JPH0913974A - Air bleeder for air cooler - Google Patents

Air bleeder for air cooler

Info

Publication number
JPH0913974A
JPH0913974A JP7159097A JP15909795A JPH0913974A JP H0913974 A JPH0913974 A JP H0913974A JP 7159097 A JP7159097 A JP 7159097A JP 15909795 A JP15909795 A JP 15909795A JP H0913974 A JPH0913974 A JP H0913974A
Authority
JP
Japan
Prior art keywords
cooling water
cooling
air
water
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7159097A
Other languages
Japanese (ja)
Inventor
Hiroshi Takahashi
浩 高橋
Ryoji Nakano
良治 中野
Chisato Imai
千里 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7159097A priority Critical patent/JPH0913974A/en
Publication of JPH0913974A publication Critical patent/JPH0913974A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE: To prevent the retention of air in cooling water and prevent the deposition of salinity due to the defective flow of the cooling water and the occurrence of the plugging of a cooling pipe caused by it by surely bleeding air from the cooling water path of an air cooler. CONSTITUTION: The cooling water flowing in a forward cooling pipe 2 from a cooling water inlet water chamber 6 is inverted in a cooling water return water chamber 5 and flows in a cooling water outlet water chamber 7 via a return cooling pipe 2. This air cooler is provided with an air bleeding pipe 11 connecting the upper section of the cooling water return water chamber 5 and a cooling water outlet pipe and an air bleeding valve 10 opening or closing the air bleeding pipe 11. The pressure difference between the return water chamber 5 and an output water passage is utilized to bleed air from the upper section of a return passage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はディーゼル機関、特に定
置用あるいは舶用大型ディーゼル機関用空気冷却器のエ
ア抜き装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air bleeder for an air cooler for a diesel engine, especially for a stationary or large marine diesel engine.

【0002】[0002]

【従来の技術】沿岸部に設置される発電用ディーゼル機
関、舶用ディーゼル機関等においては、機関への過給空
気を冷却する空気冷却器は、海水を利用して空気を冷却
する海水冷却方式が採用されている。
2. Description of the Related Art In a diesel engine for power generation, a marine diesel engine, etc. installed in a coastal area, an air cooler for cooling supercharged air to the engine is a seawater cooling system for cooling air by using seawater. Has been adopted.

【0003】図2には、かかる空気冷却器の概略が示さ
れている。図2において、1は冷却器本体であり、その
内部には多数の冷却管(図1参照)が収納されている。
8は冷却水の入口管、9は冷却水の出口管である。6は
冷却水入口水室、7は冷却水出口水室であり、同入口水
室6には上記入口管8が、出口水室7には上記出口管9
が夫々接続されている。
FIG. 2 schematically shows such an air cooler. In FIG. 2, reference numeral 1 denotes a cooler main body, in which a large number of cooling pipes (see FIG. 1) are housed.
Reference numeral 8 is a cooling water inlet pipe, and 9 is a cooling water outlet pipe. 6 is a cooling water inlet water chamber, 7 is a cooling water outlet water chamber, and the inlet water chamber 6 has the inlet pipe 8 and the outlet water chamber 7 has the outlet pipe 9
Are connected respectively.

【0004】5は冷却水返り水室であり、上記冷却管の
半数即ち往きの冷却管は上記冷却水入口水室6と上記返
り水室5とを連通し、残りの半数即ち戻りの冷却管が上
記返り水室5と冷却水出口水室7とを連通している。こ
れにより冷却水は冷却水入口水室6→往きの冷却管→冷
却水返り水室5→戻りの冷却管→冷却水出口水室7のよ
うに流れることとなる。
Reference numeral 5 denotes a cooling water return water chamber. Half of the cooling pipes, that is, the forward cooling pipe communicates the cooling water inlet water chamber 6 with the return water chamber 5, and the remaining half, that is, the returning cooling pipes. Communicates the return water chamber 5 with the cooling water outlet water chamber 7. As a result, the cooling water flows in the order of the cooling water inlet water chamber 6 → the forward cooling pipe → the cooling water return water chamber 5 → the returning cooling pipe → the cooling water outlet water chamber 7.

【0005】上記空気冷却器を備えたディーゼル機関の
運転時において、冷却水の入口管8から冷却水入口水室
6に導入された冷却水(海水)は、同入口水室6から往
きの冷却管に流入し、過給機(図示せず)から導入され
る過給空気と熱交換しこれを冷却した後、冷却水返り水
室5に入り、ここで反転して戻りの冷却管内に入り、再
び上記過給空気と熱交換してこれを冷却した後、冷却水
出口水室7に流出し、出口管9へと送出される。
During operation of the diesel engine equipped with the air cooler, the cooling water (seawater) introduced into the cooling water inlet water chamber 6 from the cooling water inlet pipe 8 is cooled forward from the inlet water chamber 6. After exchanging heat with the supercharged air introduced from a supercharger (not shown) and cooling it, it enters the cooling water return water chamber 5 where it reverses and enters the return cooling pipe. After again exchanging heat with the supercharged air to cool it, it flows out to the cooling water outlet water chamber 7 and is delivered to the outlet pipe 9.

【0006】上記空気冷却器において、冷却水中に空気
が混入すると冷却水の流動不良を起すため、冷却器の最
上部つまり冷却水出口水室7の上部あるいは冷却水返り
水室5の上部にエア抜き口を設け、同エア抜き口と外部
に設けたホッパー22とを接続するエア抜き管20を設
けている。21は同エア抜き管路20を開閉するエア抜
き弁である。
In the above air cooler, if air is mixed into the cooling water, the flow of the cooling water will be poor. An air vent is provided, and an air vent tube 20 is provided to connect the air vent and an externally provided hopper 22. Reference numeral 21 is an air vent valve that opens and closes the air vent conduit 20.

【0007】[0007]

【発明が解決しようとする課題】上記従来のディーゼル
機関用空気冷却器にあっては、上記のような冷却水中へ
の空気の混入を防止するためのエア抜き管20を設けて
いるが、同エア抜き管20を使用したエア抜きは、運転
者が適時にエア抜き弁21を開弁し、空気冷却器内の上
部に溜った空気をエア抜き管20へと抜き出していた。
In the conventional air cooler for a diesel engine described above, the air vent pipe 20 for preventing the entry of air into the cooling water as described above is provided. In the air bleeding using the air bleeding tube 20, the driver opened the air bleeding valve 21 at a proper time to bleed out the air accumulated in the upper portion of the air cooler to the air bleeding tube 20.

【0008】このため、運転者の失念や、エア抜き弁の
開弁タイミング及び/又は再度の設定の誤り等により、
空気冷却器のエア抜きが、適正な時期にエア抜き弁21
の適正な開度で以って行われないことが多々ある。この
エア抜きが確実に行なわれないと、冷却管内における冷
却水が流動不良を起こし、これにより、冷却管内の冷却
水が過給空気に熱せられて高温となり、冷却水中から塩
分が析出する。かかる塩分の析出現象が繰り返される
と、冷却管内にこの析出塩が貯って冷却管が詰り、これ
による空気冷却器の性能低下、ひいては機関の性能低下
が誘起される。
Therefore, due to the driver's forgetfulness, the opening timing of the air bleeding valve and / or the setting error again,
The air bleeding valve 21
There are many cases where it is not performed with the proper opening degree. If this air bleeding is not performed reliably, the cooling water in the cooling pipe will flow poorly, and the cooling water in the cooling pipe will be heated by the supercharged air to a high temperature and salt will precipitate from the cooling water. When such a precipitation phenomenon of salt content is repeated, the precipitated salt is stored in the cooling pipe and the cooling pipe is clogged, which causes deterioration of the performance of the air cooler, and thus deterioration of the performance of the engine.

【0009】本発明の目的は、空気冷却器の冷却水路中
からの空気の抜き出しを確実に行い得るようにして、冷
却水中への空気の滞溜を阻止し、冷却水の流動不良によ
る塩分の析出及びこれにより引き起される冷却管の詰ま
りの発生を防止した空気冷却器を提供することである。
The object of the present invention is to ensure that the air can be extracted from the cooling water passage of the air cooler, to prevent the accumulation of air in the cooling water, and to prevent salinity due to poor flow of the cooling water. An object of the present invention is to provide an air cooler that prevents deposition and clogging of a cooling pipe caused thereby.

【0010】[0010]

【課題を解決するための手段】本発明は、上記問題点を
解決するもので、その要旨とする点は、冷却水入口水室
及び冷却水出口水室と冷却水返り水室との間に多数の冷
却管を設け、海水等の冷却水を上記冷却水入口水室から
往きの冷却管を経て上記冷却水返り水室へ流し、同返り
水室で折り返して戻りの冷却管を経て上記冷却水出口水
室へ流出せしめて、過給機から機関へ送給される過給空
気を上記冷却水にて冷却するように構成された空気冷却
器において、上記冷却水返り水室と上記冷却水出口水室
よりも下流側の冷却水出口水路とを接続するエア抜き管
と、同エア抜き管路を開閉するエア抜き弁とを備えたこ
とである。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and the gist of the invention is to provide a cooling water inlet water chamber, a cooling water outlet water chamber, and a cooling water return water chamber. A large number of cooling pipes are provided, and cooling water such as seawater is flowed from the cooling water inlet water chamber to the cooling water return water chamber via the outflow cooling pipe, and then returned to the cooling water return water chamber to return to the cooling pipe via the return cooling pipe. In an air cooler configured to cool the supercharged air, which is sent from the supercharger to the engine, to the water outlet water chamber by the cooling water, the cooling water return water chamber and the cooling water. An air vent pipe that connects the cooling water outlet water passage downstream of the outlet water chamber, and an air vent valve that opens and closes the air vent pipe.

【0011】この場合、好ましくは、上記冷却水返り水
室の最上部にエア抜き管の接続部を設け、ここよりエア
抜き管を上方に立ち上がらせた後冷却水出口側に接続す
る。
In this case, preferably, a connection portion of an air vent pipe is provided at the uppermost part of the cooling water return water chamber, and the air vent pipe is raised from here and then connected to the cooling water outlet side.

【0012】また、本発明に係るエア抜き装置は、冷却
水が海水の場合に特に好適であるが、勿論清水を冷却水
とする場合にも適用可能である。
Further, the air bleeding device according to the present invention is particularly suitable when the cooling water is seawater, but can also be applied when the fresh water is used as the cooling water.

【0013】[0013]

【作用】本発明は上記のように構成されているので、機
関の運転中は常時エア抜き弁が開放され、冷却水返り水
室と冷却水出口水路とは常時連通されているが、冷却水
返り水室の冷却水圧力が、同返り水室と冷却水出口水路
との間の冷却管内における圧力損失の分だけ冷却水出口
水路の圧力よりも高いため、冷却水返り水室の上部に溜
った空気は常時冷却水の出口側へと流れる。
Since the present invention is constructed as described above, the air bleeding valve is always open during operation of the engine, and the cooling water return water chamber and the cooling water outlet water passage are always in communication with each other. The cooling water pressure in the return water chamber is higher than the pressure in the cooling water outlet water channel by the amount of the pressure loss in the cooling pipe between the return water chamber and the cooling water outlet water channel. The air constantly flows to the outlet side of the cooling water.

【0014】これにより冷却水中に混入した空気は全て
エア抜き弁からエア抜き管を経て冷却水出口側へと流れ
ることとなり、冷却管内に空気が滞溜し、冷却水の流動
不良を引き起すようなことはない。
As a result, all the air mixed in the cooling water flows from the air bleeding valve to the cooling water outlet side through the air bleeding pipe, and the air stays in the cooling pipe, causing a poor flow of the cooling water. There is no such thing.

【0015】[0015]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。図1には本発明の実施例に係る海水冷却式デ
ィーゼル機関用空気冷却器の構造図が示されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a structural view of an air cooler for a seawater cooling type diesel engine according to an embodiment of the present invention.

【0016】図1において1は空気冷却器の本体、2は
同本体1内に多数収納された冷却管である。6は冷却水
入口水室、7は冷却水出口水室であり、両水室6,7は
隔壁71にて仕切られている。
In FIG. 1, 1 is a main body of an air cooler, and 2 is a cooling pipe housed in the main body 1. 6 is a cooling water inlet water chamber, 7 is a cooling water outlet water chamber, and both water chambers 6 and 7 are partitioned by a partition wall 71.

【0017】5は冷却水返り水室であり、上記冷却管2
の半分(往き側)は上記冷却水入口水室6と冷却水返り
水室5とに連通され、冷却管2の残りの半分(戻り側)
は冷却水返り水室5と冷却水出口水室7とに連通されて
いる。3は冷却水入口、8は図示しないポンプ出口に接
続される冷却水の入口管、4は冷却水出口、9は冷却水
の出口管である。
Reference numeral 5 denotes a cooling water return water chamber, which is the cooling pipe 2
Half (outward side) communicates with the cooling water inlet water chamber 6 and the cooling water return water chamber 5, and the other half of the cooling pipe 2 (return side)
Is connected to the cooling water return water chamber 5 and the cooling water outlet water chamber 7. Reference numeral 3 is a cooling water inlet, 8 is a cooling water inlet pipe connected to a pump outlet (not shown), 4 is a cooling water outlet, and 9 is a cooling water outlet pipe.

【0018】11はエア抜き管であり、上記冷却水返り
水室5の最上部と冷却水の出口管9とを接続している。
10は同エア抜き管路11を開閉するエア抜き弁であ
る。このエア抜き管11は、上記のように、冷却水返り
水室5の最上部から上方に立ち上がらせた後、水平に延
設して出口管9に接続して、空気冷却器の最上部に溜っ
た空気が円滑に出口側へ抜き出せるようにしている。
An air vent pipe 11 connects the uppermost portion of the cooling water return water chamber 5 and the cooling water outlet pipe 9.
Reference numeral 10 is an air vent valve that opens and closes the air vent conduit 11. As described above, the air vent pipe 11 is made to rise from the uppermost portion of the cooling water return water chamber 5 and then extends horizontally to be connected to the outlet pipe 9 so as to be connected to the uppermost portion of the air cooler. The collected air can be smoothly extracted to the outlet side.

【0019】また上記エア抜き弁10は、冷却水返り水
室5に近接させて設けるのが好ましく、さらに、上記エ
ア抜き管11の内径は10〜15mm程度が適切である。
The air vent valve 10 is preferably provided close to the cooling water return water chamber 5, and the inner diameter of the air vent pipe 11 is preferably about 10 to 15 mm.

【0020】上記のように構成された海水冷却式空気冷
却器を備えたディーゼル機関の運転時において、冷却水
ポンプ(図示せず)から圧送された冷却水(海水)は入
口管8から冷却水入口3を経て冷却水入口水室6に一た
ん溜められ、さらに同入口水室6に開口する往き側の冷
却管2内を通って、過給機(図示せず)からの過給空気
と熱交換し、これを冷却して冷却水返り水室5に流入す
る。
During operation of the diesel engine equipped with the seawater cooling type air cooler constructed as described above, the cooling water (seawater) pumped from the cooling water pump (not shown) is cooled by the inlet pipe 8. After being temporarily stored in the cooling water inlet water chamber 6 through the inlet 3, and further passing through the inside of the cooling pipe 2 on the forward side opening to the inlet water chamber 6, the supercharged air from the supercharger (not shown) is supplied. Heat is exchanged, this is cooled, and the cooling water returns to the return water chamber 5.

【0021】さらに上記冷却水はこの冷却水返り水室5
で流れを反転して戻り側の冷却管2に入り、再び過給空
気と熱交換してこれを冷却した後、冷却水出口水室7に
流出し、冷却水出口4を通って出口管9を経て外部に排
出される。
Further, the cooling water is the cooling water return water chamber 5
After reversing the flow to enter the cooling pipe 2 on the return side, heat exchange with the supercharged air again to cool it, and then it flows out to the cooling water outlet water chamber 7, passes through the cooling water outlet 4, and exit pipe 9 And then discharged to the outside.

【0022】冷却水中に混入した空気は空気冷却器の最
上部である冷却水返り水室5の上部に溜る。機関の運転
中は、上記エア抜き弁10は常時開放されており、上記
返り水室5の上部に溜った空気はエア抜き弁10及びエ
ア抜き管11を通って、冷却水の出口管9に流出する。
The air mixed in the cooling water accumulates in the upper part of the cooling water return water chamber 5 which is the uppermost part of the air cooler. During operation of the engine, the air vent valve 10 is always open, and the air accumulated in the upper portion of the return water chamber 5 passes through the air vent valve 10 and the air vent pipe 11 to the cooling water outlet pipe 9. leak.

【0023】この過程をさらに詳しく説明する。This process will be described in more detail.

【0024】P1 =冷却水入口水室6内の圧力 P0 =冷却水出口水室7の圧力 PR =冷却水返り水室5の圧力 ΔP=冷却管2の圧力損失 とすると、次式が成立つ。P 1 = pressure in the cooling water inlet water chamber 6 P 0 = pressure in the cooling water outlet water chamber 7 P R = pressure in the cooling water return water chamber 5 ΔP = pressure loss in the cooling pipe 2 Is established.

【0025】PR =P1 −ΔP P0 =PR −ΔP よってPR >P0 ,P0 =P1 −2ΔPとなる。P R = P 1 -ΔP P 0 = P R -ΔP Therefore, P R > P 0 , P 0 = P 1 -2ΔP.

【0026】従って、冷却水返り水室5の圧力PR が冷
却水出口水室7の圧力P0 よりも常時高くなる。これに
より、機関の運転中、常時エア抜き弁10を開放してい
ても、上記のような圧力差(PR >P0 )により、冷却
水返り水室5内の上部に溜った空気はエア抜き弁10及
びエア抜き管11を経て冷却水出口管9に導かれる。
Therefore, the pressure P R of the cooling water return water chamber 5 is always higher than the pressure P 0 of the cooling water outlet water chamber 7. As a result, even if the air bleeding valve 10 is always open during the operation of the engine, the pressure difference (P R > P 0 ) as described above causes the air accumulated in the upper portion of the cooling water return water chamber 5 to be air. It is guided to the cooling water outlet pipe 9 through the vent valve 10 and the air vent pipe 11.

【0027】これにより、空気冷却器内に空気が滞溜す
ることが無くなり、冷却管2内における冷却水の流れは
円滑となり、従来のもののような冷却管2内における冷
却水の流動不良のため、過給空気によって冷却水が加熱
され塩分を析出し、これにより冷却管2が閉塞されると
いう不具合の発生が未然に防止される。
As a result, the air is not accumulated in the air cooler, the flow of the cooling water in the cooling pipe 2 becomes smooth, and the flow of the cooling water in the cooling pipe 2 unlike the conventional one is poor. The cooling water is heated by the supercharged air to deposit salt, which prevents the occurrence of the problem that the cooling pipe 2 is blocked.

【0028】尚、上記エア抜き管11は、その管内径を
10〜15mm程度とすれば、空気冷却器の冷却機能への
影響は無い。
If the inner diameter of the air vent pipe 11 is about 10 to 15 mm, it does not affect the cooling function of the air cooler.

【0029】[0029]

【発明の効果】本発明によれば、冷却水入口水室から往
きの冷却管を流れた冷却水を冷却水返り水室で反転さ
せ、戻りの冷却管を経て冷却水出口水室に流れるように
構成された空気冷却器において、冷却水返り水室の上部
と冷却水出口管路とを接続するエア抜き管路と、同エア
抜き管路を開閉するエア抜き弁とを設けたので、冷却水
返り水室上部に溜った空気は、この部位と冷却水出口水
路との圧力差により常時出口水路側へと流すことがで
き、空気冷却器内における空気の滞溜の発生が阻止され
る。
According to the present invention, the cooling water flowing from the cooling water inlet water chamber to the cooling water return water chamber is reversed in the cooling water return water chamber, and the cooling water flows to the cooling water outlet water chamber via the return cooling pipe. In the air cooler configured as described above, an air vent pipe connecting the upper part of the cooling water return water chamber and the cooling water outlet pipe, and an air vent valve opening and closing the air vent pipe are provided, The air accumulated in the upper part of the water return water chamber can be constantly flowed to the outlet water channel side due to the pressure difference between this portion and the cooling water outlet water channel, and the accumulation of air in the air cooler is prevented.

【0030】これにより、冷却管内における冷却水の流
れは円滑となり、従来のもののように、空気の滞溜によ
る冷却管内の冷却水の流動不良のため、冷却水が過給空
気に加熱されて塩分が析出され、これがために冷却管が
閉塞されるという不具合が発生するようなことは無く、
高い空気冷却器性能を発揮できる。
As a result, the flow of the cooling water in the cooling pipe becomes smooth, and due to the poor flow of the cooling water in the cooling pipe due to the accumulation of air as in the conventional case, the cooling water is heated by the supercharged air and salt content is increased. Is not deposited, which does not cause the problem that the cooling pipe is blocked,
It can exhibit high air cooler performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る海水冷却式空気冷却器の
構造図。
FIG. 1 is a structural diagram of a seawater cooling type air cooler according to an embodiment of the present invention.

【図2】従来の空気冷却器の構造図(図1応当図)。FIG. 2 is a structural diagram of a conventional air cooler (corresponding diagram in FIG. 1).

【符号の説明】[Explanation of symbols]

1 空気冷却器本体 2 冷却管 5 冷却水返り水室 6 冷却水入口水室 7 冷却水出口水室 8 入口管 9 出口管 10 エア抜き弁 11 エア抜き管 1 Air Cooler Main Body 2 Cooling Pipe 5 Cooling Water Return Water Chamber 6 Cooling Water Inlet Water Chamber 7 Cooling Water Outlet Water Chamber 8 Inlet Pipe 9 Outlet Pipe 10 Air Venting Valve 11 Air Venting Pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷却水入口水室及び冷却水出口水室と冷
却水返り水室との間に多数の冷却管を設け、海水等の冷
却水を上記冷却水入口水室から往きの冷却管を経て上記
冷却水返り水室へ流し、日返り水室で折り返して戻りの
冷却管を経て上記冷却水出口水室へ流出せしめて、過給
機から機関へ送給される過給空気を上記冷却水にて冷却
するように構成された空気冷却器において、上記冷却水
返り水室と上記冷却水出口水室よりも下流側の冷却水出
口水路とを接続するエア抜き管と、同エア抜き管路を開
閉するエア抜き弁とを備えたことを特徴とする空気冷却
器のエア抜き装置。
1. A plurality of cooling pipes are provided between a cooling water inlet water chamber, a cooling water outlet water chamber, and a cooling water return water chamber, and cooling water such as seawater flows out from the cooling water inlet water chamber. Through the cooling water return water chamber, fold back in the day return water chamber and flow out to the cooling water outlet water chamber through the return cooling pipe, and the supercharged air sent from the supercharger to the engine In an air cooler configured to be cooled by cooling water, an air vent pipe that connects the cooling water return water chamber and a cooling water outlet water channel on the downstream side of the cooling water outlet water chamber, and the same air vent An air bleeding device for an air cooler, comprising: an air bleeding valve that opens and closes a pipeline.
JP7159097A 1995-06-26 1995-06-26 Air bleeder for air cooler Withdrawn JPH0913974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7159097A JPH0913974A (en) 1995-06-26 1995-06-26 Air bleeder for air cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7159097A JPH0913974A (en) 1995-06-26 1995-06-26 Air bleeder for air cooler

Publications (1)

Publication Number Publication Date
JPH0913974A true JPH0913974A (en) 1997-01-14

Family

ID=15686179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7159097A Withdrawn JPH0913974A (en) 1995-06-26 1995-06-26 Air bleeder for air cooler

Country Status (1)

Country Link
JP (1) JPH0913974A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258655A (en) * 2010-06-07 2011-12-22 Denso Corp Semiconductor device having semiconductor module
US8186159B2 (en) * 2005-05-31 2012-05-29 Valeo Systemes Thermiques Intake air cooler for dual-state turbocharging turbocompressed heat engine and corresponding air circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8186159B2 (en) * 2005-05-31 2012-05-29 Valeo Systemes Thermiques Intake air cooler for dual-state turbocharging turbocompressed heat engine and corresponding air circuit
JP2011258655A (en) * 2010-06-07 2011-12-22 Denso Corp Semiconductor device having semiconductor module

Similar Documents

Publication Publication Date Title
US5746270A (en) Heat exchanger for marine engine cooling system
US6971377B2 (en) Exhaust gas recirculation cooler with bypass flow
US8794299B2 (en) 2-Pass heat exchanger including thermal expansion joints
RU2384713C2 (en) Optimised oil cooling system for internal combustion engine
US20090260605A1 (en) Staged arrangement of egr coolers to optimize performance
US8360135B2 (en) Mold cooling device
CN110410237B (en) EGR integrated system and intake manifold thereof
CN101473112B (en) Oil module comprising an integrated cooling water channel
JP2009052495A (en) Egr cooler bypass changeover system
US20070271910A1 (en) Heat Exchange Tube Bundle for Regulating the Temperature of the Gases Entering an Internal Combustion Engine of a Motor Vehicle
US6135064A (en) Engine drain system
US6006730A (en) Arrangement for integrated handling of liquid and gaseous media for an internal combustion engine
JPH1113551A (en) Egr cooler
JPH0913974A (en) Air bleeder for air cooler
KR930004768B1 (en) Cooling system for v-type engine
US5111774A (en) Engine cooling system
JP4184129B2 (en) Double pipe
CN115324706A (en) Engine cooling water circulation system and control method thereof
JPH0124333Y2 (en)
JP2009091947A (en) Exhaust gas recirculator
JPH1113550A (en) Egr cooler
JPH11324821A (en) Egr device for internal combustion engine with supercharger
ES2112719A1 (en) Heat exchanger, in particular a cross-flow cooler, (radiator, cooling heat exchanger) for internal combustion engines
JPH0814111A (en) Egr device of supercharged diesel engine with intercooler
JP2513597Y2 (en) Cooling device for engine cooling water

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903