JPH09141759A - Tubular member - Google Patents

Tubular member

Info

Publication number
JPH09141759A
JPH09141759A JP7299651A JP29965195A JPH09141759A JP H09141759 A JPH09141759 A JP H09141759A JP 7299651 A JP7299651 A JP 7299651A JP 29965195 A JP29965195 A JP 29965195A JP H09141759 A JPH09141759 A JP H09141759A
Authority
JP
Japan
Prior art keywords
tubular body
wall
wall body
distribution
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7299651A
Other languages
Japanese (ja)
Inventor
Yasuhiro Saito
康宏 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP7299651A priority Critical patent/JPH09141759A/en
Publication of JPH09141759A publication Critical patent/JPH09141759A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the shrink quantity of a pipe end generated at a time of cutting without performing long-time annealing by forming a molded product so that the tensile stress shown by the distribution of the internal stress in the axial direction of the molded product toward the wall thickness direction thereof shows the max. value on an outer surface and the distribution of a degree of crystallization in the wall thickness direction is min. on the outer surface and max. on an inner surface. SOLUTION: The tensile stress shown by the distribution of axial internal stress σ (z1) calculated by formula in a wall thickness direction shows the max. value on an outer surface and the distribution of the degree of crystallization of a molded product in the wall thickness direction is min. on the outer surface and max. on an inner surface. Herein, E is the longitudinal modulus, ν is a Poisson's ratio, z0 is the distance from the center 0 of the wall body of a tubular member to the surface of the wall body and quantity shown by ± on inner and outer surfaces, z1 is the distance between the surface obtained by removing the wall body of the tubular member from the surface over arbitrary depth in a laminar state and the center 0 of the wall body of the tubular ember and ϕ (Z1) is a curvature after the deformation of the wall body calculated by ϕ (Z1)=8f/L<2> when the warpage quantity of the wall body developed by removing the wall body of the tubular member from the surface by (Z0-z1) in a laminar state is set to (f) and the length of the wall body is set to L.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、結晶性熱可塑性樹
脂からなる管状体に関する。
TECHNICAL FIELD The present invention relates to a tubular body made of a crystalline thermoplastic resin.

【0002】[0002]

【従来の技術】ポリエチレンをはじめとする結晶性熱可
塑性樹脂を管状の成形品に成形する方法は、従来、結晶
性熱可塑性樹脂組成物を金型から押出し、その後、サイ
ジングダイによって外表面を規制しながら、主に外面か
ら冷却賦形を行うのが一般的である。このような成形方
法によれば、得られた管状の成形品には、その外表面に
圧縮の軸方向応力が発生し、また、内表面には引張の軸
方向応力が発生し、それぞれが内部応力として残留す
る。このような応力分布を持つ管状体を切断機によって
半径方向に沿って切断すると、内部応力が開放されて再
配列される結果、管状体の端部が収縮する、いわゆる管
端収縮現象が発生する。
2. Description of the Related Art Conventionally, a method of molding a crystalline thermoplastic resin such as polyethylene into a tubular molded article has hitherto been carried out by extruding a crystalline thermoplastic resin composition from a mold and then regulating the outer surface with a sizing die. However, it is common to perform cooling shaping mainly from the outer surface. According to such a molding method, in the obtained tubular molded product, a compressive axial stress is generated on the outer surface thereof, and a tensile axial stress is generated on the inner surface thereof. It remains as stress. When a tubular body having such a stress distribution is cut in a radial direction by a cutting machine, internal stress is released and rearranged, so that the end portion of the tubular body contracts, so-called tube end contraction phenomenon occurs. .

【0003】以上のような管状成形品の内部応力を削減
する方法として、得られた成形品を適当な温度で所定時
間だけアニールする方法が知られている(A. Bhatnagar
etal. "Effect Annealing and Heat Fusion on Residu
al Stress in PolyethylenePipe." ANTEC '85 p-p 545-
549) 。
As a method of reducing the internal stress of the tubular molded product as described above, a method of annealing the obtained molded product at an appropriate temperature for a predetermined time is known (A. Bhatnagar).
et al. "Effect Annealing and Heat Fusion on Residu
al Stress in PolyethylenePipe. "ANTEC '85 pp 545-
549).

【0004】また、このようなアニールを、管状体の製
造工程において具体的に実行する方法として、特公昭6
4−7860号および特開平3−286843号が提案
されている。
Further, as a method for specifically carrying out such annealing in the manufacturing process of the tubular body, Japanese Patent Publication No.
Nos. 4-7860 and 3-286843 are proposed.

【0005】特公昭64−7860号では、熱可塑性樹
脂をチューブ状に押出成形する際、サイジング工程を経
て一旦固化されたチューブの表面を加熱して表面層のみ
を溶融させ、その表面層のみが溶融されたチューブを再
び冷却固化させている。
In Japanese Patent Publication No. 64-7860, when a thermoplastic resin is extruded into a tube, the surface of the tube once solidified through a sizing step is heated to melt only the surface layer, and only the surface layer is formed. The melted tube is cooled and solidified again.

【0006】また、特開平3−286843号では、熱
可塑性樹脂成形品の加熱を遠赤外線を用いて行うことに
より、短時間で残留応力を除去することを可能としてい
る。
Further, in Japanese Patent Application Laid-Open No. 3-286843, heating of a thermoplastic resin molded product is performed by using far infrared rays, whereby residual stress can be removed in a short time.

【0007】[0007]

【発明が解決しようとする課題】ところで、管状成形品
の内部応力を削減すべく単純にアニールする方法では、
内部応力を有効に除去するために必要なアニール時間が
長く、生産性の点で問題がある。
By the way, in the method of simply annealing in order to reduce the internal stress of the tubular molded article,
There is a problem in terms of productivity because the annealing time required for effectively removing the internal stress is long.

【0008】また、特公昭64−7860号のようにチ
ューブの表面層を溶融させた後に冷却すると、成形品の
外表面近傍に、溶融させる前より結晶化度が高い部分が
生じてしまい、製品としての管状体の引張伸びが減少し
てしまうという問題がある。また、サイジング後に冷却
固化した管状体の表面を溶融させてしまう関係上、製品
の表面性が損なわれてしまうという問題もある。
When the surface layer of the tube is melted and then cooled as in JP-B-64-7860, a portion having a higher degree of crystallinity than before the melting occurs in the vicinity of the outer surface of the molded product, resulting in a product. As a result, there is a problem that the tensile elongation of the tubular body decreases. Further, since the surface of the tubular body that has been cooled and solidified after sizing is melted, there is a problem that the surface property of the product is impaired.

【0009】更に、特開平3−7860号では、加熱工
程を短縮化できるものの、その後に徐冷すると、成形品
の外表面の結晶化度が上昇してしまい、成形品の引張伸
びが減少するという問題がある。
Further, in Japanese Patent Laid-Open No. 3-7860, although the heating step can be shortened, if it is gradually cooled thereafter, the crystallinity of the outer surface of the molded product will increase, and the tensile elongation of the molded product will decrease. There is a problem.

【0010】本発明の目的は、特に長時間にわたるアニ
ールを施すことなく、比較的簡単に得られる構造を持
ち、しかも切断時に生じる管端収縮量が少なく、かつ、
比較的大きな引張伸びを示すことのできる結晶性熱可塑
性樹脂製の管状体を提供することにある。
An object of the present invention is to have a structure that is relatively easy to obtain without performing annealing for a long time, and to reduce the amount of contraction of the tube end that occurs during cutting, and
It is intended to provide a tubular body made of a crystalline thermoplastic resin capable of exhibiting a relatively large tensile elongation.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の管状体は、下記の(1)式により算出され
る軸方向内部応力σ(z1)の肉厚方向への分布が、外表面
と内表面で引張応力を示し、かつ、その引張応力は外表
面において最大値を示すとともに、当該成形品の結晶化
度の肉厚方向への分布が、外表面で最も低く、かつ、内
表面で最も高いことによって特徴づけられる。
In order to achieve the above object, the tubular body of the present invention has a distribution in the thickness direction of the axial internal stress σ (z1) calculated by the following equation (1). , The outer surface and the inner surface shows tensile stress, and the tensile stress shows the maximum value on the outer surface, the distribution of the crystallinity of the molded product in the thickness direction is the lowest on the outer surface, and , Characterized by being highest on the inner surface.

【0012】[0012]

【数2】 (Equation 2)

【0013】ただし、E;縦弾性係数 ν;ポアソン比 Z0;管状体の壁体の中心0から壁体表面までの距離を、
外表面および内表面について±で表す量(図1(A)参
照) Z1;管状体の壁体を表面から任意深さにわたって層状に
除去した後の表面と、管状体の壁体中心0とのなす距離
(図1(A)参照) φ(Z1);管状体の壁体を表面から(Z0-Z1) だけ層状に除
去することによって現れる壁体の反り量をfとし、壁体
の長さをLとしたとき(図1(B)参照)、 φ(Z1)=8f/L2 ・・(2)で算出される壁体の変形後
の曲率 ここで、上記の方法によって軸方向内部応力を求めるた
めのテストピースは、長さLの管状体をその軸方向に沿
って短冊状に切断したものを用いる。
Where E is the longitudinal elastic modulus ν is Poisson's ratio Z0 is the distance from the center 0 of the wall of the tubular body to the surface of the wall,
Amount represented by ± for outer surface and inner surface (see FIG. 1 (A)) Z1; between the surface after removing the wall of the tubular body in layers from the surface to an arbitrary depth and the center 0 of the wall of the tubular body Estimated distance (see Fig. 1 (A)) φ (Z1); The warp amount of the wall that appears by removing the wall of the tubular body in layers from the surface by (Z0-Z1) is f, and the length of the wall is Where L is (see FIG. 1 (B)), the curvature after deformation of the wall calculated by φ (Z1) = 8f / L 2 ··· (2) where the axial internal stress is calculated by the above method. As the test piece for obtaining the value, a tubular body having a length L is cut in a strip shape along the axial direction.

【0014】また、結晶化度の測定方法については、次
の方法により求めることができる。すなわち、JIS
K7112に規定されている方法を用いてプラスチック
の密度を求め、下記の(3)式に代入することによって
算出することができる。
The crystallinity can be measured by the following method. That is, JIS
It can be calculated by obtaining the density of the plastic using the method specified in K7112 and substituting it in the following equation (3).

【0015】[0015]

【数3】 (Equation 3)

【0016】ただし、d;テストピースから採取した樹
脂から実際に求めた密度 dc;使用樹脂の完全結晶化状態における密度 da;使用樹脂の完全非晶状態における密度 以上のような応力分布並びに結晶化度の分布を持つ本発
明の管状体を得る方法としては、以下に例示する方法を
採用することができる。
Where d is the density actually obtained from the resin sampled from the test piece, dc is the density of the resin used in the completely crystallized state, da is the density of the resin used is in the completely amorphous state, and the stress distribution and crystallization are as described above. As a method for obtaining the tubular body of the present invention having a distribution of degrees, the method exemplified below can be adopted.

【0017】まず、後述するような任意の成形方法によ
って成形された管状成形品の外表面温度を、短時間に、
当該管状体を構成する樹脂組成物の融点未満で、かつ、
融点近傍の温度に上昇させる。この加熱方法としては、
遠赤外線を用いる方法や、高周波誘導加熱を用いる方
法、あるいは直火により加熱する方法、更には熱風によ
り加熱する方法等を採用することができる。このような
加熱は、管状体の内表面の温度が、〔管状体を構成する
樹脂組成物の融点−50°C〕以下の温度範囲を保つこ
とを条件に、ある時間にわたって継続することが望まし
い。
First, the outer surface temperature of a tubular molded article molded by an arbitrary molding method as described below is set in a short time.
Below the melting point of the resin composition forming the tubular body, and
Raise to a temperature near the melting point. As for this heating method,
A method using far infrared rays, a method using high-frequency induction heating, a method of heating by direct flame, a method of heating by hot air, or the like can be adopted. Such heating is preferably continued for a certain period of time, provided that the temperature of the inner surface of the tubular body is kept within a temperature range of [melting point of resin composition constituting tubular body-50 ° C] or lower. .

【0018】次に、以上の加熱工程を終了した後、管状
体の外表面から急速に冷却する。これによって上述の内
部応力分布並びに結晶化度分布を持つ管状体が得られ
る。冷却の方法は、水等の液体を管状体の外表面から掛
けてもよいし、液槽中に管状体を導入してもよい。ある
いは、管状体の外表面を冷却金型に対して摺動させても
よく、更には管状体外表面に冷却気体を吹きつけてもよ
い。
Next, after the above heating process is completed, the outer surface of the tubular body is rapidly cooled. As a result, a tubular body having the above-mentioned internal stress distribution and crystallinity distribution can be obtained. As a cooling method, a liquid such as water may be applied from the outer surface of the tubular body, or the tubular body may be introduced into the liquid tank. Alternatively, the outer surface of the tubular body may be slid with respect to the cooling mold, and further cooling gas may be blown onto the outer surface of the tubular body.

【0019】また、以上の処理を施す前の管状成形品の
成形方法としては、中空部を冷却することが困難な押出
成形によるものが最も好ましいが、射出成形や圧縮成形
によるものであってもよい。
As a method for molding the tubular molded product before the above-mentioned treatment, extrusion molding is most preferable because it is difficult to cool the hollow portion, but injection molding or compression molding is also possible. Good.

【0020】本発明において用いられる結晶性熱可塑性
樹脂としては、例えば、ポリエチレン、ポリプロピレ
ン、ポリブテンに代表されるポリオレフィン系樹脂、ポ
リテトラフルオロエチレン、ポリビニルジフルオライト
などのフッ素系樹脂、ポリエチレンテレフタレート、ナ
イロン、ポリフェニレンスルフィド、ポリエーテルエー
テルケトン等の結晶性エンジニアリングプラスチック等
を挙げることができる。
Examples of the crystalline thermoplastic resin used in the present invention include polyolefin resins represented by polyethylene, polypropylene and polybutene, fluorine resins such as polytetrafluoroethylene and polyvinyl difluorite, polyethylene terephthalate and nylon. And crystalline engineering plastics such as polyphenylene sulfide and polyether ether ketone.

【0021】また、以上の樹脂には充填材、難燃剤、紫
外線吸収剤、着色材料、可塑剤等の添加剤が含まれてい
てもよい。このような添加剤を具体的に述べると、充填
材としては、弾性率向上、低コスト化、比重低下のいず
れかに効果のあるもので、例えばガラスチョップストラ
ンド、炭酸カルシウム粉、バルーン状高炉灰等を使用す
ることができる。また、難燃剤には種々のハロゲン系、
非ハロゲン系、無機系難燃剤等を用いることができる。
紫外線吸収剤としては、ヒンダードアミン系、ベンゾフ
ェノン系等を、また、着色材料としては、有機系材料、
有機系発色剤、無機系顔料等を使用することができ、更
に、可塑剤としては、フタル酸エステル、脂肪族2塩基
酸エステル系、グリコールエステル系等を用いることが
できる。
Further, the above resin may contain additives such as a filler, a flame retardant, an ultraviolet absorber, a coloring material and a plasticizer. To specifically describe such an additive, the filler has an effect of improving the elastic modulus, lowering the cost, or lowering the specific gravity. For example, glass chop strands, calcium carbonate powder, balloon-shaped blast furnace ash. Etc. can be used. In addition, various halogen-based flame retardants,
Non-halogen type and inorganic type flame retardants can be used.
As the ultraviolet absorber, hindered amine type, benzophenone type, etc., and as the coloring material, organic type material,
Organic color formers, inorganic pigments and the like can be used, and as the plasticizer, phthalic acid ester, aliphatic dibasic acid ester type, glycol ester type and the like can be used.

【0022】そして、以上のような本発明の管状体に用
いられる樹脂組成物は、23°Cでのヤング率が、40
00kg/cm2 以上であることが望ましい。また、本
発明の管状体の肉厚は、外表面からの加熱により、外表
面並びに内表面の温度が前記した温度範囲を保てるだけ
の厚みであれば任意の厚みとすることができる。
The resin composition used for the tubular body of the present invention as described above has a Young's modulus at 23 ° C. of 40.
It is desirable that the pressure is at least 00 kg / cm 2 . Further, the wall thickness of the tubular body of the present invention can be any thickness as long as the temperature of the outer surface and the inner surface can be maintained in the above-mentioned temperature range by heating from the outer surface.

【0023】[0023]

【作用】内外表面の軸方向内部応力がともに引張応力で
あり、しかも外表面でその引張応力が最大値を示す本発
明の管状体の応力分布によれば、切断時における管端収
縮量が極めて少なく、また、結晶化度が外表面で最低、
内表面で最高の値となる分布とすることによって、管状
体の軸方向への引張伸びが損なわれず、応力緩和処理を
施さない状態での成形品と同等の大きさを示すことが確
かめられた。
According to the stress distribution of the tubular body of the present invention in which the axial internal stresses on the inner and outer surfaces are both tensile stresses, and the tensile stresses on the outer surface are maximum values, the tube end contraction amount during cutting is extremely high. Low, and the crystallinity is the lowest on the outer surface,
It was confirmed that the distribution with the highest value on the inner surface does not impair the tensile elongation of the tubular body in the axial direction and shows the same size as the molded product without stress relaxation treatment. .

【0024】また、上記のような本発明の内部応力分布
並びに結晶化度分布を有する管状体は、外表面を融点ま
で上昇させることなく得られることから、製品の表面性
を損なう恐れもない。
Further, since the tubular body having the internal stress distribution and crystallinity distribution of the present invention as described above can be obtained without raising the outer surface to the melting point, there is no fear of impairing the surface property of the product.

【0025】[0025]

【実施例】次に、本発明の構造を持つ管状体を実際に製
造して評価した結果を、比較例とともに述べる。
EXAMPLES Next, the results of actually manufacturing and evaluating a tubular body having the structure of the present invention will be described together with comparative examples.

【0026】測定項目は、軸方向内部応力の管壁体肉厚
方向(半径方向)への分布、同方向への結晶化度の分
布、管端収縮量、および引張伸びとした。ここで、軸方
向内部応力並びに結晶化度の分布は前記した方法により
測定したものであり、また、管端収縮量とは、管状体を
軸直角方向に切断した際の管端部の外径の収縮量を言
い、測定部位を図2に示す。更に、引張伸びは、管状体
からダンベル状に切り出した試験片を用いて引張試験を
行ったもので、その具体的試験方法はJIS K677
4に則って行った。これらの各種項目の測定結果を、
〔表1〕に示す。なお、この〔表1〕において軸方向内
部応力は、引張応力を正、圧縮応力を負で示している。
The measurement items were distribution of axial internal stress in the wall thickness direction of the tube wall (radial direction), distribution of crystallinity in the same direction, tube end shrinkage, and tensile elongation. Here, the distribution of the internal stress in the axial direction and the distribution of crystallinity are those measured by the method described above, and the contraction amount of the tube end is the outer diameter of the tube end when the tubular body is cut in the direction perpendicular to the axis. Fig. 2 shows the measurement site, which is the amount of shrinkage. Further, the tensile elongation is obtained by performing a tensile test using a test piece cut out from a tubular body in a dumbbell shape, and its specific test method is JIS K677.
I went according to 4. The measurement results of these various items
It shows in [Table 1]. In addition, in this [Table 1], the internal stress in the axial direction is indicated by positive tensile stress and negative compressive stress.

【0027】管状体の成形方法並びに使用樹脂は、実施
例および各比較例に共通とし、直径90mmのシングル
スクリュー押出機で、三井石油化学製中密度ポリエチレ
ンNZ4004M(商品名)をパイプ状に押出した。管
状体への賦形は、溶融状態で押出金型かから押出した
後、サイジングダイで外径を規制しながら冷却し、冷却
水槽で外面から冷却を行った。そして、ライン中で内外
表面とも十分に冷却した後に、引き続いてその製造ライ
ン上で以下に示す各例に固有のアニール処理を行ってそ
れぞれの管状体を得た。管状体のサイズは、JIS K
6774の規定に基づく150A1号U管とした。ま
た、製造ラインの引き取り速度は、0.3m/minと
した。実施例並びに各比較例のアニール処理条件を以下
に示す。
The method for molding the tubular body and the resin used were the same for the examples and the comparative examples, and a single screw extruder with a diameter of 90 mm was used to extrude Mitsui Petrochemical's medium density polyethylene NZ4004M (trade name) into a pipe shape. . For shaping into a tubular body, it was extruded from an extrusion die in a molten state, cooled while controlling the outer diameter with a sizing die, and cooled from the outer surface with a cooling water tank. Then, after the inner and outer surfaces were sufficiently cooled in the line, an annealing treatment specific to each of the following examples was subsequently performed on the production line to obtain each tubular body. The size of the tubular body is JIS K
It was a 150A1 U tube based on the regulations of 6774. The take-up speed of the production line was 0.3 m / min. The annealing treatment conditions of the example and each comparative example are shown below.

【0028】<実施例> 長さ600mmの10kWの
遠赤外線ヒーターで管状体の外表面を110°Cまで加
熱し、その直後に長さ600mmの噴霧水槽にて同じく
外表面から冷却を行った。
<Example> The outer surface of the tubular body was heated to 110 ° C by a 10 kW far-infrared heater having a length of 600 mm, and immediately thereafter, the outer surface was cooled in a spray water tank having a length of 600 mm.

【0029】<比較例1> 長さ300mmの150°
Cの高温液槽(処理液は東京化工製の商品名トーレック
液)で管状体外表面を溶融させ、その直後に長さ600
mmの噴霧液槽により外表面から冷却を行った。
<Comparative Example 1> 150 ° with a length of 300 mm
The outer surface of the tubular body is melted in a high temperature liquid bath of C (the treatment liquid is Torek liquid manufactured by Tokyo Kako), and immediately after that, a length of 600
Cooling was performed from the outer surface by means of a spray liquid tank of mm.

【0030】<比較例2> 長さ600mmの遠赤外線
ヒーターにより管状体の外表面を110°Cまで加熱
し、ライン中で放冷した。 <比較例3> 上記したサイジングダイによる賦形〜ラ
イン中での冷却の後、全くアニールを施さない条件とし
た。
Comparative Example 2 The outer surface of the tubular body was heated to 110 ° C. with a far infrared heater having a length of 600 mm and allowed to cool in the line. <Comparative Example 3> The conditions were set such that after the shaping by the sizing die and the cooling in the line, no annealing was performed.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】以上のように、本発明によれば、切断時
に生じる管端の収縮量が小さく、しかも引張伸びはアニ
ールを全く施さないものとほぼ同等の値を示すことが判
った。しかも、本発明の内部応力分布並びに結晶化度分
布を有する管状体は、特に長時間にわたるアニールを施
すことなく、かつ、外表面を溶融させることなく得られ
ることから、良好な生産性のもとに製品の表面性を損な
うことなく製造することができる。
As described above, according to the present invention, it has been found that the amount of shrinkage of the tube end generated at the time of cutting is small and the tensile elongation is almost the same as that of the case where no annealing is performed. Moreover, since the tubular body having the internal stress distribution and the crystallinity distribution of the present invention can be obtained without annealing for a particularly long time and without melting the outer surface, it is possible to obtain good productivity. Moreover, it can be manufactured without impairing the surface property of the product.

【0033】また、本発明では内表面での内部応力(引
張応力)が比較例2や3に示したものに比して小さいた
め、管状体内部に作用する圧力に対する強度の高い、耐
圧性の高い管状体となる。
Further, in the present invention, since the internal stress (tensile stress) on the inner surface is smaller than those shown in Comparative Examples 2 and 3, the strength against the pressure acting inside the tubular body is high and the pressure resistance is high. It becomes a tall tubular body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における軸方向内部応力の求め方の説明
FIG. 1 is an explanatory diagram of how to determine an axial internal stress in the present invention.

【図2】本発明実施例並びに比較例における管端収縮量
の測定方法の説明図
FIG. 2 is an explanatory view of a method for measuring a pipe end contraction amount in Examples of the present invention and Comparative Examples.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 結晶性熱可塑性樹脂組成物よりなる中空
成形品であって、下記の式により算出される当該成形品
の軸方向内部応力σ(Z1)の肉厚方向への分布が、外表面
と内表面で引張応力を示し、かつ、その引張応力は外表
面において最大値を示すとともに、当該成形品の結晶化
度の肉厚方向への分布が、外表面で最も低く、かつ、内
表面で最も高いことを特徴とする管状体。 【数1】 ただし、E;縦弾性係数 ν;ポアソン比 Z0;管状体の壁体の中心から壁体表面までの距離を、外
表面および内表面について、一方の表面側を+にとって
表す量 Z1;管状体の壁体を表面から任意深さにわたって層状に
除去した後の表面と、管状体の壁体中心とのなす距離 φ(Z1);管状体の壁体を表面から(Z0-Z1) だけ層状に除
去することによって現れる壁体の反り量をfとし、壁体
の長さをLとしたとき、 φ(Z1)=8f/L2 で算出される壁体の変形後の曲率
1. A hollow molded article made of a crystalline thermoplastic resin composition, wherein the axial internal stress σ (Z1) of the molded article calculated by the following formula is The surface and the inner surface show tensile stress, and the tensile stress shows the maximum value on the outer surface, and the distribution of the crystallinity of the molded product in the thickness direction is the lowest on the outer surface, and Tubular body characterized by being highest on the surface. (Equation 1) However, E: longitudinal elastic modulus ν; Poisson's ratio Z0; amount representing the distance from the center of the wall of the tubular body to the surface of the tubular body, with one of the outer and inner surfaces being +, Z1; The distance between the surface of the wall after removing the wall in layers at an arbitrary depth and the center of the wall of the tubular body φ (Z1); The wall of the tubular body is removed from the surface in layers (Z0-Z1) Where f is the amount of warp of the wall body and L is the length of the wall body, the curvature after deformation of the wall body calculated by φ (Z1) = 8f / L 2.
JP7299651A 1995-11-17 1995-11-17 Tubular member Pending JPH09141759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7299651A JPH09141759A (en) 1995-11-17 1995-11-17 Tubular member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7299651A JPH09141759A (en) 1995-11-17 1995-11-17 Tubular member

Publications (1)

Publication Number Publication Date
JPH09141759A true JPH09141759A (en) 1997-06-03

Family

ID=17875339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7299651A Pending JPH09141759A (en) 1995-11-17 1995-11-17 Tubular member

Country Status (1)

Country Link
JP (1) JPH09141759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3219477A1 (en) * 2016-03-17 2017-09-20 ContiTech MGW GmbH Partially flexible hose

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3219477A1 (en) * 2016-03-17 2017-09-20 ContiTech MGW GmbH Partially flexible hose

Similar Documents

Publication Publication Date Title
US4305899A (en) Method of manufacturing a plastic tube with longitudinal channels in the wall
US3600487A (en) Forming parisons with nucleated inner layer
RU95112529A (en) HAZER OF SMALL POWER AND METHOD OF ITS MANUFACTURE
JP2007513812A5 (en)
JP6391317B2 (en) Composite molded article and manufacturing method thereof
JP2018001493A (en) Manufacturing method of skin material coating foam molded body
JP5363280B2 (en) Recycled resin composition and heat-shrinkable film comprising crosslinked polyethylene
JPH09141759A (en) Tubular member
JPH09141729A (en) Method and apparatus for producing hollow molded product
JPH0733048B2 (en) Method for producing polybutylene terephthalate resin film
JPS58142818A (en) Manufacture of polypropylene sheet
EP0278804A1 (en) Process for the manufacture of foils, starting from plastic semicrystalline polymers, by coextrusion and hose-blowing
JPH0259330A (en) Manufacture of peek resin pipe
JPH10166468A (en) Manufacture of thermoplastic resin pipe and device therefor
CN112440460A (en) Forming system and method for functional high polymer material in blown film processing
JP3529396B2 (en) Method for manufacturing fluororesin tube
JP2001009896A (en) Molding method for chlorinated vinyl chloride resin pipe
JPS647860B2 (en)
CN214324171U (en) A molding system for blown film processing functional macromolecular material
JPH1110718A (en) Manufacture of hollow molded body
JP4350633B2 (en) Cooling water circulation device for resin tube manufacturing equipment
JPH08174635A (en) Manufacture of hollow molded article
JPH081746A (en) Manufacture of continuous hollow body
JP3506444B2 (en) Blown film forming equipment
JPH0957810A (en) Manufacture of hollow molding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050427