in the gas to be measured cause a chemical reaction in the reaction tank 2a. , Is detected by the photomultiplier 2e through the light transmission window 2c formed in the closed container 2b. The photomultiplier 2e is covered with a block 2d having a high thermal conductivity such as Al or Cu, and is arranged in a closed container 2b filled with dry gas. The block 2d has a Peltier element as a cooling means. The cooling side of 2h is attached. A cooling fin 2h ′ attached to the heat generating side of the Peltier element 2h is provided outside the closed container 2b,
The heat is dissipated by the fan 2j.

【0016】ブロック2dのペルチェ素子2h近傍には
第1の温度センサ2fが組み込まれており、また、ブロ
ック2dのフォトマルチプライヤ2eの光検出部近傍に
は、第2の温度センサ2gが組み込まれている。そし
て、温度制御手段2kは、両温度センサ2f,2gの計
測信号を入力し、ブロック2dのフォトマルチプライヤ
2eの光検出部近傍が所望の温度となるようペルチェ素
子2hを制御する。
A first temperature sensor 2f is incorporated in the vicinity of the Peltier element 2h of the block 2d, and a second temperature sensor 2g is incorporated in the vicinity of the light detecting portion of the photomultiplier 2e of the block 2d. ing. Then, the temperature control means 2k inputs the measurement signals of both the temperature sensors 2f and 2g, and controls the Peltier element 2h so that the vicinity of the photodetector of the photomultiplier 2e of the block 2d becomes a desired temperature.

【0017】図3は、温度制御手段2kの動作を示すフ
ローチャートである。まず、第1の温度センサ2f及び
第2の温度センサ2gより、フォトマルチプライヤ2e
のペルチェ素子2h近傍及びフォトマルチプライヤ2e
の光検出部近傍の温度TL ,TH を計測する(S1)。
なお、ここで計測する温度TL ,TH は、それぞれの温
度センサで一定時間内に得られた検出値の平均値を用い
れば、より精度良く温度を計測することが可能となる。
FIG. 3 is a flow chart showing the operation of the temperature control means 2k. First, the photomultiplier 2e from the first temperature sensor 2f and the second temperature sensor 2g.
Near Peltier device 2h and photomultiplier 2e
The temperatures TL and TH near the photodetector are measured (S1).
The temperatures TL and TH to be measured here can be measured more accurately by using the average value of the detection values obtained by the respective temperature sensors within a fixed time.

【0018】次に、ペルチェ素子2h近傍の目標温度T
LdをS1で計測した温度TL ,THと、フォトマルチプ
ライヤ2eの光検出部近傍の目標温度THdを用いて、以
下の式 TLd=TL +(THd−TH ) によって決定する(S2)。
Next, the target temperature T near the Peltier element 2h
Using the temperatures TL and TH obtained by measuring Ld in S1 and the target temperature THd in the vicinity of the photodetector of the photomultiplier 2e, it is determined by the following equation TLd = TL + (THd-TH) (S2).

【0019】ペルチェ素子2h近傍の目標温度TLdが決
定されると、第1の温度センサ2fで計測される温度T
L が、決定された目標温度TLdとなるように、ペルチェ
素子2hに供給する電流を制御する(S3)。そして、
第1の温度センサ2fで計測される温度TL が決定され
た目標温度TLdとなると、S1に戻って上述したS1〜
S3の動作を繰り返し行う。
When the target temperature TLd near the Peltier element 2h is determined, the temperature T measured by the first temperature sensor 2f
The current supplied to the Peltier element 2h is controlled so that L becomes the determined target temperature TLd (S3). And
When the temperature TL measured by the first temperature sensor 2f reaches the determined target temperature TLd, the process returns to S1 and S1 to S1 described above are performed.
The operation of S3 is repeated.

