JPH09140785A - Biodegradable film for medical treatment and its production - Google Patents

Biodegradable film for medical treatment and its production

Info

Publication number
JPH09140785A
JPH09140785A JP7328369A JP32836995A JPH09140785A JP H09140785 A JPH09140785 A JP H09140785A JP 7328369 A JP7328369 A JP 7328369A JP 32836995 A JP32836995 A JP 32836995A JP H09140785 A JPH09140785 A JP H09140785A
Authority
JP
Japan
Prior art keywords
film
layer
medical film
layers
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7328369A
Other languages
Japanese (ja)
Other versions
JP3500482B2 (en
Inventor
Takashi Matsuda
貴志 松田
Fumiyasu Shinjiyou
史康 新庄
Yasuko Kitawaki
靖子 北脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JMS Co Ltd
Original Assignee
JMS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JMS Co Ltd filed Critical JMS Co Ltd
Priority to JP32836995A priority Critical patent/JP3500482B2/en
Publication of JPH09140785A publication Critical patent/JPH09140785A/en
Application granted granted Critical
Publication of JP3500482B2 publication Critical patent/JP3500482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to simultaneously satisfy plural requirement characteristics which are difficult to be embodied with a single material by laminating plural sheets of biodegradable films varying in the degradation characteristics and/or physical characteristics in a living body, thereby constituting the biodegradable film. SOLUTION: This biodegradable film for medical treatment having a three- layered structure is formed by arranging, for example, a relatively hard layer 2 on the inner side and arranging relatively soft layers 1, 3 on both sides thereof. A film of a copolymer consisting of about 65mol% L-lactide an about 35mol% ε-caprolatone and having about 100μm thickness is used for the layer 2. Films of a copolymer consisting of about 80mol% L-lactide and about 20mol% ε-caprolactone and having about 100μm thickness are used for the layers 1, 3. A laminate film having about 100μm thickness is formed by thermal press. The laminate may be formed to layers exclusive a three layers, for example, to five layers when formed to ι2 layers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、生体分解性の医療
用フィルムとその製造方法に関する。さらに詳しくは、
特性が改良された生体分解性医療用フィルムとその製造
方法に関する。
TECHNICAL FIELD The present invention relates to a biodegradable medical film and a method for producing the same. For more information,
TECHNICAL FIELD The present invention relates to a biodegradable medical film having improved properties and a method for producing the same.

【0002】[0002]

【従来の技術】生体分解性の医療用材料は、手術後一定
期間は機能を果たした後、徐々に分解して生体に吸収さ
れるので、縫合糸には古くから利用されている。このよ
うな生体分解性材料としては、コラーゲン、キチン、酸
化セルロース、ポリグリコール酸、ポリラクチド、ヒド
ロキシ酪酸とヒドロキシ吉草酸の共重合体、ポリ−p−
ジオキサノンなどが知られている。
2. Description of the Related Art Biodegradable medical materials have been used for a long time as sutures because they function after being operated for a certain period of time and then gradually decomposed and absorbed by the living body. Examples of such biodegradable materials include collagen, chitin, oxidized cellulose, polyglycolic acid, polylactide, a copolymer of hydroxybutyric acid and hydroxyvaleric acid, poly-p-
Dioxanone and the like are known.

【0003】ところが、このような生体分解性材料も、
縫合糸以外の用途については利用があまり進んでいな
い。とくにシート状のものについては、一部の限られた
用途にわずかに使用されているだけであり、それも決し
て満足できる特性を備えたものではない。その理由は、
要求される物理特性と分解特性を同時に満足する材料を
得ることが困難なためである。すなわち、物理特性が要
求を満足する材料は分解特性が不満足であり、好ましい
分解特性を有するものは物理特性が不満足なためであ
る。
However, such biodegradable materials are also
It has not been used much for applications other than sutures. In particular, the sheet-like material is only slightly used in some limited applications, and it does not have satisfactory properties. The reason is,
This is because it is difficult to obtain a material that simultaneously satisfies the required physical properties and decomposition properties. That is, a material having physical properties satisfying the requirements has unsatisfactory decomposition properties, and a material having favorable decomposition properties has unsatisfactory physical properties.

【0004】[0004]

【発明が解決しようとする課題】一般にフィルムの状態
で生体に使用する場合は、柔軟なものが好ましい。とこ
ろが、柔軟な材料は分解速度が速かったりフィルムが収
縮したりして、必要な期間その形態を保持できない。そ
して分解の遅い材料は、逆に硬質なものが多く、生体と
接触したときに刺激を与えてしまうので好ましくない。
Generally, when used in a living body in the form of a film, it is preferably flexible. However, the flexible material cannot maintain its shape for a necessary period because of its high decomposition rate and shrinkage of the film. On the contrary, many materials that are slowly decomposed are hard, which is not preferable because they give irritation when they come into contact with a living body.

【0005】たとえば、体温程度の温度で柔軟な材料と
してD,L−ラクチドとε−カプロラクトンとの共重合
体が知られているが、このフィルムは比較的短期間に分
解が進み、フィルムが収縮を起こして形態保持が困難に
なる。これに対して、分解が比較的ゆっくりと進むポリ
グリコール酸やポリラクチドのフィルムは柔軟性に欠け
るので、好ましくない。このように、2種類の要求特性
を同時に満足する材料がないことが、生体分解性材料の
種々の用途への展開を阻んでいた。
For example, a copolymer of D, L-lactide and ε-caprolactone is known as a flexible material at a temperature of about body temperature, but this film is decomposed in a relatively short period of time and the film shrinks. It becomes difficult to maintain the shape. On the other hand, a film of polyglycolic acid or polylactide, which decomposes relatively slowly, lacks flexibility and is not preferable. As described above, the lack of a material that simultaneously satisfies two types of required properties has hindered the development of biodegradable materials for various applications.

【0006】本発明の目的は、このような問題を解決し
た生体分解性フィルムとその製造方法を提供することに
ある。すなわち、単一の材料では実現が困難な特性を有
する生体分解性フィルムを提供するものである。
An object of the present invention is to provide a biodegradable film and a method for producing the same, which solves such problems. That is, the present invention provides a biodegradable film having properties that are difficult to realize with a single material.

【0007】[0007]

【課題を解決するための手段】本発明においては、特性
の異なる2種類以上のフィルムを積層することにより、
上記の目的を達成した。すなわち本発明の医療用フィル
ムは、生体内での分解特性および/または物理特性の異
なる生体分解性フィルムを2以上積層してなることを特
徴とするものである。また、本発明の生体分解性医療用
フィルムの製造方法は、生体内での分解特性および/ま
たは物理特性の異なるフィルム同志を積層し、好ましい
特性のフィルムを製造することを特徴とするものであ
る。
In the present invention, by laminating two or more kinds of films having different characteristics,
The above objective has been achieved. That is, the medical film of the present invention is characterized by laminating two or more biodegradable films having different in vivo degradability and / or physical properties. The method for producing a biodegradable medical film of the present invention is characterized by laminating films having different in vivo degradability and / or physical properties to produce a film having desirable properties. .

【0008】本発明により優れた特性のフィルムが得ら
れる理由は明確ではないが、特性の異なるフィルム同志
を積層することにより、それぞれのフィルムが持つ好ま
しい特性はそのまま保持され、好ましくない特性は希釈
されるためではないかと推定される。
Although it is not clear why a film having excellent characteristics can be obtained by the present invention, by laminating films having different characteristics, the preferable characteristics of each film are maintained as they are, and the unfavorable characteristics are diluted. It is estimated that this is because of the reason.

