JPH09141067A - Liquid separation element, device and treatment - Google Patents

Liquid separation element, device and treatment

Info

Publication number
JPH09141067A
JPH09141067A JP30446895A JP30446895A JPH09141067A JP H09141067 A JPH09141067 A JP H09141067A JP 30446895 A JP30446895 A JP 30446895A JP 30446895 A JP30446895 A JP 30446895A JP H09141067 A JPH09141067 A JP H09141067A
Authority
JP
Japan
Prior art keywords
liquid
reverse osmosis
separation element
water
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30446895A
Other languages
Japanese (ja)
Other versions
JP3317113B2 (en
Inventor
Masahiro Kihara
正浩 木原
Hiroyuki Yamamura
弘之 山村
Kazuhiko Nishimura
和彦 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP30446895A priority Critical patent/JP3317113B2/en
Publication of JPH09141067A publication Critical patent/JPH09141067A/en
Application granted granted Critical
Publication of JP3317113B2 publication Critical patent/JP3317113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an excellent liquid separation element without decreasing performance such as the flow rate of a permeated liquid or the inhibiting rate for a wide pressure range from low to high by disposing water-permeable cloth between a reverse osmosis membrane and a passage material for the liquid. SOLUTION: Multifilaments of a polyester fiber are knitted into a double denbidh structure and molten and welded, hardened and calendered to obtain a single tricot with specified width, depth and density of grooves. Further, a nonwoven fabric of a polyester short fiber is calendered to obtain a water- permeable nonwoven fabric having specified thickness, surface average roughness and permeability. The nonwoven fabric is laminated on the groove surface of the single tricot fabric to obtain a passage material for the permeated liquid in such a manner that the orientation direction of the fiber of the nonwoven fabric is perpendicular to the groove direction of the single tricot. The obtd. passage material 10 for the permeated liquid is disposed between two reverse osmosis membranes 1, and then a water-permeable nonwoven fabric 11 is disposed. Thereby, an enough passage can be maintained even under high pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、種々の液体の分離や濃
縮に用いられる半透膜を用いた液体分離素子の改良に関
し、低圧から高圧までの広い圧力範囲において性能の低
下をきたすことなく、耐圧性および長期間の耐久性を向
上せしめた液体分離素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a liquid separating element using a semipermeable membrane used for separating and concentrating various liquids, and does not cause deterioration of performance in a wide pressure range from low pressure to high pressure. The present invention relates to a liquid separation element having improved pressure resistance and long-term durability.

【0002】[0002]

【従来の技術】従来から半透膜を用いた液体分離素子と
しては、逆浸透膜を用いたスパイラル型や、プレートア
ンドフレーム型、あるいは中空糸型の液体分離素子が利
用されている。特に逆浸透膜を用いたスパイラル型液体
分離素子は、一定容積の中に大きな膜面積の逆浸透膜を
充填することが可能であり、最も良く利用されている。
一般的な逆浸透膜を用いたスパイラル型液体分離素子
は、図1に示すごとく、2枚の逆浸透膜1の間に透過液
流路材2をはさみ込み、さらに逆浸透膜の外側に供給液
流路材3を付設して一組のユニットとなし、集水孔4を
配列した中空の中心管5の周囲に、該ユニットの一組、
あるいは複数組を巻回してなる。
2. Description of the Related Art Conventionally, as a liquid separating element using a semipermeable membrane, a spiral type using a reverse osmosis membrane, a plate and frame type, or a hollow fiber type liquid separating element has been used. In particular, the spiral type liquid separation element using a reverse osmosis membrane is capable of filling a reverse osmosis membrane having a large membrane area in a fixed volume, and is most widely used.
A spiral type liquid separation element using a general reverse osmosis membrane, as shown in FIG. 1, sandwiches a permeated liquid flow channel material 2 between two reverse osmosis membranes 1 and supplies it to the outside of the reverse osmosis membrane. A liquid flow path member 3 is attached to form a set of units, and a set of the units is provided around a hollow central tube 5 in which water collecting holes 4 are arranged,
Alternatively, it is formed by winding a plurality of sets.

【0003】通常、逆浸透膜を用いた液体分離素子で
は、液体の分離や濃縮を効率よく行うために、供給液側
と透過液側に0.5から7MPa程度の差圧が負荷され
る。このような運転圧力に対し透過液流路材は、逆浸透
膜の性能を損なうことなく逆浸透膜を保持し、かつ透過
液の流路を確保する必要がある。そのため、比較的低圧
力で使用する液体分離素子の透過液流路材としては、例
えば特開昭62−35802号公報で提案されているよ
うに、片面に溝を有するシングルトリコット編物に樹脂
を含浸、あるいは熱融着加工を施して剛性を与えた物が
代表的である。図2は、代表的な透過液流路材として、
シングルトリコット編物の断面形状を示している。透過
液の流路である溝6と凸部7が一定の間隔で片側の表面
に形成されている。
Usually, in a liquid separation element using a reverse osmosis membrane, a differential pressure of about 0.5 to 7 MPa is applied to the supply liquid side and the permeation liquid side in order to efficiently separate and concentrate the liquid. With respect to such operating pressure, the permeate flow channel material is required to hold the reverse osmosis membrane without impairing the performance of the reverse osmosis membrane and to secure the permeate flow channel. Therefore, as a permeate liquid flow path material of a liquid separation element used at a relatively low pressure, a single tricot knitted fabric having a groove on one surface is impregnated with a resin, as proposed in, for example, JP-A-62-35802. Alternatively, a material that is subjected to heat fusion processing to give rigidity is typical. FIG. 2 shows a typical permeated liquid channel material.
The cross-sectional shape of a single tricot knit is shown. The groove 6 and the convex portion 7 which are the channels of the permeated liquid are formed on one surface at regular intervals.

【0004】上記のような透過液流路材を用いた液体分
離素子において、透過液の流量や、阻止率、排除率、あ
るいは濃縮率といった液体分離素子の性能を高めるため
には、圧力による逆浸透膜の変形を防止し、かつ、流路
材による透過液の流動抵抗をできるだけ小さくすること
が望まれる。
In order to enhance the performance of the liquid separation element such as the flow rate of the permeated liquid, the rejection rate, the rejection rate, or the concentration rate in the liquid separation element using the permeated liquid flow path material as described above, reverse pressure is used. It is desired to prevent the permeation membrane from being deformed and to reduce the flow resistance of the permeated liquid by the flow path member as much as possible.