【0020】このように、検出素子であるフォトマルチ
プライヤ2eの光検出部近傍の目標温度THdと、フォト
マルチプライヤ2eの光検出部近傍に設けた第2の温度
センサ2gで計測された温度との差を、フォトマルチプ
ライヤ2eのペルチェ素子2h近傍に設けた第1の温度
センサ2fで計測された温度に足し込み、これを検出素
子の冷却素子近傍の目標温度TLdとし、第1の温度セン
サ2fで得られる温度がこの決定された目標温度TLdと
なるようペルチェ素子2hを制御するよう構成したた
め、実際の温度制御はリップルの少ないフォトマルチプ
ライヤ2eのペルチェ素子2h近傍で行われ、しかもフ
ォトマルチプライヤ2eのペルチェ素子2h近傍が決定
された目標温度TLdに近づけば、フォトマルチプライヤ
2eの光検出部近傍も所望の目標温度THdになるものと
考えられる。
As described above, the target temperature THd in the vicinity of the light detecting portion of the photomultiplier 2e, which is the detecting element, and the temperature measured by the second temperature sensor 2g provided in the vicinity of the light detecting portion of the photomultiplier 2e, Is added to the temperature measured by the first temperature sensor 2f provided in the vicinity of the Peltier element 2h of the photomultiplier 2e, and this is set as the target temperature TLd in the vicinity of the cooling element of the detection element. Since the Peltier element 2h is controlled so that the temperature obtained in 2f becomes the determined target temperature TLd, the actual temperature control is performed in the vicinity of the Peltier element 2h of the photomultiplier 2e with less ripples, and the photomultiplier is used. If the vicinity of the Peltier element 2h of the plier 2e approaches the determined target temperature TLd, the vicinity of the photodetector of the photomultiplier 2e will also change. It is believed to be Nozomu of the target temperature THd.

【0021】以上の通り、本発明では、実際の温度制御
はリップルの少ない検出素子の冷却素子近傍で行われる
ため、リップルが少なく安定した温度制御がなされると
共に、検出素子の物理量検出部近傍を所望の目標温度に
制御することが可能となる。また、本発明では、断熱材
を使用せずに検出素子の物理量検出部近傍を所望の目標
温度とできるため、分析装置全体をコンパクト化でき、
しかも結露の問題も解消でき、安価に装置を構成するこ
とが可能となる。
As described above, according to the present invention, since the actual temperature control is performed in the vicinity of the cooling element of the detecting element having a small ripple, stable temperature control is performed with a small amount of ripple, and the vicinity of the physical quantity detecting portion of the detecting element is maintained. It becomes possible to control to a desired target temperature. Further, in the present invention, since the vicinity of the physical quantity detection part of the detection element can be set to a desired target temperature without using a heat insulating material, the entire analyzer can be made compact,
Moreover, the problem of dew condensation can be solved, and the device can be constructed at low cost.

【0022】なお、上述した実施例では、温度調節が必
要な検出素子を有する分析計として、化学発光式窒素酸
化物分析計を示したが、本発明はこれに限らず、温度調
節が必要な検出素子を有する分析計すべてに適用しうる
ものである。
In the above-mentioned embodiment, the chemiluminescence type nitrogen oxide analyzer is shown as the analyzer having the detection element which needs the temperature adjustment, but the present invention is not limited to this, and the temperature adjustment is required. It can be applied to all analyzers having a detection element.

【0023】[0023]

【発明の効果】本発明によれば、実際の温度制御は、リ
ップルの少ない検出素子の冷却素子近傍で行い、しかも
検出素子の冷却素子近傍の目標温度を、検出素子の物理
量検出部近傍が所望の目標温度となるよう決定するた
め、リップルが少なく安定した温度制御をなしうると共
に、検出素子の物理量検出部近傍を所望の目標温度とで
きる。
According to the present invention, the actual temperature control is performed in the vicinity of the cooling element of the detecting element having a small ripple, and the target temperature in the vicinity of the cooling element of the detecting element is desired to be in the vicinity of the physical quantity detecting section of the detecting element. Since the target temperature is determined to be, the stable temperature control with less ripple can be performed, and the desired target temperature can be set in the vicinity of the physical quantity detection unit of the detection element.

【0024】また、断熱材を使用せずに検出素子の物理
量検出部近傍を所望の目標温度とできるため、分析装置
全体をコンパクト化でき、しかも結露の問題も解消で
き、安価に装置を構成できる。
Further, since the desired target temperature can be set in the vicinity of the physical quantity detecting portion of the detecting element without using a heat insulating material, the analyzer as a whole can be made compact and the problem of dew condensation can be solved and the device can be constructed at low cost. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】化学発光式窒素酸化物計の全体概略図である。FIG. 1 is an overall schematic view of a chemiluminescent nitrogen oxide meter.

