JPH09145340A - Detection apparatus for damage of gas-turbine stationary blade - Google Patents

Detection apparatus for damage of gas-turbine stationary blade

Info

Publication number
JPH09145340A
JPH09145340A JP30245195A JP30245195A JPH09145340A JP H09145340 A JPH09145340 A JP H09145340A JP 30245195 A JP30245195 A JP 30245195A JP 30245195 A JP30245195 A JP 30245195A JP H09145340 A JPH09145340 A JP H09145340A
Authority
JP
Japan
Prior art keywords
crack
stationary blade
detector
blade
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30245195A
Other languages
Japanese (ja)
Inventor
Nobuhiro Isobe
展宏 磯部
Shigeo Sakurai
茂雄 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30245195A priority Critical patent/JPH09145340A/en
Publication of JPH09145340A publication Critical patent/JPH09145340A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a detection apparatus by which an operating amount regarding the detection and the measurement of a crack in an inspection is reduced and whose reliability is enhanced by automating an operation by a method wherein a detector which is used to detect the crack is driven to the blade length direction and the circumferential direction of a stationary blade and the image of the detected surface of the stationary blade is processed. SOLUTION: A detector 1 which is used to detect a crack is attached to a driving gear 2. The driving gear 2 is position-controlled by a position control device, and a camera mounting part and a mounting part to an inner wall 9 are provided with electrically-driven motors. A movement in a blade length direction is performed by the motor at the camera mounting part, and a movement in a circumferential direction is performed by the motor on the side of the inner wall 9. In addition, because of the structure of a stationary blade 8, the interval between the inner wall 9 and an outer wall is changed little on the rear side and the surface side of the blade. As a result, both the rear side and the surface side can be observed by the same driving gear. Information, on the surface of the stationary blade 8, which is taken into by the detector 1 is processed by an image processing device 4, and a crack is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はガスタービンにおい
て、高温の燃焼ガス中で疲労やクリープによる損傷を受
け、多数のき裂が発生する静翼の損傷検出装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stator vane damage detecting device in a gas turbine, which is damaged by fatigue and creep in a high temperature combustion gas and a large number of cracks are generated.

【0002】[0002]

【従来の技術】ガスタービンの静翼ではプラントの起動
・停止に伴う熱ひずみの繰り返しにより、使用中に部材
表面に多数のき裂が発生し、それが主な損傷となってい
る。そのため、事故や故障によりプラントを長時間停止
させることのないよう、運転の安全性や機器の信頼性を
保つために、適当な時期にプラントを停止して、部材の
点検が行われる。そこではき裂の発生状況について調査
が行われるが、その検出は浸透探傷試験を行った後に目
視によって行われることが多く、また検出された全ての
き裂についてその長さを測定し損傷度を評価していた。
2. Description of the Related Art In a stationary blade of a gas turbine, a large number of cracks are generated on the surface of the member during use due to repeated thermal strains associated with starting and stopping the plant, which are the main damages. Therefore, in order to prevent the plant from being stopped for a long time due to an accident or failure, the plant is stopped at an appropriate time and the members are inspected in order to maintain the safety of operation and the reliability of the equipment. Although the state of crack generation is investigated there, the detection is often performed visually after a penetrant flaw detection test, and the length of all detected cracks is measured to determine the degree of damage. I was evaluating.

【0003】[0003]

【発明が解決しようとする課題】以上のように、現状で
は点検時のき裂検出に関する作業量は膨大なものとなっ
ている。それに対してプラントの稼働率を高くするため
に点検期間を短くするといった要求がある。また、き裂
の検出・計測を目視により行う場合計測者の任意性によ
りそのデータが大きく左右されることになる。その任意
性は、その後の損傷評価にも大きく影響する。
As described above, at present, the amount of work involved in crack detection during inspection is enormous. On the other hand, there is a demand for shortening the inspection period in order to increase the plant operating rate. In the case of visually detecting and measuring cracks, the data greatly depends on the voluntaryness of the measurer. The arbitrariness also greatly affects the subsequent damage assessment.

【0004】本発明の目的は、ガスタービン静翼につい
て、点検時のき裂検出・計測に関する作業量を低減さ
せ、また作業を自動化することで計測者の任意性の入ら
ない信頼性の高いデータを得ることのできる検出装置お
よびそのデータの処理装置を提供することにある。
The object of the present invention is to reduce the amount of work relating to crack detection / measurement at the time of inspection of a gas turbine stationary blade, and to automate the work to provide highly reliable data that does not include the voluntaryness of the measurer. It is an object of the present invention to provide a detection device and a data processing device capable of obtaining the same.

【0005】[0005]

【課題を解決するための手段】本発明は、ガスタービン
静翼の表面に発生するき裂の検出装置において、き裂を
検出する検出装置と、前記検出装置を静翼の翼長方向お
よび周方向に駆動する駆動装置と、前記駆動装置の位置
制御を行う位置制御装置と、検出された静翼表面の画像
を処理する画像処理装置および前記画像処理装置で処理
された画像からき裂の計測を行い損傷度を求める演算処
理装置からなることを特徴とする。
SUMMARY OF THE INVENTION The present invention is directed to a crack detecting device for detecting a crack generated on the surface of a gas turbine stationary blade, and the detecting device includes a detecting device for detecting a crack and a blade length direction and a circumference of the stationary blade. Drive device for driving in the direction, a position control device for controlling the position of the drive device, an image processing device for processing an image of the detected vane surface, and measurement of cracks from the image processed by the image processing device. It is characterized by comprising an arithmetic processing unit for performing a damage degree.

【0006】或いは前記静翼の形状をデータとして記録
しておく記録装置を有し、湾曲部に発生したき裂につい
てはその投影長と検出器の位置と静翼の形状から実際の
長さを求める演算装置を有することを特徴とする。
Alternatively, a recording device for recording the shape of the stationary blade as data is provided, and the actual length of the crack generated in the curved portion is calculated from the projected length, the position of the detector, and the shape of the stationary blade. It is characterized in that it has an arithmetic unit for obtaining it.

【0007】静翼表面を走査することのできる小型カメ
ラとその駆動装置を用いて、発生したき裂を画像として
取り込み、それを画像処理することでき裂の検出および
き裂長さの計測を自動化する。
Using a small camera capable of scanning the surface of the stationary blade and its driving device, the crack generated can be captured as an image, and the image can be processed to automate the detection of the crack and the measurement of the crack length. .

【0008】[0008]

【発明の実施の形態】以下に本発明の実施の形態を図面
を用いて説明する。図1は本発明装置の構成を示す図
で、き裂を検出する検出器(カメラ)1とその検出器を
駆動する駆動装置2とその駆動装置の位置を制御する位
置制御装置3と検出器により入力された静翼の表面情報
の画像処理を行う画像処理装置4と処理された画像から
き裂長さを計測し、最大き裂長さやき裂長さの総和とい
った損傷度を求める演算処理装置5および静翼の形状が
記録されている静翼形状データ6より構成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the configuration of the device of the present invention, which is a detector (camera) 1 for detecting a crack, a drive device 2 for driving the detector, a position control device 3 for controlling the position of the drive device, and a detector. The image processing device 4 that performs image processing of the surface information of the stationary blade input by the device and the arithmetic processing device 5 that measures the crack length from the processed image and obtains the damage degree such as the maximum crack length or the sum of the crack lengths. It is composed of the stationary blade shape data 6 in which the blade shape is recorded.

【0009】図2は本発明装置を実際に適用した一例を
示す図であり、静翼腹側の観察を行っているところの図
である。検出器1は駆動装置2に取り付けられている。
駆動装置2はそれぞれカメラ取付部とインナーウオール
9への取付部に電動モータを有し、翼長方向の移動はカ
メラ取付部のモータで、周方向の移動はインナーウオー
ル側のモータによって行う。静翼のインナーウオール9
とアウターウオール7は同心円上にあるので、どちらか
一方の取付部にモータを設ければ、もう片側は抵抗の小
さいベアリングを取り付けるだけで、周方向の駆動を問
題なく行うことができる。また静翼の構造上インナーウ
オールとアウターウオールの間隔は翼背側と腹側とでほ
とんど変わらないので、同じ駆動装置で背側と腹側の両
者を観察することができる。
FIG. 2 is a view showing an example in which the apparatus of the present invention is actually applied, and is a view showing observation of the ventral side of the stationary blade. The detector 1 is attached to the drive device 2.
The drive device 2 has an electric motor in the camera mounting portion and in the mounting portion to the inner wall 9, respectively. The movement in the wing length direction is performed by the camera mounting portion motor, and the circumferential movement is performed by the inner wall side motor. Inner wall 9 of static wings
Since the outer wall 7 and the outer wall 7 are concentric, the motor can be provided in either one of the mounting portions, and the bearing with low resistance can be mounted on the other side to drive in the circumferential direction without any problem. In addition, since the distance between the inner wall and the outer wall is almost the same on the blade back side and the ventral side due to the structure of the stationary blade, both the back side and the ventral side can be observed with the same driving device.

【0010】静翼は運転中、表面が高温の燃焼ガスに曝
されるため酸化膜が生じる。その酸化膜によりき裂の検
出が困難になることが多い。画像入力は研磨により酸化
膜を除去して行うことが望ましいが、点検時の作業量が
大きく増えることになる。そこで、画像入力ができない
ほど酸化が激しいときは浸透探傷試験等によりき裂の検
出を容易にしてから画像の取り込みを行う。
During operation, the vane is exposed to a high temperature combustion gas, so that an oxide film is formed. The oxide film often makes it difficult to detect cracks. It is desirable to input the image by removing the oxide film by polishing, but the work amount at the time of inspection will greatly increase. Therefore, when the oxidation is so severe that the image cannot be input, the crack is easily detected by a penetration test or the like before the image is captured.

【0011】検出器1で取り込まれた静翼の表面情報は
画像処理装置4により処理されき裂の検出が行われる。
基本的には二値化や微分処理が行われ、き裂の判定が行
われる。静翼の損傷評価上問題となるのは開口するほど
までに成長した巨視き裂であり、数mm程度の比較的小さ
なき裂は、損傷評価の上で無視されることが多い。また
近い位置で平行に発生したき裂は、どちらか一方が停留
することが多く、これも評価上1本のき裂と考えて問題
ない場合が多い。そのような判断基準を予め入力してお
くことで、画像処理装置での処理の際には、損傷評価上
問題となるき裂のみが画像として残されることになる。
以上のようにして得られたき裂の画像から演算処理装置
5により、最大き裂長さやき裂長さの総和といった損傷
を評価するパラメータが求められる。
The surface information of the stationary blade taken in by the detector 1 is processed by the image processing device 4 to detect cracks.
Basically, binarization and differential processing are performed to determine cracks. The problem in the damage evaluation of the vane is a macroscopic crack that has grown to the extent that it opens, and a relatively small crack of about several mm is often ignored in the damage evaluation. Of the cracks that occur parallel to each other at close positions, either one of them often stays, and this is considered to be one crack in evaluation, and there is often no problem. By inputting such a judgment criterion in advance, only the cracks, which are problematic in damage evaluation, are left as an image in the processing by the image processing apparatus.
From the crack image obtained as described above, the arithmetic processing unit 5 obtains parameters for evaluating damage such as the maximum crack length and the total sum of crack lengths.

【0012】静翼の形状は曲面の部分が多く、実際に画
像として入力し、き裂長さを求めるのは困難であること
が多い。しかし、検出器を全てのき裂に対して最適な位
置へと移動させて画像入力を行うにはかなりの作業量を
要し、点検作業の省力化といった目的が達成できなくな
る。図3に示すように、湾曲部に発生したき裂をそのま
ま画像入力すると、入力時のき裂長さは図中の直線A−
A′で示されるような投影長として認識されることにな
る。そこで、静翼の形状を記録しておき、画像入力時の
検出器の位置および視野の方向と入力された投影長から
実際のき裂長さを求めるプログラムを演算処理装置内に
設けることで、この問題に対処する。具体的には、図4
に示すように、検出された画像上のき裂を適当に分割
し、分割した各点の座標c1,c2,c3,…を求め、
それと観察位置および静翼の形状データから演算処理装
置内で座標c1,c2,c3…を実形状モデル上に投影
することで実際のき裂長さを求める。この手法を採用す
ることで検出器の移動範囲を小さくすることができ、点
検作業量の低減が図れる。また、翼部の観察を行うとき
は検出器の傾きは翼長方向に垂直となるように取り付け
られる。き裂は翼部だけでなくウオール部にも発生する
ので、ウオール部についてもき裂の検出を行う必要があ
る。ウオール部は翼長方向に対してほぼ垂直であるの
で、そのままの検出器の取付位置ではき裂の検出はでき
ない、そこで、検出器をいくらか傾けてウオール部の観
察を行う。そうするとき裂長さとして検出されるのは、
検出器を傾けた角度の方向への投影長になる。そこで上
述したような手順で、静翼の形状と検出器の角度から投
影長を実際のき裂長さに変換することで、ウオール部に
発生したき裂長さの評価を行う。
Since the shape of the stationary blade has many curved portions, it is often difficult to actually input it as an image and obtain the crack length. However, moving the detector to an optimum position for all cracks and inputting an image requires a considerable amount of work, and the purpose of labor saving of inspection work cannot be achieved. As shown in FIG. 3, when the image of the crack generated in the curved portion is directly input, the crack length at the time of input is a straight line A- in the figure.
It will be recognized as a projection length as shown by A '. Therefore, by recording the shape of the stationary blade and providing the program for obtaining the actual crack length from the position of the detector at the time of image input and the direction of the visual field and the input projection length, Address the problem. Specifically, FIG.
, The cracks on the detected image are appropriately divided, and the coordinates c1, c2, c3, ... Of the divided points are obtained,
The actual crack length is obtained by projecting the coordinates c1, c2, c3 ... On the actual shape model from the observation position and the shape data of the stationary blade in the arithmetic processing unit. By adopting this method, the moving range of the detector can be reduced and the inspection work amount can be reduced. Further, when observing the wing portion, the detector is attached so that the inclination of the detector is perpendicular to the wing length direction. Since cracks occur not only in the wings but also in the walls, it is necessary to detect cracks in the walls as well. Since the wall part is almost perpendicular to the blade length direction, cracks cannot be detected at the detector mounting position as it is. Therefore, the detector is tilted to some extent to observe the wall part. When you do so, what is detected as the crack length is
It is the projection length in the direction of the tilted angle of the detector. Therefore, the crack length generated in the wall portion is evaluated by converting the projected length into the actual crack length from the shape of the stationary blade and the angle of the detector in the procedure described above.

【0013】以上の作業は全て本発明装置により自動的
に行われるため、作業者の任意性のはいる余地はなく、
この結果得られたデータは客観的な信頼性の高いものに
なり、当初の目的が達成される。
Since all of the above work is automatically performed by the device of the present invention, there is no room for the operator's voluntary operation.
The resulting data will be objectively reliable and the original objectives achieved.

【0014】[0014]

【発明の効果】本発明により、ガスタービン静翼につい
て、点検時のき裂検出・計測作業が省力化され、プラン
トの稼働率の向上が図れる。また検出・計測を自動化す
ることで、計測者の任意性が入ることのない信頼性の高
い損傷評価が可能になる。
EFFECTS OF THE INVENTION According to the present invention, crack detection / measurement work for inspection of a gas turbine stationary blade can be saved, and the operating rate of the plant can be improved. Also, by automating the detection and measurement, it is possible to perform highly reliable damage evaluation without the voluntaryness of the measurer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の装置のブロック図。FIG. 1 is a block diagram of an apparatus of the present invention.

【図2】本発明の装置の説明図。FIG. 2 is an explanatory view of the device of the present invention.

【図3】実際のき裂長さと検出長さを示す説明図。FIG. 3 is an explanatory diagram showing an actual crack length and a detected length.

【図4】投影長から実際のき裂長さを求める手順を示す
ブロック図。
FIG. 4 is a block diagram showing a procedure for obtaining an actual crack length from a projected length.

【符号の説明】[Explanation of symbols]

1…検出装置、2…検出装置の駆動装置、3…検出装置
の位置制御装置、4…画像処理装置、5…演算処理装
置、6…静翼形状データ、7…アウターウオール、8…
静翼、9…インナーウオール、10…き裂。
DESCRIPTION OF SYMBOLS 1 ... Detecting device, 2 ... Detecting device drive device, 3 ... Detecting device position control device, 4 ... Image processing device, 5 ... Arithmetic processing device, 6 ... Stationary blade shape data, 7 ... Outer wall, 8 ...
Static wings, 9 ... Inner wall, 10 ... Cracks.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガスタービン静翼の表面に発生するき裂の
検出装置において、き裂を検出する検出装置と、前記検
出装置を静翼の翼長方向および周方向に駆動する駆動装
置と、前記駆動装置の位置制御を行う位置制御装置と、
検出された静翼表面の画像を処理する画像処理装置およ
び前記画像処理装置で処理された画像からき裂の計測を
行い損傷度を求める演算処理装置からなることを特徴と
するガスタービン静翼の損傷検出装置。
1. A detection device for a crack generated on the surface of a gas turbine stationary blade, a detection device for detecting a crack, and a drive device for driving the detection device in a blade length direction and a circumferential direction of the stationary blade. A position control device for performing position control of the drive device,
Damage to a gas turbine vane characterized by comprising an image processing device for processing an image of a detected vane surface and an arithmetic processing device for measuring a crack from an image processed by the image processing device to obtain a damage degree. Detection device.
【請求項2】請求項1において、前記静翼の形状をデー
タとして記録しておく記録装置を有し、湾曲部に発生し
たき裂についてはその投影長と検出器の位置と静翼の形
状から実際の長さを求める演算装置を有するガスタービ
ン静翼の損傷検出装置。
2. The apparatus according to claim 1, further comprising a recording device for recording the shape of the stationary blade as data, and regarding a crack generated in a curved portion, its projected length, the position of the detector, and the shape of the stationary blade. A damage detection device for a gas turbine vane, which has an arithmetic unit that calculates the actual length from the
JP30245195A 1995-11-21 1995-11-21 Detection apparatus for damage of gas-turbine stationary blade Pending JPH09145340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30245195A JPH09145340A (en) 1995-11-21 1995-11-21 Detection apparatus for damage of gas-turbine stationary blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30245195A JPH09145340A (en) 1995-11-21 1995-11-21 Detection apparatus for damage of gas-turbine stationary blade

Publications (1)

Publication Number Publication Date
JPH09145340A true JPH09145340A (en) 1997-06-06

Family

ID=17909100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30245195A Pending JPH09145340A (en) 1995-11-21 1995-11-21 Detection apparatus for damage of gas-turbine stationary blade

Country Status (1)

Country Link
JP (1) JPH09145340A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919956B2 (en) 2001-11-19 2005-07-19 Mitsubishi Heavy Industries, Ltd. Method of automatically repairing cracks and apparatus for use in such method
JP2012154327A (en) * 2011-01-25 2012-08-16 General Electric Co <Ge> Turbine blade measuring device
US8587660B2 (en) 2010-07-30 2013-11-19 General Electric Company Image recording assemblies and coupling mechanisms for stator vane inspection
US8602722B2 (en) 2010-02-26 2013-12-10 General Electric Company System and method for inspection of stator vanes
US8919202B2 (en) 2010-04-08 2014-12-30 General Electric Company System and method for monitoring health of stator vanes
CN110207970A (en) * 2019-06-25 2019-09-06 西北工业大学 A kind of blade fault diagnosing experimental rig of view-based access control model information processing
CN117805123A (en) * 2024-02-26 2024-04-02 西安交通大学 Intelligent detection method for damage to surface of blade of gas turbine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6919956B2 (en) 2001-11-19 2005-07-19 Mitsubishi Heavy Industries, Ltd. Method of automatically repairing cracks and apparatus for use in such method
US8602722B2 (en) 2010-02-26 2013-12-10 General Electric Company System and method for inspection of stator vanes
US8919202B2 (en) 2010-04-08 2014-12-30 General Electric Company System and method for monitoring health of stator vanes
US8587660B2 (en) 2010-07-30 2013-11-19 General Electric Company Image recording assemblies and coupling mechanisms for stator vane inspection
JP2012154327A (en) * 2011-01-25 2012-08-16 General Electric Co <Ge> Turbine blade measuring device
CN110207970A (en) * 2019-06-25 2019-09-06 西北工业大学 A kind of blade fault diagnosing experimental rig of view-based access control model information processing
CN117805123A (en) * 2024-02-26 2024-04-02 西安交通大学 Intelligent detection method for damage to surface of blade of gas turbine

Similar Documents

Publication Publication Date Title
JP3007474B2 (en) Ultrasonic inspection method and apparatus
US10787234B2 (en) Data capture device and system
US20070140403A1 (en) Method for inspection and maintenance of an inside of a nuclear power reactor
WO1992018862A1 (en) Method and device for detecting flaw with ultrasonic wave
CN109416333A (en) System and method for the defects of detection part
KR20160096124A (en) System and method for inspection of components
JPH09145340A (en) Detection apparatus for damage of gas-turbine stationary blade
US20040139805A1 (en) Non-destructive method of detecting defects in braze-repaired cracks
JP2004132245A (en) Method and device for inspecting and diagnosing turbine
CN111239191A (en) Turbine blade defect detection system based on infrared laser information fusion
JPH11512822A (en) Ultrasonic inspection method and apparatus for a disk having an unknown contour shrink-fitted on a shaft
US20120026323A1 (en) System and method for monitoring stress on a wind turbine blade
EP2777860A2 (en) Process and apparatus for cleaning a surface
JPH09195795A (en) Remaining life evaluation method for gas turbine stationary blade and device thereof
JP4367932B2 (en) Method and apparatus for detecting defects in steel structures
JP2019056671A (en) Wall surface damage inspection device
EP3348959A1 (en) A method of measuring fan blade picture frame width
Hastie et al. Computed Tomography Wall Thickness Inspection to Support Gas Turbine Blade Life Extension
JP2008139264A (en) Journal damage measuring and diagnostic system, and method
Hagiwara et al. A method for supporting hammering test by visualization of defect diagnosis on the concrete surfaces
Frackowiak et al. Near-wing multi-sensor diagnostics of jet engine components
US11608756B2 (en) Service apparatus for use with rotary machines
CN113740352B (en) Method for integrally detecting blade cracks and residual stress of aero-engine
Findeis et al. Feasibility of optical interference-based NDE methods to inspect helicopter rotor blades
JPH07253005A (en) Seal fin clearance dimension managing method and device