【0005】そのため、特に高圧下で使用する液体分離
素子においては、例えば図3のように、逆浸透膜とシン
グルトリコットの溝を有する面との間に、直径50〜1
000μmの小孔8を0.1〜200mm程度の間隔で
有する、厚さ70〜400μmのポリエステルなどの多
孔性シート9を介在させて、高圧下での逆浸透膜の変形
を防止し、透過液の流動抵抗を小さくすることが特開昭
54−31087号公報で提案されている。
Therefore, particularly in a liquid separation element used under high pressure, as shown in FIG. 3, for example, a diameter of 50 to 1 is provided between the reverse osmosis membrane and the surface having the groove of the single tricot.
A porous sheet 9 having a thickness of 70 to 400 μm, which has small holes 8 of 000 μm at intervals of about 0.1 to 200 mm, is interposed to prevent the reverse osmosis membrane from being deformed under high pressure, and to prevent permeation liquid. It has been proposed in JP-A-54-31087 to reduce the flow resistance of the above.

【0006】[0006]

【発明が解決しようとする問題】上述したように、現状
のスパイラル型液体分離素子のほとんどは、透過液流路
材としてシングルトリコットを使用しており、透過液の
流動抵抗を小さくするために溝幅を300〜600μm
程度と比較的大きくして流路面積を広げている。しか
し、このような溝幅は一般的な逆浸透膜の厚さである2
00〜300μmに対して大きいため、圧力が負荷され
た状態においては、図4に示すごとく、逆浸透膜が変形
してトリコットの溝に落ち込み、流路を閉塞してしまう
とともに、逆浸透膜にも変形によるダメージを与え、透
過液流量や阻止率、排除率、あるいは濃縮率といった液
体分離素子の性能が低下させる危険性がある。逆浸透膜
の剛性があまり高くない場合は、比較的低い圧力で逆浸
透膜の変形が起こる場合があり、長期的には1MPa〜
2MPa程度の圧力で性能低下が生ずることがある。
As described above, most of the current spiral type liquid separation elements use the single tricot as the permeate flow path material, and the groove is used to reduce the flow resistance of the permeate. Width of 300-600 μm
The flow path area is expanded by making it relatively large. However, such a groove width is the thickness of a general reverse osmosis membrane2
Since it is large with respect to 00 to 300 μm, when the pressure is applied, the reverse osmosis membrane is deformed and falls into the groove of the tricot as shown in FIG. Also causes damage due to deformation, and there is a risk that the performance of the liquid separation element such as the permeated liquid flow rate, the blocking rate, the rejection rate, or the concentration rate may deteriorate. If the rigidity of the reverse osmosis membrane is not very high, the reverse osmosis membrane may be deformed at a relatively low pressure, and 1 MPa to
Performance deterioration may occur at a pressure of about 2 MPa.

【0007】また、前述したような多孔性のシートをト
リコットの溝を有する面に配すると、多孔性シートの剛
性によって逆浸透膜の溝への落ち込みを防止し、流動抵
抗の増加を抑制することができるが、一方で、透過液が
多孔性シートを通過するときの面積が小孔によって制限
されるため、透過抵抗は多孔性シートを使用しない場合
の数倍から十数倍にも上昇し、圧力損失が生じて低い操
作圧力においては十分な性能が得られない場合がある。
When the porous sheet as described above is arranged on the surface having the tricot groove, the rigidity of the porous sheet prevents the reverse osmosis membrane from falling into the groove and suppresses the increase of the flow resistance. However, on the other hand, since the area of the permeated liquid when passing through the porous sheet is limited by the small holes, the permeation resistance is increased from several times to a dozen times more than when the porous sheet is not used, In some cases, sufficient performance may not be obtained at low operating pressure due to pressure loss.

【0008】多孔性シートの透過液の透過抵抗を低くす
るためには、多孔性シートに設けられた小孔の直径を大
きくするか、あるいは小孔の間隔を狭めて小孔の個数を
多くする必要があるが、小孔の直径が逆浸透膜の厚さよ
りも大い場合は、高圧下で小孔内に逆浸透膜が落ち込
み、ダメージを受けて性能が低下する問題がある。逆
に、小孔内への逆浸透膜の落ち込みを防止するために、
小孔の直径を逆浸透膜の厚さよりも小さくすると、小孔
を通過する透過液の透過抵抗は、近似的に、小孔の直径
の4乗に逆比例して極端に大きくなることから、透過抵
抗の増加を抑制するには極めて多くの小孔が必要とな
り、多孔性シートの加工が非常に困難になると同時に、
多孔性シート自体の剛性も小孔の増加によって低下し、
安定した性能を得ることが困難になる問題がある。
In order to reduce the permeation resistance of the permeated liquid of the porous sheet, the diameter of the small holes provided in the porous sheet is increased, or the interval between the small holes is reduced to increase the number of small holes. Although it is necessary, if the diameter of the small pores is larger than the thickness of the reverse osmosis membrane, there is a problem that the reverse osmosis membrane falls into the small pores under high pressure and is damaged to deteriorate the performance. On the contrary, in order to prevent the reverse osmosis membrane from falling into the small holes,
If the diameter of the small pores is made smaller than the thickness of the reverse osmosis membrane, the permeation resistance of the permeated liquid passing through the small pores becomes approximately extremely inversely proportional to the fourth power of the diameter of the small pores. In order to suppress the increase in permeation resistance, an extremely large number of small holes are required, making it very difficult to process the porous sheet, and at the same time,
The rigidity of the porous sheet itself also decreases due to the increase in small holes,
There is a problem that it becomes difficult to obtain stable performance.

【0009】また、逆浸透膜の基材に用いる布帛を厚く
すると、確かに膜が傷つき難くなるが、基材の布帛が厚
いと、多孔質層を設ける工程に困難性が生じてくる上
に、剛性が高くなってスパイラルに巻くことが難しくな
る。
Further, if the cloth used for the base material of the reverse osmosis membrane is made thicker, the membrane is certainly less likely to be damaged. , It becomes more rigid and difficult to wind in a spiral.

【0010】上述のように、従来の透過液流路材では、
低圧から高圧までの広い操作圧力において、十分な性能
を発揮する液体分離素子を得ることは困難であった。
As described above, in the conventional permeated liquid channel material,
It has been difficult to obtain a liquid separation element that exhibits sufficient performance over a wide operating pressure range from low pressure to high pressure.

【0011】本発明は、かかる問題点を解決し、低圧か
ら高圧までの広い圧力範囲において透過液流量や阻止
率、排除率、あるいは濃縮率といった性能の低下をきた
すことなく、耐圧性および長期間の耐久性に優れた液体
分離素子を提供することを目的とする。
The present invention solves the above-mentioned problems, and in a wide pressure range from low pressure to high pressure, the pressure resistance and the long-term pressure are maintained without deteriorating the performance such as the permeate flow rate, the rejection rate, the rejection rate, or the concentration rate. It is an object of the present invention to provide a liquid separation element having excellent durability.

【0012】[0012]

【課題を解決するための手段】本発明の目的は、基本的
には下記の構成により達成することができる。即ち、
「逆浸透膜と透過液流路材の間に透水性布帛を配してな
ることを特徴とする液体分離素子」である。
The object of the present invention can be basically achieved by the following constitution. That is,
“A liquid separation element characterized by comprising a water-permeable cloth between a reverse osmosis membrane and a permeate flow path material”.