【図2】本発明の一実施例である化学発光式窒素酸化物
計の反応セルを示す図である。
FIG. 2 is a diagram showing a reaction cell of a chemiluminescence type nitrogen oxide meter which is an embodiment of the present invention.

【図3】温度制御手段の動作を示すフローチャートであ
る。
FIG. 3 is a flowchart showing the operation of temperature control means.

【図4】従来の化学発光式窒素酸化物計の反応セルを示
す図である。
FIG. 4 is a view showing a reaction cell of a conventional chemiluminescence type nitrogen oxide meter.

【符号の説明】[Explanation of symbols]

2a・・・・・反応槽 2b・・・・・密閉容器 2c・・・・・透過窓 2d・・・・・ブロック 2e・・・・・ホトマルチプライヤ 2f・・・・・第1の温度センサ 2g・・・・・第2の温度センサ 2h・・・・・ペルチェ素子 2j・・・・・ファン 2k・・・・・温度制御手段 2a ... Reactor tank 2b ... Closed container 2c ... Transmission window 2d ... Block 2e ... Photomultiplier 2f ... First temperature Sensor 2g-Second temperature sensor 2h-Peltier element 2j-Fan 2k-Temperature control means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 物理量を検出する検出素子と、 この検出素子を加熱又は冷却する温度調整素子と、 この検出素子の冷却素子近傍の温度計測を行う第1の温
度センサと、 この検出素子の物理量検出部近傍の温度計測を行う第2
の温度センサと、 この検出素子の物理量検出部近傍の目標温度、第2の温
度センサで計測された温度、及び前記第1の温度センサ
で計測された温度とから、前記検出素子の冷却素子近傍
の目標温度を決定し、前記第1の温度センサで得られる
温度がこの決定された目標温度となるよう前記温度調整
素子を制御する温度制御手段と、 を備えたことを特徴とする温度調節が必要な検出素子を
有する分析計。
1. A detecting element for detecting a physical quantity, a temperature adjusting element for heating or cooling the detecting element, a first temperature sensor for measuring a temperature in the vicinity of a cooling element of the detecting element, and a physical quantity of the detecting element. Second to measure the temperature near the detector
Of the temperature sensor, the target temperature in the vicinity of the physical quantity detection unit of the detection element, the temperature measured by the second temperature sensor, and the temperature measured by the first temperature sensor, the vicinity of the cooling element of the detection element And a temperature control means for controlling the temperature adjusting element so that the temperature obtained by the first temperature sensor becomes the determined target temperature. An analyzer with the necessary detection elements.
JP30007795A 1995-11-17 1995-11-17 Analyzer having detecting element such that temperature adjustment is required Pending JPH09145644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30007795A JPH09145644A (en) 1995-11-17 1995-11-17 Analyzer having detecting element such that temperature adjustment is required

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30007795A JPH09145644A (en) 1995-11-17 1995-11-17 Analyzer having detecting element such that temperature adjustment is required

Publications (1)

Publication Number Publication Date
JPH09145644A true JPH09145644A (en) 1997-06-06

Family

ID=17880433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30007795A Pending JPH09145644A (en) 1995-11-17 1995-11-17 Analyzer having detecting element such that temperature adjustment is required

Country Status (1)

Country Link
JP (1) JPH09145644A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276018A (en) * 2005-03-28 2006-10-12 Wyatt Technol Corp Capillary bridge viscometer and method for balancing bridge
JP2008286690A (en) * 2007-05-18 2008-11-27 Casio Comput Co Ltd Imaging apparatus, and biopolymer analytical chip
JP2010502017A (en) * 2006-08-22 2010-01-21 ブリリアント テレコミュニケーションズ, インコーポレイテッド Apparatus and method for thermal stabilization of electronic components mounted on PCB in sealed enclosure
US20160284525A1 (en) * 2015-03-23 2016-09-29 Molecular Devices, Llc Cooled photomultiplier tube based light detector with reduced condensation, and related apparatuses and methods
JP2017049194A (en) * 2015-09-04 2017-03-09 株式会社島津製作所 Detector system
FR3057069A1 (en) * 2016-10-03 2018-04-06 Environnement Sa GAS ANALYZER

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006276018A (en) * 2005-03-28 2006-10-12 Wyatt Technol Corp Capillary bridge viscometer and method for balancing bridge
JP4639160B2 (en) * 2005-03-28 2011-02-23 ワイアット テクノロジー コーポレイション Capillary bridge viscometer and method for equilibrating the bridge
JP2010502017A (en) * 2006-08-22 2010-01-21 ブリリアント テレコミュニケーションズ, インコーポレイテッド Apparatus and method for thermal stabilization of electronic components mounted on PCB in sealed enclosure
JP2008286690A (en) * 2007-05-18 2008-11-27 Casio Comput Co Ltd Imaging apparatus, and biopolymer analytical chip
JP2018509629A (en) * 2015-03-23 2018-04-05 モレキュラー デバイシーズ, エルエルシー Cooled photomultiplier tube-based photodetector with reduced condensation and associated apparatus and method
WO2016153864A1 (en) * 2015-03-23 2016-09-29 Molecular Devices, Llc Cooled photomultiplier tube based light detector with reduced condensation, and related apparatuses and methods
CN107466362A (en) * 2015-03-23 2017-12-12 分子装置有限公司 Reduce the photodetector and relevant device and method based on cooling type photomultiplier condensed
US9892893B2 (en) * 2015-03-23 2018-02-13 Molecular Devices, Llc Cooled photomultiplier tube based light detector with reduced condensation, and related apparatuses and methods
US20160284525A1 (en) * 2015-03-23 2016-09-29 Molecular Devices, Llc Cooled photomultiplier tube based light detector with reduced condensation, and related apparatuses and methods
EP3274693A4 (en) * 2015-03-23 2018-11-07 Molecular Devices, LLC Cooled photomultiplier tube based light detector with reduced condensation, and related apparatuses and methods
CN107466362B (en) * 2015-03-23 2020-09-08 分子装置有限公司 Cooled photomultiplier-based light detector with reduced condensation and related apparatus and method
JP2017049194A (en) * 2015-09-04 2017-03-09 株式会社島津製作所 Detector system
FR3057069A1 (en) * 2016-10-03 2018-04-06 Environnement Sa GAS ANALYZER
WO2018065718A1 (en) * 2016-10-03 2018-04-12 Environnement Sa Gas analyser

Similar Documents

Publication Publication Date Title
US20080274559A1 (en) Gas Sensor for Determining Ammonia
US5356819A (en) Method of determining chemical and/or physical properties of a gaseous atmosphere
US7323343B2 (en) Nitrogen monoxide, nitrogen dioxide and ozone determination in air
EP1306670B1 (en) Sample analyzer comprising a fusion furnace and a conduit with gas detectors, using inert carrier gas
JPH07280730A (en) Method and equipment to determine concentration of gas
US4828673A (en) Apparatus for measuring combustible gas concentration in flue gas
EP1710563B1 (en) Method of measuring the concentration of nitrogen oxide and nitrogen oxide analyzer
US7888658B2 (en) Zirconium dioxide luminescence oxygen sensor
US6484563B1 (en) Method at detection of presence of hydrogen gas and measurement of content of hydrogen gas
JPH09145644A (en) Analyzer having detecting element such that temperature adjustment is required
US5439580A (en) Solid-state gas sensor for carbon monoxide and hydrogen
CN1759315A (en) Analytical sensitivity enhancement by catalytic transformation
JP3682474B2 (en) Gas measurement method using reaction with crystal resonator electrode material
JPH09318572A (en) Method and equipment for measuring component of exhaust gas
Schröder et al. A large-area single-filament infrared emitter and its application in a spectroscopic ethanol gas sensing system
JPH0989778A (en) Chemiluminescent nitrogen oxide analyzer
JPH0933512A (en) Method and apparatus for analyzing gas
JP2003083889A (en) Infrared analyzer
JPH09145621A (en) Chemiluminescence-type nitrogen-oxide meter
JP2002148192A (en) Chemiluminescence type nitrogen oxide concentration meter
US6133042A (en) Modulated oxygen-flux method and apparatus to improve the performance of a calorimetric gas sensor
JP2003294634A (en) Method and apparatus for detecting gas
JPH0431345B2 (en)
JPH09152405A (en) Chemiluminescence nitride meter
US20050058586A1 (en) Method of converting nitrogen dioxide to nitric oxide