JPH09142994A - Method for growing single crystal of silicate of rare earth element - Google Patents

Method for growing single crystal of silicate of rare earth element

Info

Publication number
JPH09142994A
JPH09142994A JP23022496A JP23022496A JPH09142994A JP H09142994 A JPH09142994 A JP H09142994A JP 23022496 A JP23022496 A JP 23022496A JP 23022496 A JP23022496 A JP 23022496A JP H09142994 A JPH09142994 A JP H09142994A
Authority
JP
Japan
Prior art keywords
crystal
rare earth
single crystal
oxide
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23022496A
Other languages
Japanese (ja)
Other versions
JP3694884B2 (en
Inventor
Yasushi Kurata
靖 倉田
Kazuhisa Kurashige
和央 蔵重
Hiroyuki Ishibashi
浩之 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP23022496A priority Critical patent/JP3694884B2/en
Publication of JPH09142994A publication Critical patent/JPH09142994A/en
Application granted granted Critical
Publication of JP3694884B2 publication Critical patent/JP3694884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably obtain a single crystal free from voids and having satisfactory performance as a scintillator by specifying the concn. of Al as an impurity in a stock melt contg. oxide of a rare earth element and silicon oxide. SOLUTION: Characteristics of a grown single crystal are affected by a specified impurity element in stock. In the case of growth of a gadolinium silicate single crystal, gadolinium oxide having a low concn. of Al as an impurity is used as stock. By this low concn. of Al, the occurrence of voids in the resultant crystal is prevented and characteristics as a scintillator can be improved. Since the crystal is free from voids, fluorescence generated in the crystal by irradiation efficiently reaches a photomultiplier brought into contact with one face of the crystal and the fluorescence output and energy resolving power of the photomultiplier are enhanced. As a result, characteristics of the crystal as a scintillator are improved. When stock having <=0.4ppm concn. of Al as an impurity is used, oxide of a rare earth element having <=0.4ppm concn. of Al is preferably used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シンチレ−タ等に
用いられる希土類珪酸塩単結晶の育成方法に関する。
TECHNICAL FIELD The present invention relates to a method for growing a rare earth silicate single crystal used in scintillators and the like.

【0002】[0002]

【従来の技術】珪酸ガドリニウム単結晶等の希土類珪酸
塩単結晶は、シンチレ−タ、蛍光体等として広く用いら
れている。この珪酸ガドリニウム単結晶等は、希土類酸
化物の酸化ガドリニウムと珪素酸化物の2酸化珪素を原
料として、チョクラルスキ−法等の原料融液から単結晶
を育成する方法によって育成される。一般に、蛍光出力
等のシンチレ−タ特性には、構成元素以外の希土類元素
及び遷移金属等の不純物が悪影響を与えると考えられ、
それらの不純物元素を低減した4N以上(99.99重
量%以上)の高純度原料(Gd25、SiO2等)を使
用して結晶育成が行われている。
2. Description of the Related Art Rare earth silicate single crystals such as gadolinium silicate single crystals are widely used as scintillators, phosphors and the like. This gadolinium silicate single crystal or the like is grown by a method of growing a single crystal from a raw material melt such as the Czochralski method using gadolinium oxide of a rare earth oxide and silicon dioxide of silicon oxide as a raw material. Generally, scintillator characteristics such as fluorescence output are considered to be adversely affected by impurities such as rare earth elements other than the constituent elements and transition metals,
Crystal growth is performed using high purity raw materials (Gd 2 O 5 , SiO 2 etc.) of 4N or more (99.99% by weight or more) in which those impurity elements are reduced.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の原料を
使用した場合、結晶中にボイドが発生したりすることに
よって、安定して良好なシンチレ−タ特性が得られない
という問題があった。本発明は、希土類珪酸塩単結晶を
育成する場合に、結晶中にボイドの発生しない良好なシ
ンチレ−タ性能を有する希土類珪酸塩単結晶が安定して
得られる希土類珪酸塩単結晶の育成方法を提供するもの
である。
However, when the conventional raw materials are used, there is a problem that voids are generated in the crystal and stable scintillator characteristics cannot be obtained. The present invention provides a method for growing a rare earth silicate single crystal in which a rare earth silicate single crystal having good scintillator performance in which no void is generated in the crystal is stably obtained when growing the rare earth silicate single crystal. It is provided.

【0004】[0004]

【課題を解決するための手段】本発明は、希土類珪酸塩
単結晶を育成する場合に、特定の不純物元素を低減した
希土類酸化物等の原料を使用するものであり、希土類酸
化物、珪素酸化物を含む原料の融液から希土類珪酸塩単
結晶を育成する方法において、Alの不純物濃度が0.
4ppm以下の原料を用いることを特徴とする希土類珪
酸塩単結晶の育成方法である。
The present invention uses a raw material such as a rare earth oxide reduced in a specific impurity element when growing a rare earth silicate single crystal. In a method of growing a rare earth silicate single crystal from a melt of a raw material containing a substance, the Al impurity concentration is 0.
It is a method for growing a rare earth silicate single crystal, characterized by using 4 ppm or less of a raw material.

【0005】[0005]

【発明の実施の形態】本発明者らは、希土類珪酸塩単結
晶のボイド発生及びシンチレ−タ特性と、その原料であ
る希土類酸化物等中の不純物濃度係について検討した。
その結果、特定の不純物元素の含有量の差が、育成した
単結晶の特性に影響することを見いだすことによって、
本発明はなされたものである。珪酸ガドリニウム単結晶
を育成する場合において、Alの不純物濃度が少ない希
土類酸化物を原料として使用することによって、結晶中
のボイド発生が無くなり、シンチレ−タ特性を向上でき
ることがわかった。すなわち結晶中のボイド発生が無く
なると、結晶にγ線等の放射線を照射することにより結
晶中で生じた蛍光が結晶の一面に接して設けられている
光電子増倍管に効率良く到達するため、蛍光出力、エネ
ルギ−分解能が向上し、結果としてシンチレ−タ特性が
向上する。Alの不純物濃度が0.4ppm以下の原料
を用いる場合、Alの不純物濃度が0.4ppm以下の
希土類酸化物を使用することが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have examined the void generation and scintillator characteristics of rare earth silicate single crystals, and the impurity concentration relations in the rare earth oxides and the like as the raw material.
As a result, by finding that the difference in the content of a specific impurity element affects the characteristics of the grown single crystal,
The present invention has been made. It has been found that, when a gadolinium silicate single crystal is grown, by using a rare earth oxide having a low Al impurity concentration as a raw material, void generation in the crystal is eliminated and the scintillator characteristics can be improved. That is, when the generation of voids in the crystal disappears, the fluorescence generated in the crystal by irradiating the crystal with radiation such as γ-rays efficiently reaches the photomultiplier tube provided in contact with one surface of the crystal, The fluorescence output and energy resolution are improved, and as a result, the scintillator characteristics are improved. When using a raw material having an Al impurity concentration of 0.4 ppm or less, it is preferable to use a rare earth oxide having an Al impurity concentration of 0.4 ppm or less.

【0006】珪酸ガドリニウム単結晶以外の、一般式 R SiO 但しR=La、Ce、Pr、Nd、Pm、Sm、Eu、
Tb、Dy、Ho、Er、Tm、Yb で示される希土類珪酸塩単結晶についても、原料中の不
純物の影響は同様であり、同様の結果となる。更に、一
般には希土類珪酸塩単結晶に蛍光中心としてCe等の添
加物をド−プするが、その場合も効果は同様である。以
上の希土類珪酸塩単結晶は、珪酸ガドリニウム単結晶の
結晶構造と同じ結晶構造を持ち、その構造は空間群P2
1/cに属する。
Other than gadolinium silicate single crystal, the general formula R SiO, where R = La, Ce, Pr, Nd, Pm, Sm, Eu,
With respect to the rare earth silicate single crystal represented by Tb, Dy, Ho, Er, Tm, and Yb, the influence of impurities in the raw material is similar, and the same result is obtained. Further, generally, a rare earth silicate single crystal is doped with an additive such as Ce as a fluorescent center, but in that case, the effect is similar. The above rare earth silicate single crystal has the same crystal structure as that of the gadolinium silicate single crystal, and the structure is the space group P2.
Belongs to 1 / c.

【0007】[0007]

【実施例】【Example】

比較例 セリウム付活珪酸ガドリニウム単結晶(Ce:Gd2
iO5、Ce濃度0.5mol%)の場合の例を説明す
る。原料として酸化ガドリニウム(Gd23)4N(A
種)、2酸化珪素(SiO2)4N及び酸化セリウム
(CeO2)4Nを使用して、チョクラルスキ−法によ
って単結晶を育成した。酸化ガドリニウムを2573.
5g、2酸化珪素を426.5g、そして酸化セリウム
を5.9gを秤量して混合し、1200℃で焼成した後
直径100mmのIrるつぼにチャ−ジし、原料融液1
950℃、種結晶の回転数30rpm,引き上げ速度2
mm/hの条件で、原料の80重量%が結晶化した段階
で引き上げを完了し、直径50mmの単結晶を育成し
た。育成した単結晶は、インゴット下部に多数のボイド
が発生していた。ボイドの発生の度合いには、育成(イ
ンゴット)によってばらつきが見られた。育成結晶から
10×10×30mm3の試料を採取して、γ線を照射
したときの特性について測定した結果を表1に示すが、
安定して良好な結果が得られなかった。酸化ガドリニウ
ム、2酸化珪素、酸化セリウム中のAl不純物測定を行
った結果、各々13.0ppm、0.016ppm、
3.5ppm未満であった。原料中のAl不純物は1
1.1ppmを越えている。
Comparative Example Cerium Activated Gadolinium Silicate Single Crystal (Ce: Gd 2 S
An example in the case of iO 5 and Ce concentration of 0.5 mol%) will be described. Gadolinium oxide (Gd 2 O 3 ) 4N (A
Seed) Silicon dioxide (SiO 2 ) 4N and cerium oxide (CeO 2 ) 4N were used to grow a single crystal by the Czochralski method. Gadolinium oxide 2573.
5 g of silicon dioxide, 426.5 g of silicon dioxide, and 5.9 g of cerium oxide were weighed and mixed, fired at 1200 ° C., and then charged into an Ir crucible having a diameter of 100 mm to obtain a raw material melt 1
950 ° C., seed crystal rotation speed 30 rpm, pulling speed 2
Under the condition of mm / h, the pulling was completed when 80% by weight of the raw material was crystallized, and a single crystal having a diameter of 50 mm was grown. The grown single crystal had many voids in the lower part of the ingot. The degree of occurrence of voids varied depending on the growing (ingot). Table 1 shows the results of measuring the characteristics when a sample of 10 × 10 × 30 mm 3 was collected from the grown crystal and was irradiated with γ-ray.
Stable and good results were not obtained. As a result of measuring Al impurities in gadolinium oxide, silicon oxide, and cerium oxide, 13.0 ppm, 0.016 ppm,
It was less than 3.5 ppm. Al impurity in raw material is 1
It exceeds 1.1 ppm.

【0008】実施例 比較例と同様に、セリウム付活珪酸ガドリニウム単結晶
(Ce:Gd2SiO5、Ce濃度0.5mol%)の場
合の例を説明する。原料として酸化ガドリニウム(Gd
25)4N(B種)と、比較例で使用したものと全く同
じ(精製ロット番号も同じ)2酸化珪素(SiO2)4
N及び酸化セリウム(CeO2)4Nを使用して、チョ
クラルスキ−法によって単結晶を育成した。酸化ガドリ
ニウム2573.5g、2酸化珪素426.5g、そし
て酸化セリウム5.9gを秤量し、混合して焼成した
後、Irるつぼに入れて比較例と同様にして育成を行っ
た。育成の結果、安定して着色やボイドの発生が無い結
晶が得られた。育成結晶から10×10×30mm3
試料を採取して、γ線を照射したときの特性について測
定した結果を同様に表1に示すが、安定して良好な特性
を示した。Al不純物の低減により、結晶特性の改善が
明確に観測された。酸化ガドリニウム中のAl不純物測
定を行った結果、0.35ppmであり、比較例で使用
した酸化ガドリニウム原料に比べ、大幅に少ない結果で
あった。原料中のAl不純物は0.31ppm未満であ
る。
EXAMPLE An example in the case of a cerium activated gadolinium silicate single crystal (Ce: Gd 2 SiO 5 , Ce concentration 0.5 mol%) will be described as in the comparative example. Gadolinium oxide (Gd) as a raw material
2 O 5 ) 4N (B type) and silicon dioxide (SiO 2 ) 4 which is exactly the same as that used in the comparative example (same refining lot number)
A single crystal was grown by the Czochralski method using N and cerium oxide (CeO 2 ) 4N. 2573.5 g of gadolinium oxide, 426.5 g of silicon oxide, and 5.9 g of cerium oxide were weighed, mixed and fired, then put in an Ir crucible and grown in the same manner as in the comparative example. As a result of the growth, a stable crystal without coloring or generation of voids was obtained. Table 1 also shows the results of measurement of the characteristics when a sample of 10 × 10 × 30 mm 3 was taken from the grown crystal and was irradiated with γ-ray, but the characteristics were stable and good. It was clearly observed that the crystal characteristics were improved by reducing the Al impurities. As a result of measuring Al impurities in gadolinium oxide, the result was 0.35 ppm, which was significantly smaller than that of the gadolinium oxide raw material used in the comparative example. The Al impurity in the raw material is less than 0.31 ppm.

【0009】[0009]

【表1】 表1 ボイド発生、光透過率 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 比較例 実施例 ───────────────────────────── ボイド発生(本/本中) 3/6 0/5 透過率(%)430nm 60 80 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 1] Table 1 Void generation and light transmittance ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Comparative example Example ───── ──────────────────────── Void generation (book / book) 3/6 0/5 Transmittance (%) 430 nm 60 80 ━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━

【0010】[0010]

【発明の効果】本発明の希土類珪酸塩単結晶の育成方法
により、結晶中のボイドの発生の無い安定して良好なシ
ンチレ−タ性能を有する希土類珪酸塩単結晶を育成する
ことができる。
According to the method of growing a rare earth silicate single crystal of the present invention, it is possible to grow a rare earth silicate single crystal having stable and good scintillator performance without generation of voids in the crystal.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 希土類酸化物、珪素酸化物を含む原料の
融液から希土類珪酸塩単結晶を育成する方法において、
Alの不純物濃度が0.4ppm以下の原料を用いるこ
とを特徴とする希土類珪酸塩単結晶の育成方法。
1. A method for growing a rare earth silicate single crystal from a melt of a raw material containing a rare earth oxide and a silicon oxide,
A method for growing a rare earth silicate single crystal, which comprises using a raw material having an Al impurity concentration of 0.4 ppm or less.
【請求項2】 Alの不純物濃度が0.1ppm以下の
希土類酸化物を使用する請求項1記載の希土類珪酸塩単
結晶の育成方法。
2. The method for growing a rare earth silicate single crystal according to claim 1, wherein a rare earth oxide having an Al impurity concentration of 0.1 ppm or less is used.
【請求項3】 希土類酸化物が酸化ガドリニウムである
請求項1記載の希土類珪酸塩単結晶の育成方法。
3. The method for growing a rare earth silicate single crystal according to claim 1, wherein the rare earth oxide is gadolinium oxide.
JP23022496A 1995-08-31 1996-08-30 Method for growing rare earth silicate single crystals Expired - Lifetime JP3694884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23022496A JP3694884B2 (en) 1995-08-31 1996-08-30 Method for growing rare earth silicate single crystals

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22344395 1995-08-31
JP7-223443 1995-08-31
JP23022496A JP3694884B2 (en) 1995-08-31 1996-08-30 Method for growing rare earth silicate single crystals

Publications (2)

Publication Number Publication Date
JPH09142994A true JPH09142994A (en) 1997-06-03
JP3694884B2 JP3694884B2 (en) 2005-09-14

Family

ID=26525479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23022496A Expired - Lifetime JP3694884B2 (en) 1995-08-31 1996-08-30 Method for growing rare earth silicate single crystals

Country Status (1)

Country Link
JP (1) JP3694884B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241251A (en) * 2005-03-01 2006-09-14 Hitachi Chem Co Ltd Method for producing scintillator and scintillator
JP2008007393A (en) * 2006-05-30 2008-01-17 Hitachi Chem Co Ltd Single crystal for scintillator and manufacturing method for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241251A (en) * 2005-03-01 2006-09-14 Hitachi Chem Co Ltd Method for producing scintillator and scintillator
JP2008007393A (en) * 2006-05-30 2008-01-17 Hitachi Chem Co Ltd Single crystal for scintillator and manufacturing method for the same
US7749323B2 (en) 2006-05-30 2010-07-06 Hitachi Chemical Company, Ltd. Single crystal for scintillator and method for manufacturing same

Also Published As

Publication number Publication date
JP3694884B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
US8062419B1 (en) Rare-earth oxyorthosilicate scintillator crystals and method of making rare-earth oxyorthosilicate scintillator crystals
US5728213A (en) Method of growing a rare earth silicate single crystal
US20030062465A1 (en) Scintillator crystals and their applications and manufacturing process
CN101945974A (en) Scintillator for neutron detection and neutron detector
WO2003102112A1 (en) Crystalline rare-earth activated oxyorthosilicate phosphor
CN1322173C (en) Process for preparing high temperature cerium blended lutetium pyrosilicate scintillation monocrystal
JP2011026547A (en) Single crystal for scintillator, method of heat treatment for manufacturing single crystal for scintillator, and method of manufacturing single crystal for scintillator
Shimura et al. Zr doped GSO: Ce single crystals and their scintillation performance
EP3636805B1 (en) Method of preparation of yttrium-doped barium fluoride crystal
CN102443844A (en) Suppression of crystal growth instabilities during production of rare-earth oxyorthosilicate crystals
JPH0264008A (en) Single crystal of lanthanide silicate useful as scintillator for detecting x-rays and/or gamma rays
Wu et al. A homogeneity study on (Ce, Gd) 3 Ga 2 Al 3 O 12 crystal scintillators grown by an optical floating zone method and a traveling solvent floating zone method
JP2701577B2 (en) Single crystal heat treatment method
JPH09142994A (en) Method for growing single crystal of silicate of rare earth element
JP2016056378A (en) Single crystal for scintillator, heat treatment method for producing single crystal for scintillator and method for producing single crystal for scintillator
JP4195732B2 (en) Method for growing rare earth silicate single crystals
JP4228609B2 (en) Cerium-activated gadolinium silicate single crystal
JP4228611B2 (en) Cerium-activated gadolinium silicate single crystal
US20070277726A1 (en) Method for heat treating single crystal
Weller et al. Chemical and optical studies of samarium doped caf2 type single crystals
JPH09157090A (en) Growth method of rare earth silicate single crystal
EP0760403B1 (en) Method of growing a rare earth silicate single crystal
JPS5940175B2 (en) Crystal for scintillator
RU2233916C1 (en) Method of production of scintillation monocrystalline lutecium-yttric aluminate
US6926847B2 (en) Single crystals of silicates of rare earth elements

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term