【0009】[0009]

【発明の実施の形態】本発明で使用する生体分解性フィ
ルムは、加工が容易で任意の特性のフィルムが容易に得
られる点で、合成高分子からなるものが好ましい。好適
な合成高分子を例示するならば、グリコール酸、L−ラ
クチド、D,L−ラクチドおよびε−カプロラクトンか
ら選ばれる任意の成分で構成される共重合体およびこれ
らの単独重合体をあげることができる。これらの重合体
は、公知の方法によって得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The biodegradable film used in the present invention is preferably composed of a synthetic polymer because it is easy to process and a film having arbitrary characteristics can be easily obtained. Examples of suitable synthetic polymers include copolymers composed of any component selected from glycolic acid, L-lactide, D, L-lactide and ε-caprolactone, and homopolymers thereof. it can. These polymers can be obtained by a known method.

【0010】上記の重合体の中で、グリコール酸やL−
ラクチドの単独重合体、グリコール酸とL−ラクチドま
たはD,L−ラクチドとの共重合体、グリコール酸また
はL−ラクチドとε−カプロラクトンとの共重合体、お
よびグリコール酸−L−ラクチド−ε−カプロラクトン
共重合体などは分解が比較的ゆっくりと起こるので、分
解特性の点では好ましい。しかし、得られるフィルムは
体温程度の温度では比較的硬いので、単独で生体に使用
するのは好ましくない。
Among the above polymers, glycolic acid and L-
Homopolymer of lactide, copolymer of glycolic acid and L-lactide or D, L-lactide, copolymer of glycolic acid or L-lactide and ε-caprolactone, and glycolic acid-L-lactide-ε- Since caprolactone copolymer and the like decompose relatively slowly, they are preferable in terms of decomposition characteristics. However, since the obtained film is relatively hard at a temperature around body temperature, it is not preferable to use it alone in a living body.

【0011】一方、D,L−ラクチドとε−カプロラク
トンとの共重合体は、体温程度の温度で良好な柔軟性を
有するので、柔軟なフィルム層として好ましく使用され
る。とくに好ましいのは、D,L−ラクチドを60〜9
0モル%、ε−カプロラクトンを30〜10モル%の範
囲で含有する共重合体である。このような共重合体から
なるフィルムは柔軟性の点で優れているが、単独で生体
内に埋植すると急速に強度が低下し、フィルムの収縮も
起こる。
On the other hand, a copolymer of D, L-lactide and ε-caprolactone has good flexibility at a temperature of about body temperature and is therefore preferably used as a flexible film layer. Particularly preferred is D, L-lactide of 60-9.
It is a copolymer containing 0 mol% and ε-caprolactone in the range of 30 to 10 mol%. A film made of such a copolymer is excellent in flexibility, but when implanted alone in a living body, the strength thereof is rapidly lowered and the film shrinks.

【0012】上述したフィルムを積層する場合、図1に
示すように、内側に比較的硬質な層2を配置しその両側
に比較的柔軟な層1および3を配置した3層構造とする
のが好ましい。このような構造にすることによって、柔
軟でかつ分解が急速に起こらない積層フィルムを得るこ
とができる。3層構造以外にも、図2に示すように、両
面を柔軟な層4、8とし、その内部に2つの硬質層5、
7と1つの柔軟層6を交互に積層した5層構造とするこ
ともできる。
When laminating the above-mentioned films, as shown in FIG. 1, a three-layer structure in which a relatively hard layer 2 is disposed on the inner side and relatively flexible layers 1 and 3 are disposed on both sides thereof is used. preferable. With such a structure, it is possible to obtain a laminated film which is flexible and does not decompose rapidly. In addition to the three-layer structure, as shown in FIG. 2, flexible layers 4 and 8 are provided on both sides, and two hard layers 5 are provided inside the layers.
It is also possible to have a five-layer structure in which 7 and one flexible layer 6 are alternately laminated.

【0013】積層する各層の厚さは、すべて同一であっ
てもよいし、異なる厚さにすることもできる。柔軟層と
硬質層を積層する場合には、柔軟層を厚くし硬質層を薄
くすれば、分解特性が良好でより柔軟な積層フィルムを
得ることができる。フィルムの好ましい厚さは用途によ
って異なるが、積層フィルムとして30〜500μm程
度のものが好適である。
The thickness of each layer to be laminated may be the same or different. In the case of laminating the flexible layer and the hard layer, if the flexible layer is made thick and the hard layer is made thin, a more flexible laminated film having good decomposition characteristics can be obtained. The preferable thickness of the film varies depending on the use, but a laminated film having a thickness of about 30 to 500 μm is preferable.

【0014】本発明の積層フィルムは、それぞれの層を
構成する単一成分のフィルムを製造し、これらを積層し
て所望の厚さに熱プレスすることによって製造すること
ができる。また、各層を同時に成形機から押し出して積
層することにより、単一の工程で製造することもでき
る。
The laminated film of the present invention can be produced by producing a film of a single component constituting each layer, laminating these films and hot pressing to a desired thickness. It is also possible to manufacture each layer in a single step by simultaneously extruding the layers from a molding machine and laminating the layers.

【0015】[0015]

【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明はこれらの実施例に限定されるもので
はない。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0016】[実施例1]L−ラクチド65モル%とε
−カプロラクトン35モル%からなる共重合体のフィル
ム(厚さ約100μm)を、両側から1枚ずつのD,L
−ラクチド80モル%とε−カプロラクトン20モル%
からなる共重合体のフィルム(厚さ約100μm)で挟
み、熱プレスして厚さ約100μmの積層フィルムを作
製した。得られたフィルムの物性を37℃で測定したと
ころ、表1に示すように弾性率が低く柔軟なものであっ
た。
Example 1 L-lactide 65 mol% and ε
Copolymer film consisting of 35 mol% of caprolactone (thickness: about 100 μm), D and L, one from each side
-Lactide 80 mol% and ε-caprolactone 20 mol%
It was sandwiched between the copolymer films (having a thickness of about 100 μm) and was hot pressed to produce a laminated film having a thickness of about 100 μm. When the physical properties of the obtained film were measured at 37 ° C., as shown in Table 1, the film had a low elastic modulus and was flexible.

【0017】次に、このフィルムを37℃の生理食塩液
に浸漬し、1週間ごとにその物性を37℃で測定した結
果を、表1に併せて示す。表からわかるように、フィル
ムは8週間後においても形態を維持しており、柔軟性を
維持していた。
Next, Table 1 shows the results of immersing this film in a physiological saline solution at 37 ° C. and measuring its physical properties at 37 ° C. every week. As can be seen from the table, the film retained its morphology after 8 weeks and remained flexible.

【0018】[0018]

【表1】 [Table 1]

【0019】[実施例2]実施例1と同様にして、L−
ラクチド65モル%とε−カプロラクトン35モル%か
らなる共重合体のフィルム1枚を、両側から2枚ずつの
D,L−ラクチド80モル%とε−カプロラクトン20
モル%からなる共重合体のフィルムで挟み、熱プレスし
て厚さ約100μmの積層フィルムを作製した。すなわ
ち、この積層フィルムは、L−ラクチド−ε−カプロラ
クトン共重合体からなるフィルム1に対して、D,L−
ラクチド−ε−カプロラクトン共重合体からなるフィル
ムが4の割合で積層されたものである。
[Embodiment 2] In the same manner as in Embodiment 1, L-
One film of a copolymer consisting of 65 mol% of lactide and 35 mol% of ε-caprolactone was used, and two mols of D, L-lactide and 80 mol of ε-caprolactone were prepared from each side.
It was sandwiched by a copolymer film composed of mol% and hot-pressed to produce a laminated film having a thickness of about 100 μm. That is, this laminated film was prepared by comparing D, L- with the film 1 made of the L-lactide-ε-caprolactone copolymer.
A film composed of a lactide-ε-caprolactone copolymer is laminated at a ratio of 4.

【0020】得られたフィルムは、表2に示すように、
実施例1で得られたものよりもさらに柔軟性に富んでい
た。また、同様に37℃の生理食塩液に浸漬して1週間
ごとにその物性を測定したところ、表2に示すように、
6週間以上に渡って形態を維持しており、柔軟なもので
あった。
The resulting film, as shown in Table 2,
It was even more flexible than that obtained in Example 1. Further, similarly, when it was immersed in a physiological saline solution at 37 ° C. and its physical properties were measured once a week, as shown in Table 2,
It remained flexible for more than 6 weeks and was flexible.

【0021】 [0021]

【表2】 [Table 2]

【0022】[比較例1]L−ラクチド65モル%とε
−カプロラクトン35モル%の共重合体から、厚さ約1
00μmのフィルムを作製した。このフィルムは、37
℃で物性を測定した結果、表3に示すように実施例で得
られたものにくらべて相当硬いものであった。このフィ
ルムを37℃の生理食塩液に浸漬して物性の変化を調べ
た結果を表3に示す。
[Comparative Example 1] 65 mol% of L-lactide and ε
-From a copolymer of 35 mol% caprolactone, a thickness of about 1
A film of 00 μm was produced. This film is 37
As a result of measuring the physical properties at ° C, as shown in Table 3, it was considerably harder than those obtained in the examples. Table 3 shows the results obtained by immersing the film in a physiological saline solution at 37 ° C. and examining changes in physical properties.

【0023】[0023]

【表3】 [Table 3]

【0024】[比較例2]D,L−ラクチド80モル%
とε−カプロラクトン20モル%の共重合体から、厚さ
約100μmのフィルムを作製した。このフィルムは表
4に示すように柔軟性に富んだものであったが、37℃
の生理食塩液に浸漬したところ、3週間後にはフィルム
が収縮してしまい、生体内で長期間機能を果たさせるに
は問題のあるものであった。
Comparative Example 2 D, L-lactide 80 mol%
A film having a thickness of about 100 μm was prepared from the copolymer of 20 mol% of ε-caprolactone. This film was highly flexible as shown in Table 4, but at 37 ° C.
When it was dipped in the physiological saline solution, the film contracted after 3 weeks, which was a problem for achieving a long-term function in vivo.

【0025】[0025]

【表4】 [Table 4]

【0026】以上の実施例及び比較例からわかるよう
に、単独では硬すぎたりあるいは分解速度が速く長期間
生体内で機能を果たすことができないフィルムでも、両
者を積層することにより、柔軟性を維持しつつ長期間機
能を果たすことのできるフィルムを得ることができる。
As can be seen from the above Examples and Comparative Examples, even if the film is too hard alone or has a high decomposition rate and cannot function in a living body for a long period of time, the flexibility is maintained by laminating both. It is possible to obtain a film that can function for a long period of time.

【0027】[0027]

【発明の効果】本発明によれば、異なる特性を持った生
体分解性のフィルム同士を積層することにより、それぞ
れのフィルムが単独で有する長所を維持し短所を解消し
たフィルムを得ることができる。とくに、分解が遅いが
硬いフィルムと、柔軟であるが分解の速いフィルムを積
層することにより、柔軟で分解の遅いフィルムを製造す
ることができるので、生体に刺激を与えずに長期間機能
を果たすことができ、生体内に埋植するためのフィルム
として好適である。そのような用途としては、癒着防止
膜が代表的であり、その他臓器の保護や補綴等の用途に
優れた機能を発揮する。
According to the present invention, by laminating biodegradable films having different properties, it is possible to obtain a film in which the advantages of each film are maintained and the disadvantages thereof are eliminated. In particular, by laminating a hard film that is slowly decomposed but a film that is flexible but rapidly decomposed, it is possible to produce a film that is flexible and slowly decomposed, so that it functions for a long time without stimulating the living body. It is suitable as a film for implantation in a living body. An adhesion prevention film is typical as such an application, and exhibits excellent functions in other applications such as organ protection and prosthesis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の生体分解性医療用フィルムの実施例を
示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a biodegradable medical film of the present invention.