【0013】本発明において、主たる構成部材である透
過液流路材は、特に限定されるものではないが、図5に
示すように少なくとも一方の表面に溝を有することが好
ましく、特に溝を有する織編物が好ましい。
In the present invention, the permeated liquid flow path material, which is a main constituent member, is not particularly limited, but preferably has a groove on at least one surface as shown in FIG. 5, and particularly has a groove. Woven and knitted fabrics are preferred.

【0014】本発明における透過液流路材の織編物は、
その少なくとも一方の表面に透過液の流路となる溝を有
することが好ましいが、その溝幅や溝の深さ、あるいは
溝密度については特に規定するものではなく、透過液に
対して十分低い流動抵抗を有し、かつ、高圧下におい
て、表面に配した透水性布帛を十分に支持できる大きさ
であるならばどのような大きさのものを用いても良い。
The woven or knitted material of the permeate flow path material in the present invention is
It is preferable to have a groove that serves as a flow path for the permeated liquid on at least one surface thereof, but the groove width, groove depth, or groove density is not particularly specified, and the flow rate is sufficiently low for the permeated liquid. Any size may be used as long as it has resistance and can sufficiently support the water-permeable cloth disposed on the surface under high pressure.

【0015】具体例を例示するならば、透過液流路材
は、両面に互いに平行な溝を有する構造体(以下、両溝
型流路材という)からなることが好ましく、このとき両
面の溝の方向については、互いに平行にすることがより
好ましい。もし、両面の溝の方向を互いに直交するよう
に設けると、表裏どちらかの溝方向が中心管の長手方向
と平行になるため、透過液がスムーズに中心管の集水孔
に導かれなくなり、流動抵抗が極端に大きくなって性能
が低下してしまう。また、両溝型流路材の両面の溝の位
置については、両面ともに同じ位置にあるのが、高圧力
下での流路材自体の変形がより少なくなり流動抵抗の増
加が抑制される点でさらに好ましい。特に限定するもの
ではないが、両面の溝の中心位置のずれが好ましくは4
0μm以下、より好ましくは20μm以下である。
As a concrete example, it is preferable that the permeated liquid channel material is composed of a structure having parallel grooves on both sides (hereinafter referred to as a double-groove type channel material). It is more preferable that the directions are parallel to each other. If the directions of the grooves on both surfaces are provided so as to be orthogonal to each other, the direction of the grooves on either side is parallel to the longitudinal direction of the central pipe, so that the permeate cannot be smoothly guided to the water collecting holes of the central pipe, The flow resistance becomes extremely large and the performance deteriorates. Regarding the positions of the grooves on both sides of the double-groove type channel material, the positions are the same on both sides, which means that the channel material itself is less deformed under high pressure and the increase in flow resistance is suppressed. Is more preferable. Although not particularly limited, the deviation of the center positions of the grooves on both sides is preferably 4
It is 0 μm or less, more preferably 20 μm or less.

【0016】透過液流路材の溝幅については、高圧力下
で逆浸透膜が溝に落ち込むのを抑制するために、100
〜200μmの範囲とするのが好ましい。より好ましく
は100〜150μmの範囲である。これは、通常、液
体分離素子に使用する逆浸透膜は、約200〜300μ
mの厚さを有するが、溝幅を逆浸透膜の厚さと同程度
か、あるいはそれよりも小さくすることによって、実質
的に逆浸透膜が透過液流路材の溝に落ち込むのを抑制す
ることができるからである。溝幅の下限については、逆
浸透膜の溝への落ち込みを抑制する目的から考えると1
00μm以上であれば十分であり、逆に100μm以下
にすることは、透過液の流動抵抗を大きくするだけであ
るので好ましくない。また、透過液流路材の溝の深さに
ついては、溝の深さが50μm以下では透過液の流路が
小さくなり、高圧下におけるわずかな逆浸透膜の変形に
よっても大きく流動抵抗が変化してしまう危険性があ
る。また、200μm以上になると透過液流路材の厚さ
が大きくなり、液体分離素子に組み込んだときの逆浸透
膜の充填膜面積が小さくなってしまうため、十分な透過
液の流路を確保し、かつ透過液の流動抵抗が小さくなる
ように50〜200μmの範囲とするのが好ましい。さ
らに好ましくは80〜150mmの範囲である。さら
に、透過液流路材の流動抵抗は、前述したように溝密
度、即ち単位長さあたりの溝の本数によっても変化する
が、本発明の液体分離素子では、透過液流路材の片面の
溝密度が1インチあたり45〜70本の範囲とするのが
好ましい。さらに好ましくは1インチあたり50〜60
本である。溝密度が1インチあたり45本以下では、流
路本数が少ないため全体の流路面積が小さくなり流動抵
抗が大きくなってしまう。また、溝密度の上限は、多い
方が流動抵抗を小さくする上では望ましいが、実質的に
溝密度が1インチあたり70本以上になると、高圧下で
逆浸透膜を支えるための流路材の凸部分の幅が小さくな
り、圧力を受ける部分の面積が小さくなるために流路材
自体が変形するようになる。そのため、溝の深さが小さ
くなって流動抵抗が増加する危険性がある。
The groove width of the permeate flow channel material is 100 in order to prevent the reverse osmosis membrane from falling into the groove under high pressure.
The thickness is preferably in the range of 200 to 200 μm. More preferably, it is in the range of 100 to 150 μm. This is because a reverse osmosis membrane used for a liquid separation element usually has a thickness of about 200 to 300 μm.
m, but the width of the groove is substantially equal to or smaller than the thickness of the reverse osmosis membrane, thereby substantially preventing the reverse osmosis membrane from falling into the groove of the permeated liquid flow path material. Because you can do it. Considering the lower limit of the groove width from the viewpoint of suppressing the fall of the reverse osmosis membrane into the groove, 1
A thickness of at least 00 μm is sufficient, while a thickness of at most 100 μm is not preferred because it only increases the flow resistance of the permeate. Regarding the groove depth of the permeate flow channel material, when the groove depth is 50 μm or less, the permeate flow channel becomes small, and even a slight deformation of the reverse osmosis membrane under high pressure greatly changes the flow resistance. There is a risk that On the other hand, when the thickness is 200 μm or more, the thickness of the permeate flow path material becomes large, and the area of the packed membrane of the reverse osmosis membrane when incorporated in the liquid separation element becomes small. In addition, the thickness is preferably in the range of 50 to 200 μm so that the flow resistance of the permeate is small. More preferably, it is in the range of 80 to 150 mm. Further, the flow resistance of the permeate flow channel material varies depending on the groove density, that is, the number of grooves per unit length as described above, but in the liquid separation element of the present invention, The groove density is preferably in the range of 45 to 70 per inch. More preferably 50 to 60 per inch
It is a book. If the groove density is 45 or less per inch, the total number of flow passages is small and the flow passage area becomes small, resulting in a large flow resistance. Further, the upper limit of the groove density is desirable to reduce the flow resistance, but when the groove density is substantially 70 or more per inch, the flow path material for supporting the reverse osmosis membrane under high pressure is preferably used. Since the width of the convex portion is reduced and the area of the portion receiving the pressure is reduced, the flow path material itself is deformed. Therefore, there is a risk that the depth of the groove becomes small and the flow resistance increases.

【0017】また、透過液流路材の織編物の種類につい
ては、上述したような構造的特徴を有するものであれば
どのようなものでも良く特に限定しないが、高品質、か
つ安価で製造できる点でトリコットを織編物として用い
るのが好ましい。また、トリコットについては、例え
ば、ダブルデンビ、クインズコード、三枚オサ等、編成
組織の違いにより、いく通りもの種類が挙げられるが、
透過液の流路を確保し、かつ高圧下でも変形しにくいも
のであれば、どのようなものを使用しても良く、特に限
定はしない。
The woven or knitted material of the permeated liquid flow path material is not particularly limited as long as it has the above-mentioned structural characteristics, but it can be manufactured with high quality and at low cost. In this respect, tricot is preferably used as a woven or knitted fabric. Regarding the tricot, for example, there are various types such as double denbi, quinz code, three-piece os, etc., depending on the organization structure.
Any material may be used as long as it can secure the flow path of the permeated liquid and is hardly deformed even under high pressure, and there is no particular limitation.

【0018】織編物の繊維の材質については、流路材と
しての形状を保持し、かつ透過液中への成分の溶出が少
ないものならばどのようなものでも良く、例えば、ナイ
ロン等のポリアミド系繊維、ポリエステル系繊維、ポリ
アクリロニトリル系繊維、ポリエチレンやポリプロピレ
ン等のポリオレフィン系繊維、ポリ塩化ビニル系繊維、
ポリ塩化ビニリデン系繊維、ポリフルオロエチレン系繊
維、カーボン繊維等が挙げられるが、特に高圧下に耐え
うる強度や、後述する織編物の加工のしやすさ等を考慮
すると、ポリエステル系繊維を用いるのが好ましい。
The material of the fibers of the woven or knitted material may be any as long as it retains the shape of the channel material and little elution of the components into the permeate, for example, a polyamide-based material such as nylon. Fiber, polyester fiber, polyacrylonitrile fiber, polyolefin fiber such as polyethylene and polypropylene, polyvinyl chloride fiber,
Polyvinylidene chloride-based fibers, polyfluoroethylene-based fibers, carbon fibers, and the like can be mentioned.In particular, in consideration of the strength that can withstand high pressure and the ease of processing of a woven or knitted fabric described later, polyester fibers are used. Is preferred.

【0019】また、本発明においても、高圧下で流路材
自体が変形するのを抑制するために、織編物の剛性を高
める硬化処理を行うのが好ましい。硬化処理の方法とし
ては、例えば織編物にメラミンやエポキシなどの樹脂を
含浸加工したり、あるいは織編物を加熱して繊維を相互
に融着固化させる熱融着加工を施す等の方法があるが、
本発明では、高圧下において流路材自体が変形しないよ
うな硬度が得られる処理方法であればいかなる方法でも
用いることができる。
Also in the present invention, it is preferable to carry out a hardening treatment for increasing the rigidity of the woven or knitted fabric in order to suppress the deformation of the flow path material itself under a high pressure. Examples of the curing method include a method of impregnating a woven or knitted product with a resin such as melamine or epoxy, or a method of applying a heat fusion process of fusing and solidifying fibers to each other by heating the woven or knitted material. ,
In the present invention, any method can be used as long as it is a processing method capable of obtaining a hardness such that the channel material itself is not deformed under high pressure.

【0020】さらに、本発明では高圧下において透水性
布帛や逆浸透膜に局部的、あるいは不均一な変形が起こ
らないようにするため、透過液流路材の織編物にカレン
ダー加工を施しても良い。カレンダー加工により織編物
は、繊維の形状に起因する微細な起伏がつぶされて非常
に平滑かつ平坦になる。このため、高圧下で透水性不織
布や逆浸透膜が不均一な変形を起こさなくなり性能や耐
久性をさらに向上させることが可能となる。
Further, in the present invention, in order to prevent local or non-uniform deformation of the water-permeable cloth or reverse osmosis membrane under high pressure, the woven or knitted material of the permeate flow channel material may be calendered. good. The calendering makes the woven / knitted fabric very smooth and flat by crushing the fine undulations caused by the shape of the fibers. Therefore, the water-permeable nonwoven fabric and the reverse osmosis membrane do not undergo uneven deformation under high pressure, and the performance and durability can be further improved.

【0021】本発明では、上述したような織編物の表面
に、さらに透水性を有する布帛を配することを特徴とす
る。
The present invention is characterized in that a cloth having water permeability is further arranged on the surface of the woven or knitted material as described above.

【0022】本発明において、布帛の透水性の度合い、
即ち透水度については特に規定しないが、25℃におけ
る純水の透過係数が0.5m3 /(m2 ・MPa・mi
n)以上であることが、不織布の透過抵抗を小さくする
上で好ましい。さらに好ましくは0.8m3 /(m2
MPa・min)以上である。
In the present invention, the degree of water permeability of the fabric,
That is, the water permeability is not specified, but the permeability coefficient of pure water at 25 ° C. is 0.5 m 3 / (m 2 · MPa · mi
n or more is preferable in order to reduce the permeation resistance of the nonwoven fabric. More preferably 0.8 m 3 / (m 2 ·
MPa · min) or higher.

【0023】また、本発明は布帛に用いる繊維の太さに
ついては何ら限定するものではなく、布帛として上述し
た透水性を有し、かつ十分な剛性を得ることができるも
のならばどのような太さの繊維を用いても良い。
Further, the present invention does not limit the thickness of the fibers used for the cloth at all, and any thickness can be used as long as the cloth has the above-mentioned water permeability and sufficient rigidity can be obtained. Saori fibers may be used.

【0024】また、布帛を構成する繊維の材質について
も特に規定するものではなく、圧力に対して変形を起こ
さず、かつ透過液中への成分の溶出が少ないものならば
どのようなものでも良い。例えば、ナイロン等のポリア
ミド系繊維、ポリエステル系繊維、ポリアクリロニトリ
ル系繊維、ポリエチレンやポリプロピレン等のポリオレ
フィン系繊維、ポリ塩化ビニル系繊維、ポリ塩化ビニリ
デン系繊維、ポリフルオロエチレン系繊維等を用いるこ
とができる。
Also, the material of the fibers constituting the cloth is not particularly specified, and any material may be used as long as it does not deform under pressure and the components are little eluted into the permeate. . For example, polyamide fibers such as nylon, polyester fibers, polyacrylonitrile fibers, polyolefin fibers such as polyethylene and polypropylene, polyvinyl chloride fibers, polyvinylidene chloride fibers, polyfluoroethylene fibers, etc. can be used. .

