JPH09136078A - Treatment method for power station drainage - Google Patents

Treatment method for power station drainage

Info

Publication number
JPH09136078A
JPH09136078A JP7295226A JP29522695A JPH09136078A JP H09136078 A JPH09136078 A JP H09136078A JP 7295226 A JP7295226 A JP 7295226A JP 29522695 A JP29522695 A JP 29522695A JP H09136078 A JPH09136078 A JP H09136078A
Authority
JP
Japan
Prior art keywords
drainage
wastewater
copolymer
acrylic acid
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7295226A
Other languages
Japanese (ja)
Inventor
Masanori Sasaki
雅教 佐々木
Hidenori Takahashi
英紀 高橋
Tomoaki Ito
智章 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP7295226A priority Critical patent/JPH09136078A/en
Publication of JPH09136078A publication Critical patent/JPH09136078A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely prevent the adhesion of scale without needing pretreatment by a method in which when drainage from a power station is evaporated and concentrated, the pH of the drainage is adjusted between a weak acid area and a neutral area and added with a water soluble polymer such as acrylic acid type polymer or copolymer, and the mixture is evaporated and concentrated. SOLUTION: Flue gas desulfurizartion drainage is stored in a pH adjustment tank 1 from a drainage supply line (aa), and the pH of the drainage is adjusted between a weak acid area and a neutral area by injecting a sodium hydroxide aqueous solution. Next, the drainage is supplied to an evaporation-concentration apparatus 2 by a drainage supply pump 9, the pressure is reduced by a vacuum pump 12, and the drainage is brought into a heated state. A water soluble polymer selected from acrylic acid type polymer or copolymer, maleic acid type polymer or copolymer, and sulfonic acid type polymer or copolymer is added from storage tanks 6, 7. While steam generated in the evaporation- concentration apparatus 2 being discharged outside the system by a condensed water pump 13, the obtained concentrated liquid is discharged to a concentration tank 4 through a concentrated liquid circulating pump 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、火力発電所、原子
力発電所等の発電所から排出される排水の蒸発濃縮処理
法に関し、特に火力発電所から排出される排煙脱硫排水
の処理に好適な蒸発濃縮法に関するものである。
TECHNICAL FIELD The present invention relates to a method for evaporative concentration treatment of wastewater discharged from power plants such as thermal power plants and nuclear power plants, and is particularly suitable for treating flue gas desulfurization wastewater discharged from thermal power plants. The present invention relates to a simple evaporative concentration method.

【0002】[0002]

【従来の技術】硫黄分が含まれている重油や石炭等を燃
料として使用する火力発電所において、公害を防止する
ために排煙されるガスを脱硫する必要がある。脱硫に
は、さまざまな技術が提案されているが、排煙脱硫処理
により硫酸イオン等を多量に含む排水が生成する。
2. Description of the Related Art In a thermal power plant that uses heavy oil or coal containing sulfur as a fuel, it is necessary to desulfurize the exhausted gas in order to prevent pollution. Although various technologies have been proposed for desulfurization, flue gas desulfurization produces wastewater containing a large amount of sulfate ions and the like.

【0003】従来、排煙脱硫プロセスから排出された排
水の処理方法としては、排水に凝集剤を添加して沈殿さ
せる凝集沈殿濾過法が一般的である。しかしながら、凝
集沈殿濾過法は、凝集沈殿装置を設置するための広い面
積が必要であり、さらに多量の廃スラッジが発生するた
め運転管理が煩雑となる欠点を有している。特に火力火
力発電所における排煙脱硫排水を処理するためには、2
段の凝集沈殿によるフッ素除去や、COD吸着設備を必
要とするなど複雑な工程や設備を必要とし、その運転経
費、添加薬品費さらには保守費用の面で不経済であっ
た。
Conventionally, as a method of treating wastewater discharged from a flue gas desulfurization process, a coagulation sedimentation filtration method in which a coagulant is added to wastewater to precipitate the wastewater is generally used. However, the coagulation-sedimentation filtration method has a disadvantage that a large area is required for installing the coagulation-sedimentation apparatus, and a large amount of waste sludge is generated, so that operation management is complicated. In particular, in order to treat flue gas desulfurization wastewater in thermal power plants, 2
Fluorine removal by coagulating sedimentation in stages and COD adsorption equipment are required for complicated processes and equipment, which is uneconomical in terms of operating costs, added chemical costs, and maintenance costs.

【0004】一方、凝集沈殿濾過法に代わる処理法とし
て、火力火力発電所から排出される排水を蒸発濃縮する
蒸発濃縮法が提案されている。蒸発濃縮法は、凝集沈殿
濾過法と比して、システムが簡素で設置面積も少ないと
いう利点を有している。
On the other hand, as an alternative treatment method to the coagulation sedimentation filtration method, an evaporation concentration method has been proposed in which waste water discharged from a thermal power plant is concentrated by evaporation. The evaporative concentration method has the advantages that the system is simple and the installation area is small compared to the coagulation sedimentation filtration method.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、火力発
電所から排出される排水、特に排煙脱硫排水中には、石
膏(CaSO4・2H2O)等の多量のスケール成分が含
まれているため、蒸発濃縮法で排水を処理しようとする
と、蒸発濃縮工程においてスケールが生成し、蒸発濃縮
器の伝熱管にスケールが付着して伝熱効率が低下した
り、配管の閉塞等により連続的に処理することは困難で
ある。したがって、蒸発濃縮法で排水を処理するために
は、前処理としてスケール成分を除去する必要がある。
スケール成分を除去する方法や設備としては、以下の方
法が提案されている。
However, wastewater discharged from thermal power plants, especially flue gas desulfurization wastewater, contains a large amount of scale components such as gypsum (CaSO 4 .2H 2 O). When trying to treat wastewater by the evaporative concentration method, scale is generated in the evaporative concentration step, and the scale adheres to the heat transfer tube of the evaporative concentrator to reduce the heat transfer efficiency, or it is continuously processed due to blockage of the pipe etc. Is difficult. Therefore, in order to treat the wastewater by the evaporative concentration method, it is necessary to remove the scale component as a pretreatment.
The following methods have been proposed as methods and equipment for removing scale components.

【0006】すなわち、発電所の排煙脱硫プロセスから
排出される排水に対し、炭酸ガスまたは炭酸ソーダを添
加して軟化処理する方法(特開昭51−102357
号)や、濾過装置と電気透析装置によりSO4イオンを
分離除去して石膏の析出を抑制し、蒸発濃縮装置の故障
・配管の閉塞および性能低下を防止する方法(特開平5
−131193号)などが提案されている。
That is, a method of adding carbon dioxide or sodium carbonate to the waste water discharged from the flue gas desulfurization process of a power plant for softening treatment (Japanese Patent Laid-Open No. 51-102357).
And a method for separating and removing SO 4 ions by a filtration device and an electrodialysis device to suppress the precipitation of gypsum, thereby preventing failure of the evaporative concentration device, blockage of pipes, and deterioration of performance (Japanese Patent Laid-Open No. Hei 5 (1994)).
No. 131131) has been proposed.

【0007】しかし、上記のような前処理でスケール成
分を除去する方法は、前処理のための装置が必要であ
り、設置スペースの縮小やシステムの簡素化といった蒸
発濃縮法の利点が損なわれる。したがって、火力発電所
の排水処理において、蒸発濃縮法で実用化されたプラン
トはないのが現状である。
However, the method of removing the scale component by the pretreatment as described above requires an apparatus for the pretreatment, and the advantages of the evaporative concentration method such as the reduction of the installation space and the simplification of the system are impaired. Therefore, in the wastewater treatment of thermal power plants, there is currently no plant that has been put to practical use by the evaporative concentration method.

【0008】本発明が解決しようとする課題は、上記排
煙脱硫排水等の発電所から排出される排水を蒸発濃縮法
により処理するに際し、前処理を必要とせず、かつスケ
ール付着を確実に防止することのできる蒸発濃縮処理方
法を提供することにある。
[0008] The problem to be solved by the present invention is that when the wastewater discharged from a power plant such as the flue gas desulfurization wastewater is treated by an evaporative concentration method, no pretreatment is required and scale adhesion is surely prevented. An object of the present invention is to provide an evaporative concentration treatment method that can be performed.

【0009】[0009]

【課題を解決するための手段】本発明者らは、蒸発濃縮
工程で生成するスケールを分析したところCa系のみな
らずシリカ系のスケールが存在することを見出し、これ
らの複合系のスケールを有効に抑制する特定のスケール
防止剤を添加することにより上記課題を解決しうること
を見出し本発明を完成するに至った。
The present inventors have found that when the scale produced in the evaporative concentration step is analyzed, not only Ca-based but also silica-based scale exists, and the scale of these composite systems is effective. The inventors have found that the above-mentioned problems can be solved by adding a specific scale inhibitor that suppresses the above, and have completed the present invention.

【0010】すなわち、本発明は、発電所から排出され
る排水を蒸発濃縮する方法において、排水のpHを弱酸
性から中性に維持あるいは調整し、アクリル酸系重合体
または共重合体、マレイン酸系重合体または共重合体、
およびスルホン酸系重合体または共重合体から選ばれる
少なくとも1種以上の水溶性高分子化合物を添加して濃
縮処理することを特徴とする発電所排水の処理方法に関
するものである。
That is, the present invention is a method for evaporating and concentrating wastewater discharged from a power plant, in which the pH of the wastewater is maintained or adjusted from weakly acidic to neutral, and an acrylic acid-based polymer or copolymer or maleic acid is used. System polymer or copolymer,
The present invention also relates to a method for treating wastewater from a power plant, which comprises adding at least one water-soluble polymer compound selected from sulfonic acid polymers or copolymers and concentrating the mixture.

【0011】[0011]

【発明の実施の形態】本発明方法の処理対象となる排水
とは、火力発電所、原子力発電所から排出される排水で
あり、特にスケール分の多い火力発電所の排煙脱硫プロ
セスから排出される排水であるが、補給水処理装置(除
濁濾過装置や純水装置)の再生排水、機器ドレンなどの
一般排水にも適用できる。
BEST MODE FOR CARRYING OUT THE INVENTION Wastewater to be treated by the method of the present invention is wastewater discharged from a thermal power plant or a nuclear power plant, and particularly discharged from a flue gas desulfurization process of a thermal power plant with a large amount of scale. However, it is also applicable to reclaimed wastewater from makeup water treatment equipment (turbidity filtration equipment and pure water equipment) and general wastewater such as equipment drains.

【0012】本発明方法は、上記のような発電所から排
出される排水を効率的に蒸発濃縮処理するために、排水
のpHを弱酸性から中性、好ましくはpH4〜6に維持
または調整して特定の水溶性高分子を添加することを特
徴とする。
The method of the present invention maintains or adjusts the pH of the wastewater from weakly acidic to neutral, preferably pH 4 to 6, in order to efficiently evaporate and concentrate the wastewater discharged from the power plant as described above. And a specific water-soluble polymer is added.

【0013】本発明おいて、処理対象となる排水のpH
が弱酸性から中性である場合は、そのままのpHに維持
し、排水のpHが弱酸性から中性の範囲を超える場合
は、苛性ソーダや塩酸等により排水のpHを調整すれば
よい。処理排水のpHを弱酸性または中性に維持または
調整することにより、水酸化マグネシウムや炭酸カルシ
ウム等のアルカリスケールの生成を抑制することができ
る。
In the present invention, the pH of wastewater to be treated is
If the pH is weakly acidic to neutral, the pH of the wastewater is maintained as it is, and if the pH of the wastewater exceeds the range of weakly acidic to neutral, the pH of the wastewater may be adjusted with caustic soda, hydrochloric acid or the like. By maintaining or adjusting the pH of the treated wastewater to be weakly acidic or neutral, the production of alkaline scale such as magnesium hydroxide and calcium carbonate can be suppressed.

【0014】本発明方法で添加する水溶性高分子は、カ
ルシウム系のスケールとシリカ系のスケールの発生を抑
制する作用を有する化合物であり、例えば、アクリル酸
系重合体、マレイン酸系重合体、スルホン酸系重合体な
どのホモポリマー、共重合体としては(メタ)アクリル
酸/アクリルアミド共重合体、(メタ)アクリル酸/ス
チレンスルホン酸共重合体、マレイン酸/スチレンスル
ホン酸共重合体、アクリル酸/メタアクリル酸共重合
体、マレイン酸/イソブチレン共重合体、およびこれら
のアルカリ金属塩、アンモニウム塩等の2元共重合体を
挙げることができる。これらの水溶性高分子の分子量
は、200〜100000、好ましくは500〜300
00のものが好適である。
The water-soluble polymer added in the method of the present invention is a compound having an action of suppressing the generation of calcium-based scales and silica-based scales, such as acrylic acid-based polymers and maleic acid-based polymers. Homopolymers such as sulfonic acid polymers, copolymers include (meth) acrylic acid / acrylamide copolymers, (meth) acrylic acid / styrene sulfonic acid copolymers, maleic acid / styrene sulfonic acid copolymers, acrylics Examples thereof include acid / methacrylic acid copolymers, maleic acid / isobutylene copolymers, and binary copolymers such as alkali metal salts and ammonium salts thereof. The molecular weight of these water-soluble polymers is 200 to 100,000, preferably 500 to 300.
00 is preferred.

【0015】アクリル酸系共重合体のなかでも、(A)
(メタ)アクリル酸またはそれらの塩、(B)2−アク
リルアミド−2−メチルプロパンスルホン酸、および
(C)ビニルエステル、酢酸ビニルおよび置換アクリル
アミドからなる群より選ばれる少なくとも1種の(A)
〜(C)の単位からなる3元共重合体がシリカ系のスケ
ール抑制効果が大きく好ましい。上記(A)〜(C)の
割合は、(A)を5〜90重量%、(B)を5〜50重
量%、(C)を5〜50重量%とすることが好ましい。
また、3元共重合体の分子量は1000〜25000、
好ましくは約2500〜約10000が好適である。上
記3元共重合体を製造するには、(メタ)アクリル酸の
低分子量コポリマーの一般的な合成法を採用すればよ
い。
Among the acrylic acid type copolymers, (A)
(Meth) acrylic acid or salts thereof, (B) 2-acrylamido-2-methylpropanesulfonic acid, and (C) at least one (A) selected from the group consisting of vinyl ester, vinyl acetate and substituted acrylamide.
A terpolymer comprising units (C) to (C) is preferred because of its large silica-based scale inhibiting effect. The ratio of (A) to (C) is preferably 5 to 90% by weight of (A), 5 to 50% by weight of (B), and 5 to 50% by weight of (C).
The molecular weight of the terpolymer is 1000 to 25,000,
It is preferably about 2500 to about 10,000. In order to produce the above terpolymer, a general synthesis method of a low molecular weight copolymer of (meth) acrylic acid may be adopted.

【0016】すなわち、例えば(A)(メタ)アクリル
酸またはそれらの塩、(B)2−アクリルアミド−2−
メチルプロパンスルホン酸、および(C)ビニルエステ
ル、酢酸ビニルおよび置換アクリルアミドからなる群よ
り選ばれる少なくとも1種の単量体を、水中またはイソ
プロパノール等の溶媒中で、過酸化水素、過硫酸カリウ
ムまたは過酸化ベンゾイル等の重合開始剤を用いて、1
20〜200℃の温度で、25〜50重量%の重合濃度
で重合させればよい。
That is, for example, (A) (meth) acrylic acid or a salt thereof, (B) 2-acrylamido-2-
Methyl propane sulfonic acid and at least one monomer selected from the group consisting of (C) vinyl ester, vinyl acetate and substituted acrylamide are treated with hydrogen peroxide, potassium persulfate or persulfate in water or a solvent such as isopropanol. Using a polymerization initiator such as benzoyl oxide, 1
Polymerization may be performed at a temperature of 20 to 200 ° C. and a polymerization concentration of 25 to 50% by weight.

【0017】また、上記の高分子化合物は、いずれも原
排水に対して1〜500ppm、好ましくは5〜100
ppmの濃度となるように添加すればよい。
The above-mentioned polymer compounds are all contained in the raw wastewater at 1 to 500 ppm, preferably 5 to 100 ppm.
It may be added so that the concentration becomes ppm.

【0018】本発明方法において、蒸発濃縮法は公知の
ものを採用できるが、図1に蒸発濃縮プロセスの一例を
フロー図で示す。本発明方法が好適に実施される排煙脱
硫排水は通常pH1〜2程度の酸性であり、これを排水
供給ラインaaよりpH調整槽1に貯め、苛性ソーダ貯
槽5から苛性ソーダ注入ポンプ8を介して苛性ソーダ水
溶液を注入し、排煙脱硫排水のpHを弱酸性から中性に
調整する。
In the method of the present invention, a known evaporation concentration method can be adopted, and FIG. 1 is a flow chart showing an example of the evaporation concentration process. The flue gas desulfurization wastewater to which the method of the present invention is preferably carried out is usually acidic with a pH of about 1 to 2, and is stored in the pH adjusting tank 1 from the wastewater supply line aa, and is stored in the caustic soda storage tank 5 via the caustic soda injection pump 8 to generate caustic soda. An aqueous solution is injected to adjust the pH of the flue gas desulfurization wastewater from weakly acidic to neutral.

【0019】pH調整した排水を排水供給ポンプ9を介
して蒸発濃縮器2に供給する。蒸発濃縮器2はコンデン
サ3を介して真空ポンプ12により約−500mmHg
の減圧状態とし、加熱蒸気ラインbbより供給される蒸
気を加熱源とし、運転温度は約70℃とする。水溶性高
分子の水溶液は、2種類の水溶性高分子を併用添加する
場合はこれらを水溶性高分子貯槽6,7に溶解し、貯槽
6、7より蒸発濃縮器2内に吸引流入させる。なお、1
種類の水溶性高分子を添加する場合は貯槽6または7の
いずれか一つを設置すればよく、また水溶性高分子は、
pH調整槽1に注入してもよい。
The pH-adjusted waste water is supplied to the evaporative concentrator 2 via the waste water supply pump 9. The evaporating concentrator 2 is supplied with a vacuum pump 12 through a condenser 3 to about -500 mmHg.
, The steam supplied from the heating steam line bb is used as a heating source, and the operating temperature is about 70 ° C. When two kinds of water-soluble polymers are added together, the aqueous solution of the water-soluble polymer is dissolved in the water-soluble polymer storage tanks 6 and 7, and is sucked into the evaporative concentrator 2 from the storage tanks 6 and 7. In addition, 1
When adding a kind of water-soluble polymer, it is sufficient to install either one of the storage tanks 6 or 7, and the water-soluble polymer is
It may be injected into the pH adjusting tank 1.

【0020】蒸発濃縮器2内で蒸発した蒸気はコンデン
サ3で凝縮し、凝縮水ポンプ13により系外へ排出す
る。ラインcc、ddはコンデンサ3に出入りする冷却
水のラインである。一方、蒸発濃縮器2で濃縮された濃
縮液は濃縮液循環ポンプ10を介して常時循環され、一
定の濃度に到達した後、濃縮液排出ポンプ11により濃
縮タンク4に排出される。また、加熱蒸気のドレンは蒸
気ドレンポンプ14によって排出される。
The vapor evaporated in the evaporative concentrator 2 is condensed in the condenser 3 and discharged to the outside of the system by the condensed water pump 13. Lines cc and dd are lines for cooling water flowing into and out of the condenser 3. On the other hand, the concentrated liquid concentrated in the evaporating concentrator 2 is constantly circulated through the concentrated liquid circulation pump 10, and after reaching a certain concentration, is discharged to the concentration tank 4 by the concentrated liquid discharge pump 11. The drain of the heated steam is discharged by the steam drain pump 14.

【0021】なお、蒸発濃縮器は、水平伝熱管方式で
も、竪型の薄膜方式でもよい。また、加熱も、上記によ
うな外部加熱方式でも、自己蒸気圧縮型でもよい。
The evaporative concentrator may be a horizontal heat transfer tube system or a vertical thin film system. Further, the heating may be performed by the external heating method as described above or the self vapor compression type.

【0022】[0022]

【実施例】以下に、実施例により本発明を詳細に説明す
るが、本発明はこれらの実施例により限定されるもので
はない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0023】実施例および比較例で用いた排煙脱硫排水
の性状を表1に示す。
Table 1 shows the properties of the flue gas desulfurization wastewater used in Examples and Comparative Examples.

【0024】[0024]

【表1】 [Table 1]

【0025】なお、蒸発濃縮試験は、表1に示した排煙
脱硫排水を、−550mmHgおよび約70℃の濃縮条
件で50倍に蒸発濃縮し、この濃度を維持しながら50
0時間を目標とした連続運転を実施した。
In the evaporative concentration test, the flue gas desulfurization wastewater shown in Table 1 was evaporatively concentrated 50 times under the concentration conditions of -550 mmHg and about 70 ° C., and the concentration was maintained at 50%.
Continuous operation was performed with a target of 0 hours.

【0026】実施例1 排水のpHを5〜6に調整後、マレイン酸系ホモポリマ
ー(重量平均分子量1000)を原水に対して10pp
m添加し、500時間の連続運転を実施した。スケール
析出の指標となる伝熱温度差の上昇は500時間後で約
1℃であったが、伝熱管表面に多少のスケール付着が確
認された。スケールを分析した結果、シリカ成分が主体
であった。
Example 1 After adjusting the pH of waste water to 5 to 6, maleic acid homopolymer (weight average molecular weight 1000) was added to the raw water at 10 pp.
m was added and continuous operation was carried out for 500 hours. The increase in the heat transfer temperature difference, which is an index of scale deposition, was about 1 ° C. after 500 hours, but some scale adhesion was confirmed on the surface of the heat transfer tube. As a result of analyzing the scale, the main component was the silica component.

【0027】実施例2 排水のpHを5〜6に調整後、アクリル酸系3元共重合
物((A)アクリル酸,(B)2−アクリルアミド−2
−メチルプロパンスルホン酸,(C)t−ブチルアクリ
ルアミド、(A):(B):(C)=60:15:2
5、重量平均分子量8000)を原水に対して10pp
m添加し、500時間の連続運転を実施した。
Example 2 After adjusting the pH of waste water to 5 to 6, an acrylic acid-based terpolymer ((A) acrylic acid, (B) 2-acrylamide-2) was used.
-Methylpropanesulfonic acid, (C) t-butyl acrylamide, (A) :( B) :( C) = 60: 15: 2
5, weight average molecular weight 8000) to 10 pp for raw water
m was added and continuous operation was carried out for 500 hours.

【0028】スケール析出の指標となる伝熱温度差の上
昇は500時間後でも認められず、良好な運転結果が得
られた。ただし、目視により伝熱管表面を観察したとこ
ろ僅かなスケール付着が確認された。
No increase in the heat transfer temperature difference, which is an index of scale deposition, was observed even after 500 hours, and good operation results were obtained. However, when the surface of the heat transfer tube was visually observed, slight scale adhesion was confirmed.

【0029】実施例3 排水のpHを5〜6に調整後、実施例2で用いたものと
同じアクリル酸系3元共重合物および実施例1で用いた
ものと同じマレイン酸系ホモポリマーを原水に対して各
々10ppm添加し、500時間の連続運転を実施し
た。
Example 3 After adjusting the pH of the wastewater to 5 to 6, the same acrylic acid terpolymer as used in Example 2 and the same maleic acid homopolymer as used in Example 1 were used. 10 ppm of each was added to the raw water, and continuous operation was carried out for 500 hours.

【0030】スケール析出の指標となる伝熱温度差の上
昇は500時間後でも認められず、良好な運転結果が得
られた。目視により伝熱管表面を観察したところスケー
ルの付着は確認できなかった。
No increase in the heat transfer temperature difference, which is an index of scale deposition, was observed even after 500 hours, and good operation results were obtained. When the surface of the heat transfer tube was visually observed, scale adhesion could not be confirmed.

【0031】比較例1 排水pHを5〜6に調整後、水溶性高分子を添加せず、
蒸発濃縮運転を実施したが、20時間経過後、伝熱温度
差は約1℃上昇し、伝熱管の表面全体にスケールの付着
が確認され、実用運転上の適用性がないことが分かっ
た。スケール成分は、カルシウム系とシリカ系が主体で
あった。
Comparative Example 1 After adjusting the drainage pH to 5 to 6, water-soluble polymer was not added,
The evaporative concentration operation was carried out, but after 20 hours, the heat transfer temperature difference increased by about 1 ° C., adhesion of scale was confirmed on the entire surface of the heat transfer tube, and it was found that there is no applicability in practical operation. The scale components were mainly calcium-based and silica-based.

【0032】比較例2 排水のpHを5〜6に調整後、高分子系に属さない有機
リン酸系スケール防止剤(1−ヒドロキシエチリデン−
1,1−ジホスホン酸)を原水に対し10ppm添加
し、蒸発濃縮試験を実施した。
Comparative Example 2 After adjusting the pH of waste water to 5 to 6, an organic phosphoric acid scale inhibitor (1-hydroxyethylidene-
1,1-diphosphonic acid) was added to the raw water at 10 ppm, and an evaporation concentration test was carried out.

【0033】その結果、伝熱温度差は約100時間で1
℃上昇し、十分なスケール抑制効果を得ることができな
かった。
As a result, the heat transfer temperature difference is 1 in about 100 hours.
However, the temperature was increased by 0 ° C., and a sufficient scale suppressing effect could not be obtained.

【0034】[0034]

【発明の効果】本発明によれば、発電所から排出される
排水の蒸発濃縮処理法において、スケール成分を除去す
る前処理設備なしに、直接排水を処理することが可能と
なり、処理設備、専有面積の点で、効率的かつ経済的に
有利な方法が提供される。
According to the present invention, in the method for evaporative concentration treatment of wastewater discharged from a power plant, it becomes possible to directly treat wastewater without a pretreatment facility for removing scale components. An efficient and economically advantageous method in terms of area is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】蒸発濃縮プロセスの一例を示すフロー図。FIG. 1 is a flowchart showing an example of an evaporative concentration process.

【符号の説明】[Explanation of symbols]

1 pH調整槽 2 蒸発濃縮器 3 コンデンサ 4 濃縮タンク 5 苛性ソーダ貯槽 6 水溶性高分子貯槽 7 水溶性高分子貯槽 8 苛性ソーダ注入ポンプ 9 排水供給ポンプ 10 濃縮液循環ポンプ 11 濃縮液排出ポンプ 12 真空ポンプ 13 凝縮水ポンプ 14 蒸気ドレンポンプ aa 排水供給ライン bb 加熱蒸気ライン cc 冷却水入口ライン dd 冷却水出口ライン 1 pH adjustment tank 2 Evaporative concentrator 3 Condenser 4 Concentration tank 5 Caustic soda storage tank 6 Water-soluble polymer storage tank 7 Water-soluble polymer storage tank 8 Caustic soda injection pump 9 Drainage supply pump 10 Concentrated liquid circulation pump 11 Concentrated liquid discharge pump 12 Vacuum pump 13 Condensed water pump 14 Steam drain pump aa Drainage supply line bb Heating steam line cc Cooling water inlet line dd Cooling water outlet line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 5/10 620 C02F 5/10 620F B01D 53/34 ZAB 125R ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C02F 5/10 620 C02F 5/10 620F B01D 53/34 ZAB 125R

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発電所から排出される排水を蒸発濃縮す
る方法において、排水のpHを弱酸性から中性に維持あ
るいは調整し、アクリル酸系重合体または共重合体、マ
レイン酸系重合体または共重合体、およびスルホン酸系
重合体または共重合体から選ばれる少なくとも1種以上
の水溶性高分子を添加して蒸発濃縮することを特徴とす
る発電所排水の処理方法。
1. A method for evaporating and concentrating wastewater discharged from a power plant, wherein the pH of the wastewater is maintained or adjusted from weakly acidic to neutral, and an acrylic acid polymer or copolymer, a maleic acid polymer or A method for treating wastewater from a power plant, which comprises adding at least one water-soluble polymer selected from a copolymer and a sulfonic acid-based polymer or a copolymer, and evaporating and concentrating the same.
【請求項2】 アクリル酸系共重合体が、(A)(メ
タ)アクリル酸またはそれらの塩、(B)2−アクリル
アミド−2−メチルプロパンスルホン酸、および(C)
ビニルエステル、酢酸ビニルおよび置換アクリルアミド
からなる群より選ばれる少なくとも1種の(A)〜
(C)の単位からなる3元共重合体であることを特徴と
する請求項1記載の発電所排水の処理方法。
2. The acrylic acid-based copolymer is (A) (meth) acrylic acid or a salt thereof, (B) 2-acrylamido-2-methylpropanesulfonic acid, and (C).
At least one (A) selected from the group consisting of vinyl ester, vinyl acetate and substituted acrylamide
The method for treating wastewater of a power plant according to claim 1, which is a terpolymer comprising the unit (C).
【請求項3】 発電所から排出する排水が、排煙脱硫排
水であることを特徴とする請求項1または請求項2に記
載の発電所排水の処理方法。
3. The method for treating power plant wastewater according to claim 1, wherein the wastewater discharged from the power plant is flue gas desulfurization wastewater.
JP7295226A 1995-11-14 1995-11-14 Treatment method for power station drainage Pending JPH09136078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7295226A JPH09136078A (en) 1995-11-14 1995-11-14 Treatment method for power station drainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7295226A JPH09136078A (en) 1995-11-14 1995-11-14 Treatment method for power station drainage

Publications (1)

Publication Number Publication Date
JPH09136078A true JPH09136078A (en) 1997-05-27

Family

ID=17817852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7295226A Pending JPH09136078A (en) 1995-11-14 1995-11-14 Treatment method for power station drainage

Country Status (1)

Country Link
JP (1) JPH09136078A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030002A1 (en) * 2015-08-18 2017-02-23 東亞合成株式会社 Water-soluble polymer composition, production method for water-soluble polymer composition, and application for water-soluble polymer composition
CN112979004A (en) * 2021-03-23 2021-06-18 国能朗新明环保科技有限公司 Thermal power plant whole-plant wastewater zero-discharge treatment system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030002A1 (en) * 2015-08-18 2017-02-23 東亞合成株式会社 Water-soluble polymer composition, production method for water-soluble polymer composition, and application for water-soluble polymer composition
CN107849185A (en) * 2015-08-18 2018-03-27 东亚合成株式会社 Water-soluble polymer composition and its manufacture method and its utilization
CN107849185B (en) * 2015-08-18 2021-01-15 东亚合成株式会社 Water-soluble polymer composition, method for producing same, and use thereof
CN112979004A (en) * 2021-03-23 2021-06-18 国能朗新明环保科技有限公司 Thermal power plant whole-plant wastewater zero-discharge treatment system and method

Similar Documents

Publication Publication Date Title
US4444675A (en) Alkaline scale abatement
JP4651642B2 (en) Wastewater recycling method
CN100569676C (en) A kind of treatment process of percolate
US6391207B1 (en) Treatment of scale
CN105439358A (en) Method and device for realizing zero discharge of desulfurization wastewater
KR20080035688A (en) Ammonium/ammonia removal from a stream
CN102725236A (en) Method and system for reduction of scaling in purification of aqueous solutions
AU2001254646A1 (en) Treatment of scale
CN109836020B (en) Treatment system and method for zero discharge of old landfill leachate
US20040050792A1 (en) Method and system for heat transfer
CN111115735A (en) Two-stage forced circulation evaporation system and process for landfill leachate
CN104909494A (en) Process for impurity removal and purification of industrial high-concentration brine and special equipment of process
JP2520317B2 (en) Ultrapure water production apparatus and method
CN101318716A (en) Film evaporating concentration liquid processing system and processing method
WO2017002744A1 (en) Boiler water treatment apparatus and boiler operation method
JPH09136078A (en) Treatment method for power station drainage
CN213895493U (en) Process system for realizing zero discharge of desulfurization wastewater by using low-temperature flue gas
CN211871447U (en) Two-stage forced circulation evaporation system for landfill leachate
CN1914124A (en) Desalination scale inhibitors
CN112194298B (en) System and method for recycling wastewater of whole power plant
CN105036444B (en) Minimizing and recycling Treated sewage reusing Zero-discharge treating process
CN210367047U (en) Multistage flash distillation desulfurization effluent treatment plant
CN206266378U (en) A kind of processing system of percolate stoste and concentrate mixed liquor
JPH10263558A (en) Treatment of fluorine-containing desulfurized waste water
CN113104914A (en) Concentration and decrement treatment method for chemical nickel waste liquid