【図2】本発明の生体分解性医療用フィルムの他の実施
例を示す断面図である。
FIG. 2 is a cross-sectional view showing another embodiment of the biodegradable medical film of the present invention.

【符号の説明】[Explanation of symbols]

1,3,4,6,8 柔軟層 2,5,7 硬質層 1,3,4,6,8 Flexible layer 2,5,7 Hard layer

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 生体内での分解特性および/または物理
特性の異なる生体分解性フィルムを2以上積層してなる
ことを特徴とする医療用フィルム。
1. A medical film comprising a stack of two or more biodegradable films having different in vivo degradability and / or physical properties.
【請求項2】 物理特性が柔軟性である請求項1記載の
医療用フィルム。
2. The medical film according to claim 1, wherein the physical property is flexibility.
【請求項3】 比較的生体内での分解が遅く柔軟性の劣
る層と、比較的分解が速く柔軟な層が積層されてなる請
求項2記載の医療用フィルム。
3. The medical film according to claim 2, wherein a layer having a relatively slow decomposition in a living body and being inferior in flexibility and a layer having a relatively rapid decomposition and being flexible are laminated.
【請求項4】 比較的生体内での分解が遅く柔軟性の劣
る層が内部に1層以上あり、最外層が比較的分解が速く
柔軟な層からなる請求項3記載の医療用フィルム。
4. The medical film according to claim 3, wherein one or more layers having relatively slow decomposition in a living body and poor flexibility are provided inside, and the outermost layer is composed of a flexible layer having relatively rapid decomposition.
【請求項5】 比較的生体内での分解が遅く柔軟性の劣
る層が中心に1層あり、その両側に比較的分解が速く柔
軟な層が積層されてなる請求項4記載の医療用フィル
ム。
5. The medical film according to claim 4, wherein a layer having relatively low decomposition in vivo and poor flexibility is present in the center, and a flexible layer having relatively rapid decomposition is laminated on both sides thereof. .
【請求項6】 比較的生体内での分解が遅く柔軟性の劣
る層がL−ラクチド−ε−カプロラクトン共重合体から
なり、比較的分解が速く柔軟な層がD,L−ラクチド−
ε−カプロラクトン共重合体からなる請求項3〜5のい
ずれかの項に記載の医療用フィルム。
6. A layer which is relatively slow in vivo degrading and inferior in flexibility is composed of an L-lactide-ε-caprolactone copolymer, and a layer which is relatively fast degrading in flexibility is D, L-lactide-.
The medical film according to any one of claims 3 to 5, which comprises an ε-caprolactone copolymer.
【請求項7】 医療用フィルムが癒着防止膜である請求
項1〜6のいずれかの項に記載の医療用フィルム。
7. The medical film according to claim 1, wherein the medical film is an adhesion prevention film.
【請求項8】 生体内での分解特性および/または物理
特性の異なるフィルム同志を積層し、好ましい特性のフ
ィルムを製造することを特徴とする生体分解性医療用フ
ィルムの製造方法。
8. A method for producing a biodegradable medical film, which comprises laminating films having different in vivo degradability and / or physical properties to produce a film having preferable properties.
【請求項9】 物理特性が柔軟性である請求項8記載の
生体分解性医療用フィルムの製造方法。
9. The method for producing a biodegradable medical film according to claim 8, wherein the physical property is flexibility.
【請求項10】 比較的生体内での分解が遅く柔軟性の
劣る層と、比較的分解が速く柔軟な層を積層することを
特徴とする請求項9記載の生体分解性医療用フィルムの
製造方法。
10. The method for producing a biodegradable medical film according to claim 9, wherein a layer having a relatively slow decomposition in a living body and inferior flexibility and a layer having a relatively rapid decomposition and a flexible layer are laminated. Method.
JP32836995A 1995-11-22 1995-11-22 Biodegradable medical film and method for producing the same Expired - Fee Related JP3500482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32836995A JP3500482B2 (en) 1995-11-22 1995-11-22 Biodegradable medical film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32836995A JP3500482B2 (en) 1995-11-22 1995-11-22 Biodegradable medical film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09140785A true JPH09140785A (en) 1997-06-03
JP3500482B2 JP3500482B2 (en) 2004-02-23

Family

ID=18209487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32836995A Expired - Fee Related JP3500482B2 (en) 1995-11-22 1995-11-22 Biodegradable medical film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3500482B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017815A1 (en) * 1997-10-06 1999-04-15 Gunze Limited Artificial dura mater and process for producing dura mater
WO2006022358A1 (en) * 2004-08-24 2006-03-02 Teijin Limited Laminated body
US7041713B2 (en) 2000-04-28 2006-05-09 Gunze Limited Artificial dura mater
JP2006297064A (en) * 2005-03-23 2006-11-02 Jms Co Ltd Antiadhesive film
JP2007204524A (en) * 2006-01-31 2007-08-16 Teijin Ltd Biodegradable honeycomb structure adhesive film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999017815A1 (en) * 1997-10-06 1999-04-15 Gunze Limited Artificial dura mater and process for producing dura mater
US6514291B1 (en) 1997-10-06 2003-02-04 Gunze Limited Artificial dura mater and process for producing dura mater
KR100419563B1 (en) * 1997-10-06 2004-02-19 군제 가부시키가이샤 Artificial dura mater and process for producing dura mater
US6846330B2 (en) 1997-10-06 2005-01-25 Gunze Limited Artificial dura mater and process for producing dura mater
US7041713B2 (en) 2000-04-28 2006-05-09 Gunze Limited Artificial dura mater
WO2006022358A1 (en) * 2004-08-24 2006-03-02 Teijin Limited Laminated body
JP2006297064A (en) * 2005-03-23 2006-11-02 Jms Co Ltd Antiadhesive film
JP2007204524A (en) * 2006-01-31 2007-08-16 Teijin Ltd Biodegradable honeycomb structure adhesive film

Also Published As

Publication number Publication date
JP3500482B2 (en) 2004-02-23

Similar Documents

Publication Publication Date Title
EP1539044B1 (en) Film for medical Implantation
US6075180A (en) Carvable PTFE implant material
EP0334046B1 (en) Surgical composite structure having absorbable and nonabsorbable components
US5061276A (en) Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US4816339A (en) Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US4916193A (en) Medical devices fabricated totally or in part from copolymers of recurring units derived from cyclic carbonates and lactides
US5185408A (en) Medical devices fabricated totally or in part from copolymers of recurring units derived from cyclic carbonates and lactides
JPH06504702A (en) Bioresorbable materials and products made from such materials for medical applications
JP4772669B2 (en) Artificial dura mater and method for producing the same
RU2631890C1 (en) Polymer composite with shape memory effect for 3d-printing of medical equipment
JP3500482B2 (en) Biodegradable medical film and method for producing the same
Berman et al. The use of gore‐tex® E‐ptfe bonded to silicone rubber as an alloplastic implant material
CA2355592A1 (en) Resorbable, synthetic medical coating material, method for its manufacture and its use in medicine
WO2015163289A1 (en) Polymer laminate
DE102007063214A1 (en) Flat implant, especially for hernia care
EP2163269A1 (en) Artificial dura mater
KR102164581B1 (en) Manufacturing method of artificial skin for robot using 3D printing
JP2018531752A (en) Surgical implant
ITTO980138A1 (en) COATED VASCULAR PROSTHESIS AND PROCEDURE FOR ITS PRODUCTION.
CN215690222U (en) Barrier film
JPH07285192A (en) Resin laminate
KR20190061944A (en) A multi-functional medical suture with micropatterns on the surface and a method thereof
JP4143807B2 (en) Dermal regeneration base material
JP2002325830A (en) Bone tissue regeneration guiding membrane
KR20210054012A (en) Polymer tubes with controlled orientation

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees