JPH09137298A - Production of replenishing liquid for copper electroplating and copper electroplating method by using this replenishing liquid - Google Patents
Production of replenishing liquid for copper electroplating and copper electroplating method by using this replenishing liquidInfo
- Publication number
- JPH09137298A JPH09137298A JP29263895A JP29263895A JPH09137298A JP H09137298 A JPH09137298 A JP H09137298A JP 29263895 A JP29263895 A JP 29263895A JP 29263895 A JP29263895 A JP 29263895A JP H09137298 A JPH09137298 A JP H09137298A
- Authority
- JP
- Japan
- Prior art keywords
- plating
- copper oxide
- liquid
- copper
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電気銅めっき用補
充液の製造法とその補充液を用いた電気銅めっき方法に
関する。TECHNICAL FIELD The present invention relates to a method for producing a replenisher for electrolytic copper plating and a method for electrolytic copper plating using the replenisher.
【0002】[0002]
【従来の技術】無電解銅めっきや電解銅めっきの銅源に
は、従来、硫酸銅溶液や金属銅が用いられてきたが、近
年、特に、無電解銅めっきにおいては、硫酸イオンとナ
トリウムの反応により、硫酸ナトリウム(Na2SO4)
が生成蓄積することによって、析出銅箔の延び率や抗張
力等が低下することから、このような副反応生成物を生
じない方法として、特公昭59−32542号公報に示
されるように、水酸化銅、酸化銅、炭酸銅及びオキシ塩
化銅等を銅源として使用することが提案されている。2. Description of the Related Art Conventionally, copper sulfate solution or metallic copper has been used as a copper source for electroless copper plating or electrolytic copper plating, but in recent years, particularly in electroless copper plating, sulfate ion and sodium Depending on the reaction, sodium sulfate (Na 2 SO 4 )
As the elongation rate and tensile strength of the deposited copper foil decrease due to the formation and accumulation of the above, as a method of not producing such a side reaction product, as disclosed in JP-B-59-32542, there is no hydroxylation. It has been proposed to use copper, copper oxide, copper carbonate, copper oxychloride and the like as a copper source.
【0003】一方、電気めっきでは、近年、精密なめっ
きとコスト低下が要求されるに従い、水平式の不溶解性
電極を用いた電気めっきが望まれ、この銅源として電解
銅溶解方式に代わり炭酸銅、酸化銅等の銅源が提案され
ている。しかし、酸化銅は一般的に溶解しにくいため、
微粉にする必要があり、また溶解法についても未溶解酸
化銅微粒子が、めっき槽に流入することによるノジュー
ルの発生やざらつき等の製品不良が生じるため、特開平
6−25863号公報や、特開平4−225826号公
報に開示されているように、直接、酸化銅の粉体を溶解
槽に添加し強力に撹拌後、ろ過する供給方式が提案され
ている。On the other hand, in electroplating, electroplating using a horizontal insoluble electrode is desired in accordance with recent demands for precise plating and cost reduction. As the copper source, carbon dioxide is used instead of the electrolytic copper melting method. Copper sources such as copper and copper oxide have been proposed. However, since copper oxide is generally difficult to dissolve,
It is necessary to make fine powder, and also in the melting method, since undissolved copper oxide fine particles flow into the plating tank to cause product defects such as generation of nodules and roughness, JP-A-6-25863 and JP-A-6-25863. As disclosed in Japanese Patent Laid-Open No. 4-225826, a supply system has been proposed in which a powder of copper oxide is directly added to a dissolution tank, strongly stirred, and then filtered.
【0004】[0004]
【発明が解決しようとする課題】酸化銅をめっきの銅源
として利用する場合の共通する課題としては、酸化銅の
溶解性の改善方法や、瞬時に溶解できない超微粉のめっ
き槽への流入防止方法があり、更に微粉状の酸化銅は、
移送時や溶解時、容器からの飛散による作業環境汚染及
び容器中や移送配管中でのブロッキングによる閉塞等の
問題があり、取扱性や使い勝手にも改善が望まれてい
た。When copper oxide is used as a copper source for plating, common problems are a method of improving the solubility of copper oxide and prevention of inflow of ultrafine powder that cannot be dissolved instantly into a plating tank. There is a method, moreover finely powdered copper oxide,
There are problems such as contamination of the work environment due to scattering from the container during transfer or dissolution, and blockage due to blocking in the container or transfer pipe, and improvement in handleability and usability has been desired.
【0005】[0005]
【課題を解決するための手段】本発明の電気銅めっき用
補充液の製造法は、水、酸、アルカリ溶液もしくは有機
溶媒に、5〜50μmの酸化銅粉末を混合し、この混合
溶液中の酸化銅粉末を湿式粉砕機により粒径5μm以下
の微粉末に粉砕し、この微粉末混合溶液に、めっき液の
一部を加え、酸化銅を溶解することを特徴とする。The method for producing a replenisher for electrolytic copper plating according to the present invention comprises mixing 5 to 50 .mu.m of copper oxide powder with water, an acid, an alkaline solution or an organic solvent, and adding the solution in the mixed solution. The copper oxide powder is pulverized by a wet pulverizer into fine powder having a particle size of 5 μm or less, and a part of the plating solution is added to the fine powder mixed solution to dissolve the copper oxide.
【0006】[0006]
【発明の実施の形態】本発明において、酸化銅の溶解性
を向上させるための手段として、5〜50μmの酸化銅
の微粉を用い、水もしくは、メタノールやエタノール等
のアルコール類や脂肪酸及びそのエステル類その他の適
当なアルカリ、酸溶液及び溶剤等と撹拌混合し、次い
で、高速回転ができる湿式超粉砕機を用いて、粒径が5
μm以下となるように超微粉化を行うことである。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, as means for improving the solubility of copper oxide, fine powder of copper oxide of 5 to 50 μm is used, and water or alcohols such as methanol and ethanol, fatty acids and esters thereof are used. Stir-mix with other suitable alkali, acid solution, solvent, etc., and then use a wet type super pulverizer capable of high speed rotation to obtain a particle size of 5
It is to carry out ultra-fine pulverization so that it becomes less than or equal to μm.
【0007】次いで、この超微粉化した液状の酸化銅
を、ポンプ等で混合溶解槽に供給し、めっき槽により抜
き出しためっき液の一部と混合、撹拌しながらめっき液
に溶解させるものである。さらには、この溶解液を限外
ろ過膜を備えた限外ろ過装置で循環ろ過し、溶解した銅
分のみの膜を透過させて、めっき槽に供給することが好
ましい。Next, this ultrafine powdered liquid copper oxide is supplied to a mixing and dissolving tank by a pump or the like, mixed with a part of the plating solution extracted by the plating tank, and dissolved in the plating solution while stirring. . Furthermore, it is preferable that the solution is circulated and filtered by an ultrafiltration device equipped with an ultrafiltration membrane, the membrane containing only the dissolved copper component is permeated, and the solution is supplied to the plating tank.
【0008】一般的に、物質の溶解速度は、その物質特
有の物性と温度や濃度及び混合撹拌強度等に加え、特に
被溶解物質の粒径、比表面積が重要な条件である。従っ
て、先ず微粉化することが溶解速度を向上させる最適な
方法である。本発明では、5〜50μmの酸化銅を純水
と混合後、流通管型の湿式超微粉砕機で5μm以下、望
ましくは1μm以下まで微粉化する。この方法はまた、
粉体が微細になればなるほど飛散し易くなることや、凝
集による疑似粒子に成長することを防ぎ、かつ液状の微
粉末であることにより、めっき液に微粉末のまま添加す
るのに比較し、めっき液中での分散性がはるかに良好で
溶解速度が増大する。しかし、微粉化したといえども結
晶粒子のめっき液への瞬時の溶解は困難である。そこ
で、この僅かに存在する微粒子を限外ろ過膜によりろ過
し、溶解銅イオンのみを透過させる。ここにおいて、限
外ろ過膜を用いたろ過形式は、中空糸タイプやチューブ
ラタイプ、平膜タイプ等のろ過膜に対し、被ろ過溶液中
の固形物は膜表面上を滑るように流れ、透過液は垂直方
向に流れるいわゆるクロスフロー方式であることが重要
で、一般的な膜ろで生じる閉塞の問題を大きく避けるこ
とができる。特に、無電解めっき液のろ過における閉塞
は、酸化銅粉の還元が生じ、めっきが不可能になる事態
を避けることができる。また、限外ろ過膜の孔径は、通
常0.005〜1μmといわれているが、望ましくは
0.01μm以下の孔径が良く、溶解途中の未溶解酸化
銅微粒子は透過されず、混合溶解槽に返送され、繰り返
し限外ろ過膜を循環させて次第に溶解するようになる。In general, the dissolution rate of a substance is a condition in which the particle size and the specific surface area of the substance to be dissolved are particularly important in addition to the physical properties peculiar to the substance, the temperature and the concentration, the mixing stirring strength and the like. Therefore, pulverization is the best method for improving the dissolution rate. In the present invention, 5 to 50 μm of copper oxide is mixed with pure water, and then finely pulverized to 5 μm or less, preferably 1 μm or less with a flow tube type wet ultrafine pulverizer. This method also
The finer the powder, the easier it is to scatter, and the growth of pseudo-particles due to aggregation is prevented, and by being a liquid fine powder, it is compared with the addition of fine powder as it is to the plating solution. The dispersibility in the plating solution is much better and the dissolution rate is increased. However, even if it is pulverized, it is difficult to instantaneously dissolve the crystal particles in the plating solution. Therefore, the slightly present fine particles are filtered by an ultrafiltration membrane to allow only dissolved copper ions to pass through. Here, the filtration method using the ultrafiltration membrane is such that the solid matter in the solution to be filtered is slid on the membrane surface as compared with the hollow fiber type, the tubular type, the flat membrane type, etc. It is important to use a so-called cross-flow method that flows in the vertical direction, and the problem of blockage that occurs in a general membrane filter can be largely avoided. In particular, the blockage in the filtration of the electroless plating solution can avoid the situation where the copper oxide powder is reduced and the plating becomes impossible. Further, the pore size of the ultrafiltration membrane is usually said to be 0.005 to 1 μm, but preferably the pore size is 0.01 μm or less, and undissolved copper oxide fine particles in the course of dissolution are not permeated, so that they are not mixed in the mixing and dissolution tank. It is returned and repeatedly circulated through the ultrafiltration membrane to gradually dissolve.
【0009】[0009]
【実施例】以下、実施例につき図1で説明する。まず、
平均粒径5μmの粒状酸化銅粉1を20部と、純水2を
80部とを撹拌混合し、この混合溶液3を定量ポンプ4
にて、ジルコニアビーズを用いた回転数1500rpm
の流通管型の湿式超微粉砕機5で循環しながら粉砕し
た。この結果、酸化銅粉末は、更に平均粒径0.2μm
の微粉となり、混合溶液は粘性の高い溶液6となった。
この液状の酸化銅6を、プリント配線板製造のための無
電解めっきの銅源にすべく無電解めっき槽7の一部のめ
っき液8をポンプ9により抜き取り、混合溶解槽10で
混合し、この混合めっき液11を、限外ろ過循環ポンプ
12で中空糸タイプの限外ろ過膜13であるSLP−1
053(旭化成工業株式会社製、商品名)に、平均圧
2.5kg/cm2で通液した。この結果、僅かに瞬時
に溶解できなかった酸化銅微粉はろ別され、溶解した酸
化銅は銅イオンとしてろ過膜を透過し、めっき液14と
してめっき槽に供給することができた。未溶解の酸化銅
粒子は、めっき液の一部と再び混合溶解槽に返送され、
徐々に溶解できた。また、電気めっきに関してもめっき
液組成や、めっき方式が異なるのみで、根本的な溶解供
給方法は、全く同一方法で可能である。EXAMPLES Examples will be described below with reference to FIG. First,
20 parts of granular copper oxide powder 1 having an average particle diameter of 5 μm and 80 parts of pure water 2 are mixed by stirring, and this mixed solution 3 is metered by a metering pump 4
At 1500 rpm using zirconia beads
The liquid was pulverized while being circulated by the wet type ultrafine pulverizer 5 of the distribution tube type. As a result, the copper oxide powder has an average particle diameter of 0.2 μm.
And became a fine powder, and the mixed solution became a highly viscous solution 6.
In order to use this liquid copper oxide 6 as a copper source for electroless plating for manufacturing a printed wiring board, a part of the plating solution 8 in the electroless plating tank 7 is extracted by a pump 9 and mixed in a mixing and dissolving tank 10. This mixed plating solution 11 is used as an SLP-1 which is a hollow fiber type ultrafiltration membrane 13 by an ultrafiltration circulation pump 12.
The solution was passed through 053 (trade name, manufactured by Asahi Kasei Kogyo Co., Ltd.) at an average pressure of 2.5 kg / cm 2 . As a result, the copper oxide fine powder that could not be dissolved slightly instantaneously was filtered off, and the dissolved copper oxide was able to pass through the filtration membrane as copper ions and be supplied to the plating tank as the plating solution 14. Undissolved copper oxide particles are returned to the mixing and dissolving tank with a part of the plating solution,
It was able to dissolve gradually. Further, regarding electroplating, only the composition of the plating solution and the plating method are different, and the fundamental dissolution and supply method can be the same method.
【0010】[0010]
【発明の効果】従来より酸化銅をめっきに使う効果は認
められていたが、溶解性が悪いことや未溶解性の微粉が
めっき槽に流入することでめっき製品へ、ノジュールや
ざらつきが発生する問題点があり、重ねて貯蔵性、移送
性、取扱い性が悪い等の問題があった。本発明の結果、
酸化銅の液状化と超微粉化を行うことと、この液状酸化
銅を限外ろ過方式でろ過することで、ほぼこれらの問題
を解決することができた。なお、本方式ではめっき液の
全量を限外ろ過することになるので、めっき特性に悪影
響を及ぼす微細な異物も混合溶解槽に濃縮除去できる効
果も大きい。EFFECT OF THE INVENTION Although the effect of using copper oxide for plating has been conventionally recognized, nodule and roughness are generated on a plated product due to poor solubility and insoluble fine powder flowing into the plating tank. There were problems, and there were problems such as poor storability, transportability, and handleability. As a result of the present invention,
By liquefying copper oxide and pulverizing it, and filtering this liquid copper oxide by an ultrafiltration method, these problems could be almost solved. In this method, since the whole amount of the plating solution is ultrafiltered, fine foreign substances that adversely affect the plating characteristics can be concentrated and removed in the mixing and dissolving tank.
【図1】本発明の一実施例を示す概要図である。FIG. 1 is a schematic diagram showing one embodiment of the present invention.
1 酸化銅粉 2 純水 3 混合溶液 4 定量ポンプ 5 湿式超微粉砕機 6 液状の超微粉酸化銅 7 無電解めっき槽 8 無電解めっき液 9 無電解めっき液引き抜きポンプ 10 混合溶解槽 11 混合めっき液 12 限外ろ過循環ポンプ 13 限外ろ過膜 14 透過めっき液 15 プリント配線板 1 Copper oxide powder 2 Pure water 3 Mixed solution 4 Metering pump 5 Wet ultrafine pulverizer 6 Liquid ultrafine copper oxide 7 Electroless plating tank 8 Electroless plating solution 9 Electroless plating solution drawing pump 10 Mixing dissolution tank 11 Mixed plating Liquid 12 Ultrafiltration circulation pump 13 Ultrafiltration membrane 14 Permeation plating liquid 15 Printed wiring board
───────────────────────────────────────────────────── フロントページの続き (72)発明者 末光 敏雄 東京都千代田区神田駿河台3−1−2 日 立化成テクノプラント株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Suemitsu 3-1-2 Kanda Surugadai, Chiyoda-ku, Tokyo Hitsukasei Techno Plant Co., Ltd.
Claims (2)
に、5〜50μmの酸化銅粉末を混合し、この混合溶液
中の酸化銅粉末を湿式粉砕機により粒径5μm以下の微
粉末に粉砕し、この微粉末混合溶液に、めっき液の一部
を加え、酸化銅を溶解することを特徴とする電気銅めっ
き用補充液の製造法。1. A copper oxide powder of 5 to 50 μm is mixed with water, an acid, an alkaline solution or an organic solvent, and the copper oxide powder in this mixed solution is pulverized by a wet pulverizer into fine powder having a particle diameter of 5 μm or less. A method for producing a replenisher for electrolytic copper plating, which comprises adding a part of a plating solution to the fine powder mixed solution to dissolve copper oxide.
に、5〜50μmの酸化銅粉末を混合し、この混合溶液
中の酸化銅粉末を湿式粉砕機により粒径5μm以下の微
粉末に粉砕し、この微粉末混合溶液に、めっき液の一部
を加え、酸化銅を溶解し、限外ろ過膜を用いて溶解した
銅成分をめっき槽に供給することを特徴とする電気銅め
っき方法。2. Water, an acid, an alkaline solution or an organic solvent is mixed with 5 to 50 μm of copper oxide powder, and the copper oxide powder in this mixed solution is pulverized by a wet pulverizer into fine powder having a particle size of 5 μm or less. A method of electrolytic copper plating, which comprises adding a part of a plating solution to the mixed solution of fine powder, dissolving copper oxide, and supplying the dissolved copper component to a plating tank using an ultrafiltration membrane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29263895A JPH09137298A (en) | 1995-11-10 | 1995-11-10 | Production of replenishing liquid for copper electroplating and copper electroplating method by using this replenishing liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29263895A JPH09137298A (en) | 1995-11-10 | 1995-11-10 | Production of replenishing liquid for copper electroplating and copper electroplating method by using this replenishing liquid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09137298A true JPH09137298A (en) | 1997-05-27 |
Family
ID=17784385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29263895A Pending JPH09137298A (en) | 1995-11-10 | 1995-11-10 | Production of replenishing liquid for copper electroplating and copper electroplating method by using this replenishing liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09137298A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102756129A (en) * | 2012-08-09 | 2012-10-31 | 安徽奥力机械科技有限公司 | Lead-melting-free cutter adjusting device for granulator |
JP2018178141A (en) * | 2017-04-03 | 2018-11-15 | 株式会社荏原製作所 | Plating system and plating method |
CN109729650A (en) * | 2017-10-27 | 2019-05-07 | 北大方正集团有限公司 | The gold salt adding method and system of chemical sinking nickel gold thread |
CN112585303A (en) * | 2018-08-22 | 2021-03-30 | 株式会社荏原制作所 | Solid copper oxide material for use in plating of substrates, method for producing the same, and apparatus for supplying plating solution to plating tank |
-
1995
- 1995-11-10 JP JP29263895A patent/JPH09137298A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102756129A (en) * | 2012-08-09 | 2012-10-31 | 安徽奥力机械科技有限公司 | Lead-melting-free cutter adjusting device for granulator |
JP2018178141A (en) * | 2017-04-03 | 2018-11-15 | 株式会社荏原製作所 | Plating system and plating method |
CN109729650A (en) * | 2017-10-27 | 2019-05-07 | 北大方正集团有限公司 | The gold salt adding method and system of chemical sinking nickel gold thread |
CN109729650B (en) * | 2017-10-27 | 2020-10-16 | 北大方正集团有限公司 | Gold salt adding method and system for chemical nickel-depositing gold wire |
CN112585303A (en) * | 2018-08-22 | 2021-03-30 | 株式会社荏原制作所 | Solid copper oxide material for use in plating of substrates, method for producing the same, and apparatus for supplying plating solution to plating tank |
CN112585303B (en) * | 2018-08-22 | 2021-09-17 | 株式会社荏原制作所 | Solid copper oxide, method for producing solid copper oxide, and plating solution supply device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101197386B1 (en) | Process for manufacture of nanometric, monodisperse, and stable metallic silver and product obtained therefrom | |
CN104418388B (en) | The technique of a kind of ultra-fine powder of cobalt carbonate of continuous production and device thereof | |
CN104010770B (en) | Grinding-material renovation process and regeneration grinding-material | |
JP5148821B2 (en) | Flake silver powder production method and flake silver powder produced by the production method | |
JP5226688B2 (en) | Process for producing monodisperse and stable nanometer magnesium hydroxide and product thereof | |
CN103282969A (en) | Stable dispersions of monocrystalline nanometric silver particles | |
JPH09137298A (en) | Production of replenishing liquid for copper electroplating and copper electroplating method by using this replenishing liquid | |
CN114420372B (en) | Preparation method of nano silver powder for preparing silver electrode on back of solar cell | |
JP2003313030A (en) | High tap density basic cobalt carbonate powder and production method thereof | |
JP4473620B2 (en) | Silver paste | |
JP2002544382A (en) | Nickel hydroxide manufacturing method | |
US7297179B2 (en) | Method of producing metal particles, and metal oxide obtained from the particles | |
JP5427080B2 (en) | Fine particle production method and fine particle production apparatus | |
EP1741761B1 (en) | Carbon black paint and method for manufacturing the same | |
US9586822B2 (en) | Size and morphologically controlled nanostructures for energy storage | |
DE60033766T2 (en) | GRANULES AS A SUPPORTING MATERIAL FOR SURFACTANTS AND METHOD FOR THE PRODUCTION THEREOF | |
JP2010022894A (en) | Method and apparatus for producing ultrafine particles | |
JPH11189812A (en) | Manufacture of granular silver powder | |
JP2018053342A (en) | Production method of silver powder and production apparatus of silver powder | |
CN117361651B (en) | Middle-nickel low-cobalt small-particle ternary precursor and preparation method thereof | |
CN111377833B (en) | Preparation method of AC foaming agent | |
JP2009242913A (en) | Silver powder, and method for producing the same | |
CN109536725A (en) | Printed plate board etching waste liquor processing method, copper nanoparticle and preparation method thereof | |
WO2023032894A1 (en) | Nanoparticle production method | |
JP2008274424A (en) | Process for producing fine silver particle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041209 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050407 |