JPH09142900A - Cement admixture and cement and concrete compounded with the cement admixture - Google Patents

Cement admixture and cement and concrete compounded with the cement admixture

Info

Publication number
JPH09142900A
JPH09142900A JP7337652A JP33765295A JPH09142900A JP H09142900 A JPH09142900 A JP H09142900A JP 7337652 A JP7337652 A JP 7337652A JP 33765295 A JP33765295 A JP 33765295A JP H09142900 A JPH09142900 A JP H09142900A
Authority
JP
Japan
Prior art keywords
cement
amount
carbon
added
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7337652A
Other languages
Japanese (ja)
Other versions
JP3673577B2 (en
Inventor
Makihiko Ichikawa
牧彦 市川
Muneteru Kanetani
宗輝 金谷
Susumu Sano
奨 佐野
Shunichiro Uchida
俊一郎 宇智田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Onoda Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP33765295A priority Critical patent/JP3673577B2/en
Publication of JPH09142900A publication Critical patent/JPH09142900A/en
Application granted granted Critical
Publication of JP3673577B2 publication Critical patent/JP3673577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients

Abstract

PROBLEM TO BE SOLVED: To provide a cement admixture produced by compounding limestone powder, a trialkanolamine and a carbon source and free from problems of strength development and air-entrainment and provide a cement or concrete compounded with the admixture. SOLUTION: This cement admixture is composed of limestone powder, a trialkanolamine and a carbon source. The trialkanolamine is preferably triisopropanolamine for getting the highest strength increasing effect. The limestone powder has a Blaine specific surface area of about 1,000-10,000cm<2> /g. Crushed coal or charcoal, carbon black, activated carbon and carbon obtained as a by-product of various processes can be used as the carbon source. The cement admixture is added in the form of a mixture or individual components are added in separated state in the production process of cement or concrete.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、セメント混合材並
びに該セメント混合材を添加したセメント及びコンクリ
ートに関するものである。
TECHNICAL FIELD The present invention relates to a cement admixture, and cement and concrete to which the cement admixture is added.

【0002】[0002]

【従来の技術】石灰石粉末をセメントやコンクリートに
添加すると、無添加のものと比較して材令28日などの
長期強度が著しく低下することが知られている。この石
灰石粉末添加に伴う長期強度の低下を防止するために、
セメントの主要材料であるクリンカー自体の強度発現性
の改善やセメントの粉末度を高める等の手法が考えられ
るが、いずれの手法も煩雑な操作やコストアップを伴
う。一方、特開平3−183647号公報にトリアルカ
ノールアミンを添加したセメントが提案されている。
2. Description of the Related Art It is known that when limestone powder is added to cement or concrete, the long-term strength such as the age of 28 days is remarkably reduced as compared with the case where no limestone powder is added. In order to prevent a decrease in long-term strength associated with the addition of this limestone powder,
Methods such as improving the strength development of the clinker itself, which is the main material of cement, and increasing the fineness of the cement are conceivable, but all of these methods involve complicated operations and increased costs. On the other hand, Japanese Patent Application Laid-Open No. 3-183647 proposes a cement containing trialkanolamine.

【0003】[0003]

【発明が解決しようとする課題】本発明者らは、石灰石
粉末を添加したセメントに、トリアルカノールアミンの
1種であるトリイソプロパノールアミンを添加してみた
ところ、強度発現性の低下は改善されるものの、その一
方でコンクリートに連行される空気量の増大を伴うため
に、コンクリート混練時における空気連行剤量の調整あ
るいは消泡剤の添加等の煩雑な操作を余儀なくされると
いう欠点があることを知見した。従って、本発明は強度
発現性や空気連行性に問題を生じないセメント混合材並
びに該セメント混合材を添加したセメント及びコンクリ
ートを提供することにある。
DISCLOSURE OF THE INVENTION The present inventors tried adding triisopropanolamine, which is one of trialkanolamines, to cement containing limestone powder, and as a result, the decrease in strength development was improved. However, on the other hand, since the amount of air entrained in the concrete is increased, there is a drawback in that complicated operations such as adjustment of the amount of an air entraining agent or addition of a defoaming agent at the time of kneading concrete are unavoidable. I found out. Therefore, the present invention provides a cement admixture that does not cause problems in strength development and air entrainment, and cement and concrete to which the cement admixture is added.

【0004】[0004]

【課題を解決するための手段】本発明者らは、石灰石粉
末、トリアルカノールアミンに更にカーボン源を組み合
わせたセメント混合材をモルタルやコンクリートに添加
したところ、強度発現性や空気連行性に問題のないもの
であることを見出し、本発明を完成した。
Means for Solving the Problems The inventors of the present invention added a cement mixture containing limestone powder, trialkanolamine and a carbon source to mortar and concrete. The present invention has been completed by finding out that it does not exist.

【0005】すなわち、本発明は、石灰石粉末、トリア
ルカノールアミンおよびカーボン源よりなることを特徴
とするセメント混合材である。
That is, the present invention is a cement admixture characterized by comprising limestone powder, trialkanolamine and a carbon source.

【0006】[0006]

【発明の実施の形態】石灰石粉末は、ブレーン比表面積
が1000〜10000cm/g、好ましくは300
0〜8000cm/gのものを用いるのが良い。ブレ
ーン比表面積1000cm/g未満の石灰石粉末は、
セメントと均一に混合することが困難であるので好まし
いものではなく、また10000cm/gを超えると
石灰石の粉砕に要する時間が大幅に増加するので好まし
いものではない。また、石灰石粉末は、セメントに対し
て40wt%以内の量を添加するのが適当である。40
wt%を超える量を添加した場合、トリアルカノールア
ミンの添加量を増加しても強度発現性を適性に保つこと
が困難となるからである。またトリアルカノールアミン
の多量添加は、セメント粉末の流動性を必要以上に高め
ることになり、これにより空気量の増加を是正するため
のカーボンの多量添加は、モルタルやコンクリート硬化
体へ黒ズミを呈することになる。
BEST MODE FOR CARRYING OUT THE INVENTION Limestone powder has a Blaine specific surface area of 1000 to 10000 cm 2 / g, preferably 300.
It is preferable to use one having a size of 0 to 8000 cm 2 / g. The limestone powder having a Blaine specific surface area of less than 1000 cm 2 / g is
It is not preferable because it is difficult to uniformly mix with cement, and when it exceeds 10000 cm 2 / g, it is not preferable because the time required for crushing limestone increases significantly. Further, it is appropriate to add the limestone powder in an amount of 40 wt% or less with respect to the cement. 40
This is because it is difficult to maintain the strength developing property properly even if the amount of trialkanolamine added is increased when the amount added exceeds wt%. In addition, adding a large amount of trialkanolamine will increase the fluidity of cement powder more than necessary, and thus adding a large amount of carbon to correct the increase in the amount of air will cause blackening in mortar and hardened concrete. It will be.

【0007】トリアルカノールアミンとしては、トリイ
ソプロパノールアミン、N,N−ビス−(2−ヒドロキ
シエチル)−N−(2−ヒドロキシプロピル)−アミ
ン、トリス−(2−ヒドロキシブチル)−アミンなどを
挙げることができるが、このうちトリイソプロパノール
アミンは強度増進効果が最も高いので、トリイソプロパ
ノールアミンを用いるのが好ましい。
Examples of trialkanolamines include triisopropanolamine, N, N-bis- (2-hydroxyethyl) -N- (2-hydroxypropyl) -amine and tris- (2-hydroxybutyl) -amine. Of these, triisopropanolamine has the highest strength-enhancing effect, and therefore it is preferable to use triisopropanolamine.

【0008】カーボン源は、多孔構造を有するので、コ
ンクリート中への空気連行を助長する物質をこの多孔構
造に吸着させて必要以上の空気量の増加を防ぐために用
いられるもので、トリアルカノールアミンによる空気量
の増加を防ぐことが可能となる。これによりコンクリー
ト混練工程における空気連行剤量の調整あるいは消泡剤
の添加等の煩雑な操作が不要となる。カーボン源として
は、石炭や炭を粉砕し粉末にしたもの、カーボンブラッ
ク、活性炭あるいは種々の副産物として得られるカーボ
ンなど、さらには、未燃カーボンを含む石炭灰も使用す
ることができる。
Since the carbon source has a porous structure, it is used for adsorbing a substance that promotes air entrainment into concrete to the porous structure to prevent an unnecessary increase in the amount of air. It becomes possible to prevent an increase in the amount of air. This eliminates the need for complicated operations such as adjusting the amount of air entraining agent or adding an antifoaming agent in the concrete kneading step. As the carbon source, coal or charcoal pulverized into powder, carbon black, activated carbon or carbon obtained as various by-products, and further coal ash containing unburned carbon can be used.

【0009】カーボン源として、石炭粉末を使用する場
合は、最大粒径400μm、好ましくは最大粒径45μ
mになるように粉砕するのが良い。このような粒度にす
ることによって吸着能が高まるからである。また、カー
ボン源として未燃カーボンを含む石炭灰を用いる場合
は、ブレーン比表面積が6000cm/g以上のもの
を用いるのが好ましい。ブレーン比表面積を6000c
/g以上とすることにより石炭灰中に含まれる未燃
カーボンをより微細にし、少量の添加で効率的に空気量
を是正出来るからである。
When coal powder is used as the carbon source, the maximum particle size is 400 μm, preferably the maximum particle size is 45 μm.
It is better to crush it to m. This is because the adsorptivity is increased by making the particle size as described above. When coal ash containing unburned carbon is used as the carbon source, it is preferable to use one having a Blaine specific surface area of 6000 cm 2 / g or more. Blaine specific surface area of 6000c
This is because the unburned carbon contained in the coal ash can be made finer and the amount of air can be efficiently corrected by adding a small amount by making m 2 / g or more.

【0010】さらに、セメント製造工程で、本発明セメ
ント混合材を添加するか又は本発明セメント混合材の各
成分を別個に添加して強度発現性や空気連行性に問題を
生じないセメントとすること、またコンクリート製造工
程で、本発明セメント混合材を添加するか又は本発明セ
メント混合材の各成分を別個に添加して強度発現性や空
気連行性に問題を生じないコンクリートとすることがで
きることはいうまでもない。
Further, in the cement manufacturing process, the cement admixture of the present invention is added, or each component of the cement admixture of the present invention is added separately to obtain a cement that does not cause problems in strength development and air entrainment. In addition, in the concrete manufacturing process, it is possible to add the cement mixture of the present invention or to add each component of the cement mixture of the present invention separately to obtain concrete that does not cause a problem in strength development and air entrainment. Needless to say.

【0011】例えば、トリアルカノールアミンをセメン
ト製造工程において添加する方法としては、セメントク
リンカー、石灰石や石炭灰等のカーボン源の粉砕助剤と
して添加しても良いし、これらの混合粉砕物に後添加し
ても良い。また、例えば、コンクリート製造工程におい
て本発明セメント混合材の各成分を別個に添加してコン
クリートを混練する場合、石灰石粉末の添加量や添加方
法等との関連において、強度発現性の低下を是正するた
めに必要な所定量のトリアルカノールアミンをいずれか
の工程で加えたり、また、加えたトリアルカノールアミ
ン量に応じて粒度等が適切なカーボン源をいずれかの工
程で所定量加えて、空気量を是正すればよい。
For example, as a method of adding trialkanolamine in a cement production process, it may be added as a grinding aid for a carbon source such as cement clinker, limestone or coal ash, or may be added to a mixed crushed product thereof afterwards. You may. Further, for example, in the concrete manufacturing process, when the components of the cement mixture of the present invention are added separately to knead the concrete, in relation to the addition amount of the limestone powder, the addition method, etc., the deterioration of the strength development is corrected. In order to add the specified amount of trialkanolamine required in any step, or to add the specified amount of carbon source with a suitable particle size in any step according to the added amount of trialkanolamine, the amount of air Should be corrected.

【0012】ブレーン比表面積3980cm/gの石
灰石粉末を普通ポルトランドセメントに対して内割りで
5wt%混合した場合、強度発現性の低下を改善するた
めに必要なトリアルカノールアミンの1種であるトリイ
ソプロパノールアミン(以下、「TIPA」という)は
セメントに対して50ppm程度である。また最大粒径
45μmに調整したカーボン量78%の石炭粉末を用い
る場合、セメントに対して内割りで約0.1wt%混合
すればTIPA50ppm添加による空気量の増大を是
正できる。カーボン源として未燃カーボンを3%含むブ
レーン比表面積7000cm/gの石炭灰を用いる場
合には、セメントに対して内割りで約3wt%混合すれ
ば良い。なお、石炭灰の添加は若干の強度低下を伴う
が、その程度は僅かであり、石灰石粉末の添加量を低減
すれば強度低下を改善することができる。
When limestone powder having a Blaine specific surface area of 3980 cm 2 / g is mixed with ordinary Portland cement in an amount of 5% by weight, triacanolamine, which is one of the trialkanolamines, is required to improve the decrease in strength development. Isopropanolamine (hereinafter referred to as “TIPA”) is about 50 ppm with respect to the cement. Further, when using coal powder having a carbon amount of 78% adjusted to a maximum particle size of 45 μm, an increase in air amount due to the addition of TIPA of 50 ppm can be corrected by mixing 0.1% by weight of cement with cement. When using coal ash containing 3% of unburned carbon and having a Blaine specific surface area of 7,000 cm 2 / g as a carbon source, about 3 wt% of cement may be mixed with cement. It should be noted that although the addition of coal ash is accompanied by a slight decrease in strength, the extent is slight, and the decrease in strength can be improved by reducing the addition amount of limestone powder.

【0013】以下に、実験例を挙げて更に本発明を説明
する。 (実験例1)セメント中の石灰石量ならびにモルタル練
り込み時に添加するTIPA量を変化させ、JIS R
5201 モルタル強さ試験を行った。結果を図1に
示す。試料は、市販の普通ポルトランドセメントと、こ
のセメントにブレーン比表面積3980cm/gまで
粉砕した石灰石粉末を所定量内割りで混合したセメント
を用いた。TIPAの添加方法は、モルタル練り込み用
の水に溶解させた。添加量はセメントに対して0,5
0,100ppmの3水準である。石灰石粉末量増加に
伴うモルタル強さの低下は顕著であるが、TIPAを応
分量添加すればその低下分を十分補うことができる。
The present invention will be further described below with reference to experimental examples. (Experimental Example 1) JIS R was changed by changing the amount of limestone in cement and the amount of TIPA added when kneading mortar.
A 5201 mortar strength test was performed. The results are shown in FIG. As the sample, a commercially available ordinary Portland cement and a cement in which limestone powder pulverized to a Blaine specific surface area of 3980 cm 2 / g was mixed in a predetermined amount in the cement were used. TIPA was added by dissolving it in water for kneading mortar. Addition amount is 0.5 for cement
There are three levels of 0,100 ppm. Although the decrease in mortar strength with the increase in the amount of limestone powder is remarkable, the decrease can be sufficiently compensated by adding TIPA in an appropriate amount.

【0014】ただし、TIPAはコンクリートの空気量
を高める特性を持ち合わせている。図2は図1と同様の
試料を用いて、JIS A 1128の方法に準じて測
定したフレッシュコンクリートの空気量測定結果であ
る。なお、配合条件は表1のとおりであり、コンクリー
トの混練は、パン型55リットルの強制練りミキサーに
て2分間行った。TIPAは練り込み水に添加した。図
2から明らかなように、石灰石粉末量によらずTIPA
の添加に伴い50ppmで1〜1.5%、100ppm
で約2%の空気量の増加が認められる。換言すると、こ
うした空気量の増加を防ぐには空気連行剤量の調整また
は消泡剤の添加が必要となる。ここまでの結果から、セ
メント中に石灰石を含有させると強度発現性を損ない、
TIPAを添加すると、石灰石の含有に伴う強度発現性
の低下を補う効果はあるものの、コンクリート空気量を
増加させるという欠点があることが明らかとなった。
However, TIPA has the property of increasing the air content of concrete. FIG. 2 shows the results of measuring the air content of fresh concrete using the same sample as in FIG. 1 according to the method of JIS A 1128. The mixing conditions are as shown in Table 1, and the concrete was kneaded with a pan-type 55-liter forced kneading mixer for 2 minutes. TIPA was added to the kneading water. As is clear from FIG. 2, regardless of the amount of limestone powder, TIPA
With addition of 1 to 1.5% at 50 ppm, 100 ppm
At about 2%, an increase in air volume is observed. In other words, it is necessary to adjust the amount of the air entraining agent or to add the defoaming agent to prevent such an increase in the air amount. From the results so far, the inclusion of limestone in the cement impairs the strength development,
It has been revealed that the addition of TIPA has the drawback of increasing the concrete air amount, although it has the effect of compensating for the decrease in strength development associated with the inclusion of limestone.

【0015】[0015]

【表1】 [Table 1]

【0016】(実験例2)TIPA含有量、およびカー
ボン含有量ならびにその粒度の異なるセメントを調製
し、フレッシュコンクリートの空気量を測定した。コン
クリートの配合、混練方法および空気量の測定方法は実
験例1と同様である。TIPAはセメント粉砕時に粉砕
助剤として添加した。またカーボン源としては、粒度の
異なる石炭粉末(カーボン量78%)を別途調整し、セ
メントに混合した。結果を表2に示す。TIPAの含有
により空気量が増加することは前記のとおりである。石
炭粉末の混入により空気量の増加は是正されるが、その
効果は石炭粉末の粒度が細かくなるほど顕著となる。す
なわち、400μm〜1200μmを粒径範囲とする石
炭粉末では、セメントに対して1wt%添加しても空気
量の是正効果は十分でないが、45μm以下とすればT
IPA50ppmの場合で0.1wt%、100ppm
場合で0.2wt%添加すれば、TIPAおよび石炭粉
末を共に含有していない標準セメントとほぼ同等の空気
量に是正することができる。
(Experimental Example 2) Cement having different TIPA contents, carbon contents and particle sizes was prepared, and the air content of fresh concrete was measured. The mixing of concrete, the kneading method, and the measuring method of the amount of air are the same as in Experimental Example 1. TIPA was added as a grinding aid during cement grinding. As a carbon source, coal powders having different particle sizes (carbon amount 78%) were separately prepared and mixed with cement. Table 2 shows the results. As described above, the amount of air increases due to the inclusion of TIPA. Increasing the amount of air is corrected by the mixture of coal powder, but the effect becomes more remarkable as the particle size of coal powder becomes smaller. That is, with coal powder having a particle size range of 400 μm to 1200 μm, the effect of correcting the amount of air is not sufficient even if 1 wt% is added to cement, but if it is 45 μm or less, T
IPA 50ppm 0.1wt%, 100ppm
If 0.2 wt% is added in some cases, the air content can be corrected to be almost equal to that of standard cement containing neither TIPA nor coal powder.

【0017】[0017]

【表2】 [Table 2]

【0018】(実験例3)カーボン含有量の異なる2種
類の石炭灰について、セメントに添加する際の前処理方
法が空気連行性および強度発現性に及ぼす影響について
検討した。すなわち、未燃カーボンを含む石炭灰を無処
理のまま、あるいは所定のブレーン比表面積まで単独で
粉砕し、別途準備したTIPA50ppmのセメントに
混合した場合のコンクリート空気量および圧縮強度への
影響について調べた。また、石炭灰をセメントと同時に
粉砕した場合についても同様に検討した。石炭灰の添加
量はセメントに対し内割りで3wt%一定とした。石灰
石粉末はブレーン比表面積3980cm/gまであら
かじめ粉砕したものをセメント中に5wt%混合させ
た。表3に本実験に用いた石炭灰のキャラクターを示
す。
(Experimental Example 3) With respect to two types of coal ash having different carbon contents, the influence of the pretreatment method when added to cement on air entrainment and strength development was examined. That is, the influence on the concrete air amount and the compressive strength when the coal ash containing unburned carbon was left untreated or pulverized alone to a predetermined brane specific surface area and mixed with separately prepared TIPA 50 ppm cement was examined. . Also, the same study was conducted for the case of crushing coal ash at the same time as cement. The amount of coal ash added was constant at 3 wt% of the cement. Limestone powder was pulverized to a Blaine specific surface area of 3980 cm 2 / g in advance and mixed in cement at 5 wt%. Table 3 shows the coal ash characters used in this experiment.

【0019】[0019]

【表3】 [Table 3]

【0020】コンクリートの配合、混練方法および空気
量の測定方法は実験例1と同様である。結果を表4に示
す。
The mixing of concrete, the method of kneading and the method of measuring the amount of air are the same as in Experimental Example 1. Table 4 shows the results.

【0021】[0021]

【表4】 [Table 4]

【0022】TIPA添加による空気量の増加は、石炭
灰により是正されるが、その程度は石炭灰の粒度や未燃
カーボン量によって異なる。すなわち、別途粉砕し添加
する石炭灰の未燃カーボンが多いほど、また粒度が細か
くなるほど空気量の是正効果が高くなる。この現象が、
カーボン量の増加ならびに石炭灰のブレーン比表面積に
比例して石炭灰中に含まれるカーボンの粒度が細かくな
ることに起因していることは、実験例2から明らかであ
る。なお、同時粉砕として添加する場合では、石炭灰を
単独で7000〜9000cm/gまで粉砕した場合
と同等の効果となった。一般に石炭灰をセメントに添加
すると僅かながら強度発現性が低下するが、石灰石粉末
の添加量を減ずることによって十分是正可能である。し
たがって、石炭灰をセメント中に含有させれば、また、
TIPA添加量との関連において、石炭灰の添加量なら
びに粒度を適正に調整すればTIPAによる強度増進効
果を損なうことなく、空気量を是正することが可能とな
る。
The increase in the amount of air due to the addition of TIPA is corrected by the coal ash, but the extent thereof depends on the particle size of the coal ash and the amount of unburned carbon. That is, the larger the amount of unburned carbon in the coal ash that is separately pulverized and added, and the finer the particle size, the higher the effect of correcting the air amount. This phenomenon
It is clear from Experimental Example 2 that the cause is that the particle size of carbon contained in the coal ash becomes finer in proportion to the increase in the amount of carbon and the Blaine specific surface area of the coal ash. In addition, in the case of adding as simultaneous pulverization, the effect was the same as the case of pulverizing coal ash alone to 7,000 to 9000 cm 2 / g. Generally, when coal ash is added to cement, the strength development is slightly decreased, but it can be sufficiently corrected by reducing the amount of limestone powder added. Therefore, if coal ash is included in the cement,
In relation to the amount of TIPA added, if the amount of coal ash added and the particle size are adjusted appropriately, it is possible to correct the amount of air without impairing the strength enhancing effect of TIPA.

【0023】(実施例4)従来のセメント組成物の強度
発現性を損なうことなく、コンクリート空気量を適正に
保つためのセメント混合材用またはコンクリート添加材
用組成物の配合について、これら組成物をあらかじめセ
メント中に含有させる場合に限定して表5及び表6にま
とめて示す。
Example 4 The composition of a cement mixture or a concrete additive for maintaining an appropriate amount of concrete air without impairing the strength development of the conventional cement composition was used. The results are summarized in Tables 5 and 6 only when they are contained in the cement in advance.

【0024】[0024]

【表5】 [Table 5]

【0025】[0025]

【表6】 [Table 6]

【0026】コンクリートの配合、混練方法および空気
量の測定方法は実験例1と同様である。TIPAは練り
込み水に添加した。石灰石粉末はブレーン比表面積39
80cm/gまで別途粉砕したものを所定量内割りで
混合した場合およびセメントと同時に粉砕した場合につ
いて、カーボン源は、カーボン量78%の石炭およびカ
ーボン量の異なる2種類の石炭灰を使用した場合につい
ての事例である。
The mixing of concrete, the method of kneading and the method of measuring the amount of air are the same as in Experimental Example 1. TIPA was added to the kneading water. The limestone powder has a Blaine specific surface area of 39.
When the crushed separately up to 80 cm 2 / g was mixed in a predetermined amount and crushed at the same time as the cement, the carbon source used was coal having a carbon content of 78% and two types of coal ash having different carbon contents. This is a case example.

【0027】石炭(カーボン量78%)は最大粒径45
μmに調整したものを所定量内割りで混合した。石炭灰
はブレーン比表面積7000と9000cm/gに調
整したものをそれぞれセメントに所定量内割りで混合し
た。また、無処理の石炭灰をセメントと同時に粉砕して
含有させた事例も示す。石灰石をセメントと同時粉砕す
る場合において強度発現性を保つために必要なTIPA
量が増加しているが、これは、石灰石の優先的な粉砕等
により石灰石単位添加量当たりの強度低下率が増大する
ためである。ただし、表5、表6に示したのはあくまで
も事例であり、TIPAの添加量はセメント中の石灰石
粉末含有量およびセメントへの添加方法等に応じて、石
炭等のカーボン含有物質量は、それ自身の粒度やカーボ
ン含有量、セメントへの添加方法およびTIPAの添加
量等に応じて調整すれば良い。
The maximum particle size of coal (78% carbon amount) is 45
What was adjusted to μm was mixed in a predetermined amount. Coal ash, which had been adjusted to have Blaine specific surface areas of 7,000 and 9000 cm 2 / g, was mixed with cement in predetermined amounts. Also, an example is shown in which untreated coal ash is crushed at the same time as cement and contained. TIPA required to maintain strength development when limestone is simultaneously ground with cement
The amount is increasing, because the preferential crushing of limestone and the like increases the rate of decrease in strength per unit amount of limestone added. However, Tables 5 and 6 are merely examples, and the amount of TIPA added depends on the content of limestone powder in cement and the method of addition to cement, and the amount of carbon-containing substances such as coal It may be adjusted according to its particle size, carbon content, addition method to cement, addition amount of TIPA, and the like.

【0028】[0028]

【発明の効果】石灰石粉末、トリアルカノールアミン及
びカーボン源を組み合わせた本発明セメント混合材は、
モルタル又はコンクリートの強度発現性、空気連行性に
何らの問題を生じることがない優れたセメント混合材で
ある。またセメント製造工程又はコンクリート製造工程
において、本発明セメント混合材を添加するかあるいは
本発明セメント混合材の各成分を別個に添加することに
より、強度発現性、空気連行性に何ら問題のないセメン
ト又はコンクリートを造ることができる。
The cement mixture of the present invention, which is a combination of limestone powder, trialkanolamine and carbon source, is
It is an excellent cement admixture that does not cause any problems in the strength development and air entrainment of mortar or concrete. In the cement manufacturing process or the concrete manufacturing process, by adding the cement admixture of the present invention or by adding each component of the cement admixture of the present invention separately, there is no problem in strength development and air entrainment. Can make concrete.

【図面の簡単な説明】[Brief description of the drawings]

【図1】セメントにTIPAを0、50ppm、100
ppm添加したときの、石灰石粉末量と28日モルタル
強さとの関係を示す線図。
Fig. 1 TIPA in cement is 0, 50ppm, 100
A diagram showing the relationship between the amount of limestone powder and 28-day mortar strength when ppm is added.

【図2】セメントにTIPAを0、50ppm、100
ppm添加したときの、石灰石粉末量と空気量との関係
を示す線図。
Figure 2: TIPA is 0, 50ppm, 100 in cement
FIG. 6 is a diagram showing the relationship between the amount of limestone powder and the amount of air when ppm is added.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 24/12 C04B 24/12 Z 28/02 28/02 // C04B 103:60 (72)発明者 宇智田 俊一郎 埼玉県熊谷市月見町二丁目1番1号 秩父 小野田株式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C04B 24/12 C04B 24/12 Z 28/02 28/02 // C04B 103: 60 (72) Invention Shunichiro Uchida 2-1-1 Tsukimi-cho, Kumagaya-shi, Saitama Chichibu Onoda Central Research Institute

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 石灰石粉末、トリアルカノールアミン及
びカーボン源よりなることを特徴とするセメント混合
材。
1. A cement admixture comprising limestone powder, trialkanolamine and a carbon source.
【請求項2】 石灰石粉末は、ブレーン比表面積が10
00〜10000cm/gのものであることを特徴と
する請求項1記載のセメント混合材。
2. The limestone powder has a Blaine specific surface area of 10
The cement mixture according to claim 1, wherein the cement mixture is from 00 to 10000 cm 2 / g.
【請求項3】 トリアルカノールアミンがトリイソプロ
パノールアミンであることを特徴とする請求項1記載の
セメント混合材。
3. The cement admixture according to claim 1, wherein the trialkanolamine is triisopropanolamine.
【請求項4】 カーボン源として、石炭や炭を粉砕した
もの、カーボンブラック、活性炭、種々の副産物として
得られるカーボンを使用することを特徴とする請求項1
記載のセメント混合材。
4. The carbon source used is crushed coal or charcoal, carbon black, activated carbon, or carbon obtained as various by-products.
Cement mixture described.
【請求項5】 カーボン源として、未燃カーボンを含む
石炭灰を用いることを特徴とする請求項1記載のセメン
ト混合材。
5. The cement mixture according to claim 1, wherein coal ash containing unburned carbon is used as a carbon source.
【請求項6】 石炭を最大粒径400μmに粉砕したも
のを用いることを特徴とする請求項4記載のセメント混
合材。
6. The cement mixture according to claim 4, wherein coal is crushed to have a maximum particle size of 400 μm.
【請求項7】 未燃カーボンを含む石炭灰は、ブレーン
比表面積が6000cm/g以上のものを用いること
を特徴とする請求項5記載のセメント混合材。
7. The cement mixture according to claim 5, wherein the coal ash containing unburned carbon has a Blaine specific surface area of 6000 cm 2 / g or more.
【請求項8】 セメント製造工程で請求項1記載のセメ
ント混合材を添加するか又は請求項1記載のセメント混
合材の各成分を別個に添加してなることを特徴とするセ
メント。
8. A cement, characterized in that the cement admixture according to claim 1 is added in the cement manufacturing process, or each component of the cement admixture according to claim 1 is added separately.
【請求項9】 コンクリート製造工程で請求項1記載の
セメント混合材を添加するか又は請求項1記載のセメン
ト混合材の各成分を別個に添加してなることを特徴とす
るコンクリート。
9. A concrete characterized in that the cement admixture according to claim 1 is added in the concrete producing step, or each component of the cement admixture according to claim 1 is added separately.
JP33765295A 1995-11-20 1995-11-20 Cement mixed material and cement and concrete to which the cement mixed material is added Expired - Fee Related JP3673577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33765295A JP3673577B2 (en) 1995-11-20 1995-11-20 Cement mixed material and cement and concrete to which the cement mixed material is added

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33765295A JP3673577B2 (en) 1995-11-20 1995-11-20 Cement mixed material and cement and concrete to which the cement mixed material is added

Publications (2)

Publication Number Publication Date
JPH09142900A true JPH09142900A (en) 1997-06-03
JP3673577B2 JP3673577B2 (en) 2005-07-20

Family

ID=18310678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33765295A Expired - Fee Related JP3673577B2 (en) 1995-11-20 1995-11-20 Cement mixed material and cement and concrete to which the cement mixed material is added

Country Status (1)

Country Link
JP (1) JP3673577B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020035528A (en) * 2002-04-09 2002-05-11 김명원 a charcoal powder combination style of concrete and veneer
JP2003527275A (en) * 1997-10-01 2003-09-16 ダブリュ・アール・グレイス・アンド・カンパニー・コネテイカット Portland cement composition with improved strength
JP2004002165A (en) * 2002-03-28 2004-01-08 Kansai Electric Power Co Inc:The Cement admixture and its production method
JP2004284865A (en) * 2003-03-20 2004-10-14 Ube Ind Ltd Hydraulic composition, and concrete or mortar having excellent pump forced-feeding property
KR101337759B1 (en) * 2012-04-18 2013-12-06 조일호 Inorganic binder composition
CN104446247A (en) * 2014-11-24 2015-03-25 厦门天润锦龙建材有限公司 Method for preparing interior wall putty powder from dry and semi-dry desulfurization residues
CN106007432A (en) * 2016-05-17 2016-10-12 华南理工大学 Mineral admixture based on limestone powder-stone ballast and application of mineral admixture
JP2020180027A (en) * 2019-04-26 2020-11-05 太平洋セメント株式会社 Cement composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337145A (en) * 1989-07-04 1991-02-18 Osaka Cement Co Ltd Quick setting agent for cement
JPH03183647A (en) * 1989-10-06 1991-08-09 W R Grace & Co Reinforced blended cement composition and reinforced portland cement composition
JPH0524900A (en) * 1991-07-23 1993-02-02 Kubota Corp Dimension stabilization for ceramic product
JPH0753248A (en) * 1993-09-27 1995-02-28 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JPH0859320A (en) * 1994-08-12 1996-03-05 N M B:Kk Air-entraining agent for cement composition and cement composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337145A (en) * 1989-07-04 1991-02-18 Osaka Cement Co Ltd Quick setting agent for cement
JPH03183647A (en) * 1989-10-06 1991-08-09 W R Grace & Co Reinforced blended cement composition and reinforced portland cement composition
JPH0524900A (en) * 1991-07-23 1993-02-02 Kubota Corp Dimension stabilization for ceramic product
JPH0753248A (en) * 1993-09-27 1995-02-28 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JPH0859320A (en) * 1994-08-12 1996-03-05 N M B:Kk Air-entraining agent for cement composition and cement composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003527275A (en) * 1997-10-01 2003-09-16 ダブリュ・アール・グレイス・アンド・カンパニー・コネテイカット Portland cement composition with improved strength
JP2004002165A (en) * 2002-03-28 2004-01-08 Kansai Electric Power Co Inc:The Cement admixture and its production method
KR20020035528A (en) * 2002-04-09 2002-05-11 김명원 a charcoal powder combination style of concrete and veneer
JP2004284865A (en) * 2003-03-20 2004-10-14 Ube Ind Ltd Hydraulic composition, and concrete or mortar having excellent pump forced-feeding property
KR101337759B1 (en) * 2012-04-18 2013-12-06 조일호 Inorganic binder composition
CN104446247A (en) * 2014-11-24 2015-03-25 厦门天润锦龙建材有限公司 Method for preparing interior wall putty powder from dry and semi-dry desulfurization residues
CN104446247B (en) * 2014-11-24 2016-06-01 厦门天润锦龙建材有限公司 A kind of dry method, semi-dry desulphurization ash prepare the method for inner wall putty powder
CN106007432A (en) * 2016-05-17 2016-10-12 华南理工大学 Mineral admixture based on limestone powder-stone ballast and application of mineral admixture
JP2020180027A (en) * 2019-04-26 2020-11-05 太平洋セメント株式会社 Cement composition

Also Published As

Publication number Publication date
JP3673577B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
JP4796770B2 (en) Amine-containing cement processing additive
US8460457B2 (en) Robust air-detraining for cement milling
AU745142B2 (en) Strength enhanced portland cement compositions
JP2015517448A (en) Grinding additives for inorganic binders
EP1558544A1 (en) Method for the treatment of fly ash
JPH09142900A (en) Cement admixture and cement and concrete compounded with the cement admixture
EP0792849A1 (en) Limestone filled Portland cements
JP2000281413A (en) Cement admixture and cement composition
EP0498815B1 (en) Process for producing an active fine aggregate for the preparation of concrete
JPH07157347A (en) Cement composition, production and hardened body thereof
JPH08175854A (en) Low exothermic cement composition
JPH11343160A (en) Hydraulic composition and its hardened body
RU2278837C1 (en) Complex additive for concrete mix
JP2000281404A (en) Cement admixture and cement composition
JPH09156980A (en) Hydraulic cement composition and its production
JP2002255616A (en) Cement composition
JP3438463B2 (en) Cement-based solidification material that suppresses material separation
JP2000281417A (en) Hydraulic composition
JP2004161550A (en) Concrete
JP2002321949A (en) Blast furnace cement composition
JP2000203909A (en) Admixture and cement composition
JP2009234820A (en) Cement composition, cement hardened body, and production method of cement
JPH059052A (en) Manufacture of concrete or mortar
JPH08245251A (en) Production of dam concrete
JP2006199821A (en) Quick hardening grouting material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees