JPH09141069A - Production of porous membrane by using anodically oxidized film of aluminum - Google Patents

Production of porous membrane by using anodically oxidized film of aluminum

Info

Publication number
JPH09141069A
JPH09141069A JP7344272A JP34427295A JPH09141069A JP H09141069 A JPH09141069 A JP H09141069A JP 7344272 A JP7344272 A JP 7344272A JP 34427295 A JP34427295 A JP 34427295A JP H09141069 A JPH09141069 A JP H09141069A
Authority
JP
Japan
Prior art keywords
foil
aluminum
film
titanium
anodically oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7344272A
Other languages
Japanese (ja)
Inventor
Masakatsu Mushiro
正勝 莚
Kazuo Tamura
和男 田村
Kiyoshi Miyajima
潔 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
Original Assignee
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Government filed Critical Tokyo Metropolitan Government
Priority to JP7344272A priority Critical patent/JPH09141069A/en
Publication of JPH09141069A publication Critical patent/JPH09141069A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To largely increase mechanical strength and to easily produce a large- size separation membrane by filling a mesh-type titanium foil having lots of small holes with aluminum and anodically oxidizing the foil. SOLUTION: Spots 2 are formed by using a resist ink 3 by screen printing on a titanium foil 1 and the back surface is wholly coated. Then the foil is etched and the resist ink 3 is removed by using a solvent to form a porous foil 4. Then the porous foil 4 is filled with aluminum 6, titanium is vapor deposited on one surface, and the foil is further anodically oxidized to form a film 8 in the aluminum part. Then the foil is lightly etched to remove the vapor deposited titanium layer and the partitioning layers to obtain a composite film 9. Thus, a strong titanium foil and an aluminum anodically oxidized film are combined to obtain a composite membrane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微視孔を有するアルミ
ニウムの陽極酸化皮膜を液体、気体等の成分分離膜とし
て応用する方法に関わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of applying an aluminum anodic oxide film having microscopic holes as a component separation film for liquids and gases.

【0002】[0002]

【従来の技術】アルミニウムの陽極酸化皮膜は、電解液
の種類により直径10nm〜30nmの微視孔を1平方
センチメートルあたり数百億個有する多孔質構造である
ため、皮膜をアルミニウム素地から剥離して分離膜等に
利用することが試みられている。しかし、皮膜は素地と
密着していれば十分な機械的強度を有しているが、剥離
された皮膜は非常にもろいため、圧力等の分離条件の制
約が大きい。
2. Description of the Related Art Aluminum anodic oxide coatings have a porous structure having several tens of billions of micropores with a diameter of 10 nm to 30 nm per square centimeter, depending on the type of electrolyte, so the coating is peeled off from the aluminum substrate and separated. Attempts have been made to use it for membranes and the like. However, the film has sufficient mechanical strength as long as it is in close contact with the substrate, but the peeled film is very brittle, so that the separation conditions such as pressure are largely restricted.

【0003】また、皮膜の剥離は逆電解法によるため、
剥離時の破損が起こりやすく、大面積の皮膜を剥離する
のが困難である。
Further, since the peeling of the film is carried out by the reverse electrolysis method,
Damage during peeling is likely to occur, and it is difficult to peel off a large-area film.

【0004】[0004]

【発明が解決しようとする課題】本発明は、皮膜に較べ
ればはるかに強靭なチタン箔とアルミニウムの陽極酸化
皮膜とを組み合わせて複合膜とすることにより、機械的
強度を大幅に高めると共に、大面積の分離膜を容易に作
成することを可能とするものである。
SUMMARY OF THE INVENTION According to the present invention, by combining a titanium foil, which is much tougher than a film, with an aluminum anodic oxide film to form a composite film, the mechanical strength is greatly increased and This makes it possible to easily form a separation membrane having an area.

【0005】[0005]

【課題を解決するための手段】チタン箔に直径1.0m
m以下の小穴を多数あけ、この小穴にアルミニウムを充
填し、片面にチタンを薄く蒸着したのち、反対面から陽
極酸化を施すことによりアルミニウム部分を全て皮膜化
する。
[Means for solving the problem] Diameter of titanium foil is 1.0 m
A large number of small holes of m or less are opened, aluminum is filled in the small holes, titanium is thinly vapor-deposited on one surface, and then anodization is applied from the opposite surface to form a film on the entire aluminum portion.

【0006】さらに、蒸着チタン層と皮膜底部の障壁層
を溶解除去して、微視孔が貫通した陽極酸化皮膜を個々
の小穴に有する複合膜とする。
Further, the vapor-deposited titanium layer and the barrier layer at the bottom of the film are dissolved and removed to obtain a composite film having an anodized film through which microscopic holes penetrate in each small hole.

【0007】[0007]

【実施例】以下、本発明の実施例を図面につき説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】図1に示すように、厚さ50μmのチタン
箔1の片面40mm径の領域に、0.7mm径のスポッ
ト2を1cm当たり64個の密度で有するように、レ
ジストインク3をスクリーン印刷により塗布し、さらに
裏面を全面塗布したのち、エッチングを行い、レジスト
インクを溶剤で除去して多孔質な箔4を得る。
As shown in FIG. 1, a resist ink 3 is screened so that spots 2 having a diameter of 0.7 mm are formed in a region of a diameter of 40 mm on one side of a titanium foil 1 having a thickness of 50 μm at a density of 64 spots per cm 2. After applying by printing and further applying the entire back surface, etching is performed and the resist ink is removed with a solvent to obtain a porous foil 4.

【0009】次いで、多孔質箔4の小穴5に溶融めっき
でアルミニウム6を充填したのち、片面に約0.6μm
の厚さまでチタン7を蒸着する。
Next, the small holes 5 of the porous foil 4 are filled with aluminum 6 by hot dip plating, and then one side is filled with about 0.6 μm.
Titanium 7 is evaporated to a thickness of.

【0010】さらに、陽極酸化によりアルミニウム部分
6を全て皮膜8にしたのち、軽度のエッチングを施し、
蒸着チタン層7と障壁層を除去して複合膜9を形成す
る。
Further, after the aluminum portion 6 is entirely formed into the film 8 by anodic oxidation, light etching is performed,
The vapor-deposited titanium layer 7 and the barrier layer are removed to form a composite film 9.

【0011】図2に示すように、補強のため、内径46
mm、外形66mm、厚さ1mmのチタンリング10で
複合膜9を両側からはさみ、スポット溶接11により固
定する。ここで、図2の複合膜9の黒点部は陽極酸化皮
膜8であり、白部はチタン箔1を示している。
As shown in FIG. 2, the inner diameter 46 is increased for reinforcement.
The composite film 9 is sandwiched from both sides by a titanium ring 10 having a size of mm, an outer shape of 66 mm, and a thickness of 1 mm, and is fixed by spot welding 11. Here, the black dots of the composite film 9 in FIG. 2 are the anodized film 8, and the white parts are the titanium foil 1.

【0012】この複合膜の破壊圧力を窒素ガスを用いて
測定したところ、約0.2MPaであった。
When the breaking pressure of this composite film was measured using nitrogen gas, it was about 0.2 MPa.

【0013】[0013]

【発明の効果】アルミニウムの陽極酸化皮膜の破壊強度
は、電解液の種類、電解条件、皮膜の厚さおよび面積に
より決まり、同一の電解液と電解条件であれば、皮膜が
厚く、小面積であるほど強度が高い。本発明は、皮膜に
較べてはるかに強靭なチタン箔によって、小穴内の皮膜
が支持されている構造であるため、分離膜の破壊強度を
極めて小面積の皮膜と同等にすることができる。
EFFECTS OF THE INVENTION The breaking strength of an anodized aluminum film is determined by the type of electrolytic solution, electrolysis conditions, film thickness and area. Under the same electrolytic solution and electrolysis conditions, the film is thick and small in area. The higher the strength, the higher the strength. Since the present invention has a structure in which the film in the small holes is supported by a titanium foil which is much tougher than the film, the breaking strength of the separation film can be made equal to that of a film having an extremely small area.

【0014】また、皮膜が小穴ごとに独立しているた
め、破壊圧力は、複合膜全体の面積には依らず、大面積
化が可能である。
Further, since the film is independent for each small hole, the breaking pressure can be increased regardless of the area of the entire composite film.

【0015】さらに、チタン箔を変形させても皮膜に及
ぼす応力が小さいため、例えば矩形の複合膜を丸めて円
筒を構成することも可能である。
Further, even if the titanium foil is deformed, the stress exerted on the coating is small, so that it is possible to roll a rectangular composite membrane to form a cylinder.

【0016】分離に有効な小穴部分の総面積は、実施例
の場合、約3cmであるが、従来の技術(逆電解剥離
法)による同一面積の皮膜(約20mm径)は、破壊圧
力の測定ができないほど脆弱である。
The total area of the small holes effective for separation is about 3 cm 2 in the case of the embodiment, but the film of the same area (about 20 mm diameter) by the conventional technique (reverse electrolytic stripping method) has It is so weak that it cannot be measured.

【0017】実施例では、厚さ50μmのチタン箔を用
い、0.7mmの小穴径を採用したが、皮膜の厚さは箔
の厚さとほぼ同じであるため、さらに厚い箔を使用し、
小穴径を小さくすることによって、破壊圧力を大幅に高
めることが可能である。
In the example, a titanium foil having a thickness of 50 μm was used and a small hole diameter of 0.7 mm was adopted. However, since the thickness of the film is almost the same as the thickness of the foil, a thicker foil is used.
By reducing the small hole diameter, it is possible to significantly increase the breaking pressure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1記載の発明のメンブレン作成方法を示
す工程図で、断面図である。
FIG. 1 is a process diagram showing a method of forming a membrane according to the first aspect of the present invention, which is a sectional view.

【図2】図1で作成したメンブレンをチタンリングで補
強した平面図である。
FIG. 2 is a plan view in which the membrane prepared in FIG. 1 is reinforced with a titanium ring.

【符号の説明】[Explanation of symbols]

1 チタン箔 2 スポット 3 レジストインク 4 多孔質箔 5 小穴 6 アルミニウム 7 蒸着チタン 8 陽極酸化皮膜 9 複合膜 10 チタンリング 11 スポット溶接 1 Titanium foil 2 Spot 3 Resist ink 4 Porous foil 5 Small hole 6 Aluminum 7 Evaporated titanium 8 Anodized film 9 Composite film 10 Titanium ring 11 Spot welding

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多数の小穴を有するメッシュ状のチタン
およびその合金、またはタンタルおよびその合金の箔な
いしは板にアルミニウムをめっき、蒸着、粉末充填など
の手段により充填した後、陽極酸化を施すことを特徴と
するメンブレン作成方法。
1. A mesh-shaped titanium and its alloy, or tantalum and its alloy foil or plate having a large number of small holes is filled with aluminum by means such as plating, vapor deposition, and powder filling, and then anodized. Characteristic membrane production method.
JP7344272A 1995-11-24 1995-11-24 Production of porous membrane by using anodically oxidized film of aluminum Pending JPH09141069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7344272A JPH09141069A (en) 1995-11-24 1995-11-24 Production of porous membrane by using anodically oxidized film of aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7344272A JPH09141069A (en) 1995-11-24 1995-11-24 Production of porous membrane by using anodically oxidized film of aluminum

Publications (1)

Publication Number Publication Date
JPH09141069A true JPH09141069A (en) 1997-06-03

Family

ID=18367959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7344272A Pending JPH09141069A (en) 1995-11-24 1995-11-24 Production of porous membrane by using anodically oxidized film of aluminum

Country Status (1)

Country Link
JP (1) JPH09141069A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502554B1 (en) * 1998-09-03 2005-10-19 한국타이어 주식회사 Manufacturing method of cylindrical separator with improved durability
KR101025033B1 (en) * 2008-11-18 2011-03-25 한국전기연구원 Composite Films Comprising Planar Nanoporous Oxide Ceramic Membranes and Multi-functional Filters Using the Same
WO2015098843A1 (en) * 2013-12-26 2015-07-02 富士フイルム株式会社 Porous alumina membrane filter and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502554B1 (en) * 1998-09-03 2005-10-19 한국타이어 주식회사 Manufacturing method of cylindrical separator with improved durability
KR101025033B1 (en) * 2008-11-18 2011-03-25 한국전기연구원 Composite Films Comprising Planar Nanoporous Oxide Ceramic Membranes and Multi-functional Filters Using the Same
WO2015098843A1 (en) * 2013-12-26 2015-07-02 富士フイルム株式会社 Porous alumina membrane filter and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP4398873B2 (en) Process for fabricating nanostructured emitters for incandescent light sources
US5369547A (en) Capacitor
JP4493686B2 (en) Capacitor and manufacturing method thereof
US6594140B1 (en) Capacitor
US5754394A (en) Capacitor including a cathode having a nitride coating
JP4186810B2 (en) Fuel cell manufacturing method and fuel cell
US4021592A (en) Process of making electroplated anodized aluminum articles and electroless plating
EP0494187B1 (en) Porous membranes suitable for separation devices and other uses
TW200608428A (en) Solid electrolytic capacitor, stacked capacitor using the same, and fabrication method thereof
IL128430A (en) Method for producing high surface area foil electrodes
KR20030080023A (en) Method for producing flexible wiring board
JPH09141069A (en) Production of porous membrane by using anodically oxidized film of aluminum
US5693207A (en) Catalyst preparation
US1709801A (en) Manufacture of thin metallic foils
JP4390456B2 (en) Electrolytic capacitor and manufacturing method thereof
US7288203B2 (en) Process for producing structure, process for producing magnetic recording medium, and process for producing molded product
US20040114310A1 (en) Electrolytic capacitors and method for making them
JP2004524686A5 (en)
RU2402830C1 (en) Film condenser
US20180142373A1 (en) Method to produce electrically isolated or insulated areas in a metal, and a product comprising such area
JPH05211029A (en) Electron emission element and its manufacture
FR2846797A1 (en) Basic module for a miniature fuel cell incorporates a porous gas-permeable substrate with a relief holding a three layer stack forming the anode, electrolyte and cathode
JP2008130778A (en) Capacitor element, manufacturing method of the same, and capacitor
JP4411409B2 (en) Method for manufacturing hydrogen permeation device
WO1991004785A1 (en) Porous membranes suitable for separation devices and other uses