【0025】本発明の透水性布帛の表面は、その平均粗
さRzが20μm以下の範囲にあることが好ましく、1
5μm以下がより好ましい。ここで、表面の平均粗さR
zは布帛の断面形状を示す断面曲線について、断面の平
均線に平行で、かつ断面曲線を横切らない直線から縦方
向に測定した最高値から5番目までの山頂の高さの平均
値と、最低値から5番目までの谷底の平均値との差を求
めることによって得られる。また、表面粗さの下限値は
特にないが、抵抗や製作コストを勘案すると2μm以上
が好ましい。
The surface of the water-permeable fabric of the present invention preferably has an average roughness Rz of 20 μm or less.
It is more preferably 5 μm or less. Here, the average surface roughness R
z is the average of the heights of the peaks from the highest to the fifth measured in the vertical direction from a straight line parallel to the average line of the cross-section and not crossing the cross-sectional curve, and It is obtained by calculating the difference between the value and the average value of the fifth valley bottom. Although there is no particular lower limit for the surface roughness, it is preferably 2 μm or more in consideration of resistance and manufacturing cost.

【0026】上述した表面粗さを得るために、本発明で
は布帛にカレンダー加工を施し表面を平滑にしても良
い、このような処理を施して表面を平滑にすることによ
り、布帛表面の凹凸に起因する逆浸透膜のダメージを低
減し、耐久性を向上させることができる。特に限定され
るものではないが、カレンダー処理の条件としては、例
えば、ポリエステル繊維の場合では、好ましくは加熱温
度は50〜150℃、幅1m当たりのの加重は20〜8
0tであり、より好ましくは加熱温度は60〜100
℃、幅1m当たりのの加重は40〜60tである。もち
ろん、ポリエステル繊維以外の材質の繊維に関しては、
その融点や弾性等の物性の相違に応じて、係るカレンダ
ー処理の条件を適宜変更すればよい。
In the present invention, in order to obtain the above-mentioned surface roughness, the cloth may be calendered to make the surface smooth. By performing such a treatment to make the surface smooth, unevenness on the cloth surface is obtained. The damage of the reverse osmosis membrane resulting from this can be reduced and durability can be improved. Although not particularly limited, as the conditions of the calendering treatment, for example, in the case of polyester fiber, preferably, the heating temperature is 50 to 150 ° C., and the weight per 1 m width is 20 to 8;
0t, and more preferably the heating temperature is 60 to 100.
The load per ° C and 1 m width is 40-60t. Of course, for fibers of materials other than polyester fiber,
The conditions of the calendering process may be appropriately changed according to the difference in physical properties such as the melting point and the elasticity.

【0027】透水性布帛の厚さについては、薄すぎると
剛性が低くなり、高圧下で変形し、また、厚すぎると剛
性の面では良いが逆に、流路材自体が厚くなりすぎて液
体分離素子に組み込んだときの膜面積が減少してしまう
問題があるため、50〜200μmの範囲とすることが
好ましい、さらに好ましくは70〜150μmである。
Regarding the thickness of the water-permeable cloth, if it is too thin, the rigidity becomes low and it deforms under high pressure, and if it is too thick, it is good in terms of rigidity, but conversely, the flow path material itself becomes too thick and the liquid Since there is a problem that the film area is reduced when incorporated in the separation element, the thickness is preferably in the range of 50 to 200 μm, more preferably 70 to 150 μm.

【0028】本発明では、布帛の種類については特に規
定するものではないが、上述したような透水性、表面平
滑性および剛性を有するものならばどのような種類の布
帛を用いても良い。さらに上述したような特性を容易に
得られる点では、透水性不織布を用いるのが好ましい。
In the present invention, the kind of cloth is not particularly specified, but any kind of cloth having the above-mentioned water permeability, surface smoothness and rigidity may be used. Further, it is preferable to use a water-permeable nonwoven fabric from the viewpoint that the above-mentioned characteristics can be easily obtained.

【0029】不織布については、一般に数mmから数c
m程度の長さの短繊維を相互に複雑に交絡させた構造で
あり、繊維の密度や後加工の度合いによって、緻密で繊
維間に間隙が全くなく、液体を透過しないものや、繊維
間の間隙が多く容易に液体を透過させるものなどさまざ
まな種類があるが、本発明においては、逆浸透膜を透過
した液体を流路である織編物の溝にスムーズに導くため
に、透過液流路材に使用する不織布は液体を透過させる
性質のもの、即ち透水性を有するものでなければならな
い。
For non-woven fabrics, generally several mm to several c
It is a structure in which short fibers with a length of about m are intricately entangled with each other. Depending on the density of the fibers and the degree of post-processing, there are no gaps between the fibers at all, and there is no liquid permeation. There are various types such as those having a large gap and allowing liquid to easily permeate, but in the present invention, in order to smoothly guide the liquid permeated through the reverse osmosis membrane to the groove of the woven or knitted fabric which is the flow path, the permeated liquid flow path is used. The non-woven fabric used for the material must have a liquid-permeable property, that is, it must have water permeability.

【0030】また、不織布はその製造方法により繊維の
方向性がない、いわゆる無配向状態のものと、一定方向
に繊維が配向したもの、あるいは両者の中間的なものが
あるが、本発明においては、一定方向に繊維が配向した
ものを用いるのが好ましい。
Depending on the manufacturing method, the non-woven fabric may be a so-called non-oriented one in which the fibers have no directionality, a non-oriented one in which the fibers are oriented in a fixed direction, or an intermediate between the two. In the present invention, It is preferable to use fibers in which the fibers are oriented in a fixed direction.

【0031】さらに、一定方向に繊維が配向した不織布
は、織編物の表面に配されたときに、その繊維の配向方
向が織編物の溝の方向と直交するようにすることが好ま
しい。
Further, it is preferable that the non-woven fabric in which the fibers are oriented in a certain direction is such that the orientation direction of the fibers is orthogonal to the groove direction of the woven or knitted fabric when placed on the surface of the woven or knitted fabric.

【0032】これは、不織布の繊維が一定方向に配向し
ていると、不織布の強度や剛性に異方性が生じ、曲げや
たわみなどの変形に対しては、繊維の配向方向と平行な
方向よりも垂直方向の方が強くなるため、織編物の溝方
向と不織布の繊維の配向方向を直交させることにより、
高圧下で不織布が変形して織編物の溝に落ち込むのを抑
制できるからである。従って、該透水性布帛は、該流路
材の溝を有する側の面に配することが好ましい。
This is because when the fibers of the non-woven fabric are oriented in a certain direction, anisotropy occurs in the strength and rigidity of the non-woven fabric, and in the case of deformation such as bending and bending, the direction parallel to the orientation direction of the fibers. Since it becomes stronger in the vertical direction than that, by making the groove direction of the woven and knitted fabric and the orientation direction of the fibers of the nonwoven fabric orthogonal,
This is because deformation of the nonwoven fabric under high pressure and falling into the groove of the woven or knitted fabric can be suppressed. Therefore, it is preferable to dispose the water-permeable cloth on the surface of the flow path member on the side having the groove.

【0033】また、逆浸透膜の基材に用いる布帛を厚く
すると、多孔質層を設ける工程に困難性が生じてくるの
で、逆浸透膜の基材と該透水性布帛の両者を1つの布帛
で兼ねたり、複合膜の製膜時点で両者を合わせておくこ
とは好ましくない。また、単位層の厚みが大きいと、剛
性が高くなってスパイラルに巻くことが難しくなるの
で、スパイラルに巻く時点で逆浸透膜の基材と該透水性
布帛の両者が接着などにより一体化していることも好ま
しくない。
If the cloth used as the base material of the reverse osmosis membrane is made thicker, the step of forming the porous layer becomes difficult. Therefore, both the base material of the reverse osmosis membrane and the water permeable cloth are made into one cloth. It is not preferable to combine the two with each other or to combine them at the time of forming the composite film. Further, when the thickness of the unit layer is large, the rigidity becomes high and it becomes difficult to wind it in a spiral. Therefore, at the time of winding the spiral, both the base material of the reverse osmosis membrane and the water-permeable fabric are integrated by adhesion or the like. That is also not preferable.

【0034】また、本発明の特徴は透過液流路材の表面
に透水性布帛を配していることに特徴があり、該透過液
流路材以外の液体分離素子の部材、即ち、表面に孔を有
する中空状の中心管や、半透膜、および供給液流路材に
ついては何ら規定するものではない。そのため、これら
の部材については、例えば従来のものをそのまま使用す
ることが可能である。
Further, a feature of the present invention is that a water-permeable cloth is arranged on the surface of the permeate flow channel material, and the member of the liquid separation element other than the permeate flow channel material, that is, the surface is provided. The hollow central tube having holes, the semipermeable membrane, and the supply liquid flow path member are not specified at all. Therefore, for these members, for example, conventional members can be used as they are.

【0035】なお、使用条件に関して、特に限定される
ものではないが、前述のように、特に高圧条件におい
て、優れて本発明の効果が発揮されるものであり、具体
例を挙げるならば、付加される圧力は、好ましくは5〜
15MPa、より好ましくは7〜12MPaであり、好
適な応用分野としては、0.5%以上の塩水、特に海水
の逆浸透による淡水化が挙げられ、特に2段法により、
高圧の濃縮水を更に逆浸透膜処理する場合に好適であ
る。
The use conditions are not particularly limited, but as described above, the effects of the present invention are excellently exhibited particularly under high pressure conditions. The pressure applied is preferably 5 to
15 MPa, more preferably 7 to 12 MPa. Suitable application fields include desalination by reverse osmosis of 0.5% or more of salt water, particularly seawater.
This is suitable when the high-pressure concentrated water is further subjected to reverse osmosis membrane treatment.

【0036】また、用いられる逆浸透膜も耐圧性を有し
ていることが好ましく、たとえば、複合膜の支持膜ある
いは非対称膜として、細孔径が主に200nm以下のA
層と、主に200nm以上のB層の2層を有し、A層の
厚さが2μm以上、B層の厚さが8μm以上で、かつA
層とB層の厚さの合計に対するA層の厚さの割合Xが2
0%以上であることを特徴とする微細孔層を有する膜が
挙げられる。また、多孔質層を設ける基材層としては、
厚さが50〜150μmの織布又は不織布が好ましい。
It is also preferable that the reverse osmosis membrane used has pressure resistance. For example, as a support membrane or asymmetric membrane of a composite membrane, A having a pore diameter of 200 nm or less is mainly used.
And a B layer having a thickness of 200 nm or more, the A layer having a thickness of 2 μm or more, the B layer having a thickness of 8 μm or more, and
The ratio X of the thickness of the layer A to the total thickness of the layers B and 2 is 2
A film having a microporous layer characterized by being 0% or more can be mentioned. Further, as the base material layer provided with the porous layer,
A woven or non-woven fabric having a thickness of 50 to 150 μm is preferable.

【0037】[0037]

【実施例】【Example】

実施例1、比較例1 本発明の実施例1として、ポリエステル繊維のマルチフ
ィラメントをダブルデンビ組織に編成(糸径60デニー
ル、編条件ウェル30本/インチ、コース50本/イン
チ)し、これを熱融着加工(温度250℃、処理時間1
分)して硬化させた後、カレンダー加工(温度60℃、
加重50t/m)(温度60℃、加重40t/m)を施
して、溝幅が200μm、溝の深さが150μm、およ
び片面の溝密度が1インチあたり40本で凸部が平滑
な、厚さ200μmのシングルトリコットを作製し、さ
らに、ポリエステル短繊維からなる不織布にカレンダー
加工を施して、厚さが100μmで、表面の平均粗さR
zが5μmで、かつ25℃における純水の透過係数が
0.9m3 /(m2 ・MPa・min)である透水性不
織布を作製し、該不織布の繊維の配向方向がシングルト
リコットの溝の方向と直交するようにシングルトリコッ
トの溝を有する面に配して、図5に示す構造の透過液流
路材とし、これを2枚の逆浸透膜の間に組み込んで流動
抵抗測定用のサンプルとした。
Example 1 and Comparative Example 1 As Example 1 of the present invention, a multifilament of polyester fiber was knitted into a double Denbi structure (thread diameter 60 denier, knitting condition well 30 / inch, course 50 / inch) and heated. Fusing processing (temperature 250 ℃, processing time 1
After curing), calendering (temperature 60 ℃,
50 t / m) (temperature: 60 ° C, load: 40 t / m), groove width is 200 μm, groove depth is 150 μm, and groove density on one side is 40 per 1 inch and the convex part is smooth and thick. A single tricot having a length of 200 μm is produced, and a nonwoven fabric made of polyester short fibers is calendered to have a thickness of 100 μm and an average surface roughness R
A water-permeable nonwoven fabric having z of 5 μm and a pure water permeability coefficient at 25 ° C. of 0.9 m 3 / (m 2 · MPa · min) was prepared, and the orientation direction of the fibers of the nonwoven fabric was a single tricot groove. A sample for flow resistance measurement, which was placed on a surface having a single tricot groove so as to be orthogonal to the direction to obtain a permeate flow path member having a structure shown in FIG. 5 and was incorporated between two reverse osmosis membranes. And

【0038】一方、比較例1として、実施例1と同じシ
ングルトリコットを用い、表面に透水性不織布を配せず
に、そのまま実施例1と同様に2枚の逆浸透膜の間に組
み込んで流動抵抗測定用サンプルを作製した。
On the other hand, as Comparative Example 1, the same single tricot as in Example 1 was used, and a water-permeable non-woven fabric was not placed on the surface, and as it was as in Example 1, it was incorporated between two reverse osmosis membranes and flowed. A resistance measurement sample was prepared.

【0039】これらのサンプルを用いて、液温25℃の
条件で逆浸透膜に0.5〜10MPaの静水圧を負荷
し、1時間後の透過液流路材を通過する純水の流動抵抗
を測定した結果を表1に示す。
Using these samples, a hydrostatic pressure of 0.5 to 10 MPa was applied to the reverse osmosis membrane under the condition of the liquid temperature of 25 ° C., and the flow resistance of pure water passing through the permeate flow path material after 1 hour. Table 1 shows the result of measurement.

【0040】[0040]

【表1】 比較例1の従来の透過液流路材が、圧力の負荷により急
激に流動抵抗が増加するのに対し、本発明の流路材は、
高圧下においても十分な透過液の流路が確保され、10
MPaの圧力においても低圧下の2.5倍程度までに流
動抵抗の増加を抑制することができた。
[Table 1] Whereas the conventional permeate flow path material of Comparative Example 1 has a flow resistance that rapidly increases due to pressure load, the flow path material of the present invention is
Sufficient permeate flow path is secured even under high pressure.
Even at a pressure of MPa, the increase in flow resistance could be suppressed to about 2.5 times that at low pressure.

【0041】実施例2、比較例2 実施例1と同じ透過液流路材、および比較例1のシング
ルトリコットの溝を有する面に、直径400μmの小孔
が10mm間隔で穿孔された厚さ100μmのポリエス
テルシートを配した図3に示す形状の透過液流路材を、
それぞれ2枚の逆浸透膜の間に組み込み、さらに逆浸透
膜の外側に供給液流路材としてポリプロピレン製ネット
を組み込み、これらをFRP製の中心パイプの周囲に巻
回して外径4インチの2種類の液体分離素子を得た。こ
れらを図6に示す液体分離装置の圧力容器内にそれぞれ
別個に装填し、供給液に食塩水を用いて分離実験を行っ
た。実験条件として供給液の食塩濃度を5.0%、運転
圧力を8〜13MPaとし、供給液流量を20リットル
/min、および液温を25℃として、各圧力における
120h後の食塩の排除率を測定した結果を表2に示
す。
Example 2 and Comparative Example 2 The same permeate flow channel material as in Example 1 and the surface having the groove of the single tricot of Comparative Example 1 were formed with small holes of 400 μm in diameter at intervals of 10 mm and a thickness of 100 μm. The permeated liquid flow path member having the shape shown in FIG.
It was installed between two reverse osmosis membranes, and a polypropylene net was installed on the outside of the reverse osmosis membrane as a feed liquid flow path material. These were wound around a FRP central pipe and the outer diameter was 4 inches. A kind of liquid separation element was obtained. These were separately loaded into the pressure vessels of the liquid separation device shown in FIG. 6, and a separation experiment was conducted using saline as the supply liquid. As the experimental conditions, the salt concentration of the feed liquid was 5.0%, the operating pressure was 8 to 13 MPa, the feed liquid flow rate was 20 liters / min, and the liquid temperature was 25 ° C., and the salt rejection rate after 120 h at each pressure was calculated. The measured results are shown in Table 2.

【0042】[0042]

【表2】 従来の液体分離素子では、運転圧力が10MPa以上で
急激に食塩の排除率が低下し、また、低圧においても長
時間評価した場合は食塩の排除率が低下するが、本発明
の液体分離素子は13MPaまで食塩の排除率は低下し
なかった。また長時間の評価においても食塩の排除率の
低下は見られず、従来の液体分離素子よりも耐久性に優
れていた。
[Table 2] In the conventional liquid separation element, the rejection rate of salt sharply decreases when the operating pressure is 10 MPa or more, and the rejection rate of salt decreases when evaluated at a low pressure for a long time. The rejection of salt did not decrease until 13 MPa. In addition, even when evaluated for a long period of time, the rejection rate of salt was not decreased, and the durability was superior to that of the conventional liquid separation element.

【0043】[0043]

【発明の効果】本発明により、高圧下においても十分な
透過液の流路を確保して透過液の流動抵抗の増加を抑制
し、透過液流量や阻止率、排除率や濃縮率等の性能や耐
久性に優れた液体分離素子を提供することができる。
According to the present invention, sufficient permeate flow passages are secured even under high pressure to suppress an increase in permeate flow resistance, and performances such as permeate flow rate, rejection rate, rejection rate and concentration rate are obtained. It is possible to provide a liquid separation element having excellent durability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の逆浸透膜を用いたスパイラル型液体分
離素子の断面図
FIG. 1 is a sectional view of a conventional spiral type liquid separation element using a reverse osmosis membrane.

【図2】 従来の代表的な透過液流路材であるシングル
トリコットの説明図
FIG. 2 is an explanatory diagram of a single tricot, which is a conventional typical permeate flow path material.

【図3】 従来の、高圧下で使用する液体分離素子に用
いられている透過液流路材の説明図
FIG. 3 is an explanatory view of a conventional permeate flow path member used in a liquid separation element used under high pressure.

【図4】 従来の液体分離素子において発生する、高圧
下での逆浸透膜の変形を示す説明図
FIG. 4 is an explanatory diagram showing deformation of a reverse osmosis membrane under high pressure that occurs in a conventional liquid separation element.

【図5】 本発明に基づく、液体分離素子の透過液流路
材の説明図
FIG. 5 is an explanatory view of a permeated liquid flow path material of a liquid separation element based on the present invention.

【図6】 本発明の実施例に使用した液体分離装置の概
略図である。
FIG. 6 is a schematic view of a liquid separation device used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1:逆浸透膜 2:透過液流路材 3:供給液流路材 4:集水孔 5:中心管 6:溝 7:凸部 8:小孔 9:多孔性シート 10:織編物 11:透水性布帛 12:原水(食塩水) 13:供給ポンプ 14:フィルター 15:高圧ポンプ 16:供給水ライン 17:液体分離素子(圧力容器) 18:濃縮水ライン 19:透過水ライン 1: Reverse osmosis membrane 2: Permeate liquid flow path material 3: Supply liquid flow path material 4: Water collection hole 5: Central tube 6: Groove 7: Convex part 8: Small hole 9: Porous sheet 10: Woven / knitted fabric 11: Water-permeable fabric 12: Raw water (saline solution) 13: Supply pump 14: Filter 15: High-pressure pump 16: Supply water line 17: Liquid separation element (pressure vessel) 18: Concentrated water line 19: Permeate water line

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 逆浸透膜と透過液流路材の間に透水性布
帛を配してなることを特徴とする液体分離素子。
1. A liquid separation element comprising a water permeable cloth disposed between a reverse osmosis membrane and a permeate liquid flow path member.
【請求項2】 透水性布帛表面の平均粗さRzが、20
μm以下の範囲にあることを特徴とする請求項1に記載
の液体分離素子。
2. The average roughness Rz of the surface of the water-permeable fabric is 20.
The liquid separation element according to claim 1, wherein the liquid separation element is in a range of μm or less.
【請求項3】 透水性布帛が不織布であること特徴とす
る請求項1記載の液体分離素子。
3. The liquid separation element according to claim 1, wherein the water-permeable cloth is a non-woven fabric.
【請求項4】 透水性不織布を構成する繊維が、一定方
向に配向していることを特徴とする請求項3に記載の液
体分離素子。
4. The liquid separation element according to claim 3, wherein the fibers constituting the water-permeable nonwoven fabric are oriented in a fixed direction.
【請求項5】 該透過液流路材に溝が形成されており、
かつ該透水性不織布の繊維の配向方向が該溝の方向と直
交することを特徴とする請求項1記載の液体分離素子。
5. A groove is formed in the permeate flow path member,
The liquid separating element according to claim 1, wherein the orientation direction of the fibers of the water-permeable nonwoven fabric is orthogonal to the direction of the groove.
【請求項6】 請求項1記載の液体分離素子を用いたこ
とを特徴とする逆浸透装置。
6. A reverse osmosis device comprising the liquid separation element according to claim 1.
【請求項7】 請求項1記載の液体分離素子を用いたこ
とを特徴とする逆浸透膜処理方法。
7. A method for treating a reverse osmosis membrane, wherein the liquid separation element according to claim 1 is used.
【請求項8】 表面に孔を有する中空状の中心管の周囲
に、2枚の半透膜とその間に介在する透過液流路材、お
よび供給液流路材を一組とするユニットを巻回してなる
液体分離素子において、該透過液流路材が表面に溝を有
する織編物であり、かつ、透水性布帛を該透過液流路材
の表面に配してなることを特徴とする液体分離素子。
8. A unit consisting of two semipermeable membranes, a permeate flow channel material interposed between the two semipermeable membranes, and a supply liquid flow channel material is wound around a hollow central tube having holes on the surface. In the liquid separating element which is rotated, the permeated liquid flow path material is a woven or knitted fabric having grooves on the surface, and a water-permeable cloth is arranged on the surface of the permeated liquid flow path material. Separation element.
JP30446895A 1995-11-22 1995-11-22 Liquid separation element, apparatus, and processing method Expired - Fee Related JP3317113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30446895A JP3317113B2 (en) 1995-11-22 1995-11-22 Liquid separation element, apparatus, and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30446895A JP3317113B2 (en) 1995-11-22 1995-11-22 Liquid separation element, apparatus, and processing method

Publications (2)

Publication Number Publication Date
JPH09141067A true JPH09141067A (en) 1997-06-03
JP3317113B2 JP3317113B2 (en) 2002-08-26

Family

ID=17933387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30446895A Expired - Fee Related JP3317113B2 (en) 1995-11-22 1995-11-22 Liquid separation element, apparatus, and processing method

Country Status (1)

Country Link
JP (1) JP3317113B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1059114A2 (en) * 1999-06-08 2000-12-13 Nitto Denko Corporation Liquid separation membrane module and method of producing the same
US6277282B1 (en) 1996-04-11 2001-08-21 Toray Industries, Inc. Reverse osmosis element utilizing a fabric composed of substantially oriented fibers
WO2006015461A1 (en) * 2004-08-11 2006-02-16 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Integrated permeate channel membrane
WO2008038575A1 (en) 2006-09-25 2008-04-03 Toray Industries, Inc. Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
WO2013058921A1 (en) * 2011-10-19 2013-04-25 General Electric Company Spiral wound membrane element and permeate carrier

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135955B2 (en) * 2007-08-31 2013-02-06 東レ株式会社 Pressure-resistant sheet and fluid separation element using the same
JP5585105B2 (en) * 2010-02-08 2014-09-10 東レ株式会社 Separation membrane support, separation membrane and fluid separation element using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277282B1 (en) 1996-04-11 2001-08-21 Toray Industries, Inc. Reverse osmosis element utilizing a fabric composed of substantially oriented fibers
EP1059114A2 (en) * 1999-06-08 2000-12-13 Nitto Denko Corporation Liquid separation membrane module and method of producing the same
EP1059114A3 (en) * 1999-06-08 2002-03-06 Nitto Denko Corporation Liquid separation membrane module and method of producing the same
US6454942B1 (en) * 1999-06-08 2002-09-24 Nitto Denko Corporation Liquid separation membrane module
WO2006015461A1 (en) * 2004-08-11 2006-02-16 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Integrated permeate channel membrane
US7862718B2 (en) 2004-08-11 2011-01-04 Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Integrated permeate channel membrane
WO2008038575A1 (en) 2006-09-25 2008-04-03 Toray Industries, Inc. Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
WO2013058921A1 (en) * 2011-10-19 2013-04-25 General Electric Company Spiral wound membrane element and permeate carrier

Also Published As

Publication number Publication date
JP3317113B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
JP3430783B2 (en) Liquid separation element, apparatus and processing method
KR101353830B1 (en) Liquid separation device, flow channel material and process for producing the same
JP6111668B2 (en) Separation membrane element and method for producing separation membrane element
US20140231332A1 (en) Separation membrane and separation membrane element
JP2006247453A (en) Liquid separating element, reverse osmosis apparatus using it and reverse osmosis membrane treatment method
KR20110008224A (en) Filter compound material, method for the production thereof and flat filter elements made of the filter compound material
JPWO2013047746A1 (en) Separation membrane, separation membrane element and method for producing separation membrane
WO2018052124A1 (en) Spiral membrane element
KR20140092307A (en) Spiral wound membrane element and permeate carrier
JP6179403B2 (en) Separation membrane and separation membrane element
JPH09141060A (en) Liquid separation element, device and treatment therefor
JP3317113B2 (en) Liquid separation element, apparatus, and processing method
JP2000051668A (en) Liquid separation element and water making method
JP3052958B1 (en) Spiral reverse osmosis membrane element and separation method
JP6347775B2 (en) Spiral membrane element
JP2000051671A (en) Spiral separation membrane element
JP3292183B2 (en) Spiral reverse osmosis membrane element
JP2014064973A (en) Separation membrane and separation membrane element
JP2000051667A (en) Liquid separation element and water making method
JP6245407B1 (en) Separation membrane element
JP2015006661A (en) Separation membrane element
JPH105554A (en) Fluid separation element
CN109496163B (en) Separation membrane element
JP2016068081A (en) Separation membrane element
JP2014140840A (en) Separation membrane element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090614

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100614

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120614

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees