JPH09135682A - Pure culturing and separation of microorganism capable of decomposing 2-methylisoborneol and apparatus for purifying treatment of water using the same decomposing microorganism - Google Patents
Pure culturing and separation of microorganism capable of decomposing 2-methylisoborneol and apparatus for purifying treatment of water using the same decomposing microorganismInfo
- Publication number
- JPH09135682A JPH09135682A JP29520895A JP29520895A JPH09135682A JP H09135682 A JPH09135682 A JP H09135682A JP 29520895 A JP29520895 A JP 29520895A JP 29520895 A JP29520895 A JP 29520895A JP H09135682 A JPH09135682 A JP H09135682A
- Authority
- JP
- Japan
- Prior art keywords
- mib
- water
- microorganism
- biological contact
- decomposing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水道水中のカビ臭
物質として知られる2−メチルイソボルネオール(2−
MIB)を分解する2−MIB分解微生物の純粋分離培
養方法および該分解微生物を用いる、河川水を原水と
し、これを処理して上水とするための既設設備の前処理
設備として有用な、原水中のカビ臭原因物質を除去する
浄水処理装置に関する。TECHNICAL FIELD The present invention relates to 2-methylisoborneol (2-
A method for purely separating and culturing 2-MIB degrading microorganisms for degrading MIB) and a method for using the degrading microorganisms, which is useful as a pretreatment facility for existing equipment for treating river water as raw water and treating it as clean water. The present invention relates to a water purification device that removes musty odor-causing substances in water.
【0002】[0002]
【従来の技術】従来、河川原水中のカビ臭物質を除去す
るために用いられている処理方法としては、オゾン処理
法、凝集沈澱法、粉末および粒状活性炭処理法等があ
る。粉末活性炭処理法では、注入率15mg/リットルの
場合、接触時間は30分以上となり、この粉末活性炭処
理のための凝集沈澱処理、濾過等の後処理と、その適切
な運転が必要であり、また、粉末活性炭は再生が不可能
であり、消耗品となる等の問題がある。粒状活性炭処理
法は、粒状活性炭を再生利用できるが、その再生費用や
再生装置等の付帯設備が必要となり、オゾン処理法は、
オゾン発生源、オゾン発生器、排オゾン処理等の設備が
必要なため建設費がかかり、また、電力費等のランニン
グコストが高くなるという問題点がある。2. Description of the Related Art Conventionally, treatment methods used for removing musty odor substances in raw river water include an ozone treatment method, a coagulation sedimentation method, a powder and granular activated carbon treatment method and the like. In the powdered activated carbon treatment method, when the injection rate is 15 mg / liter, the contact time is 30 minutes or more, which requires post-treatment such as coagulation-sedimentation treatment and filtration for the treatment of powdered activated carbon, and appropriate operation thereof. However, powdered activated carbon cannot be regenerated, and there is a problem that it becomes a consumable product. In the granular activated carbon treatment method, granular activated carbon can be recycled, but the regeneration cost and incidental equipment such as a regeneration device are required, and the ozone treatment method is
There is a problem that construction costs are required because equipments such as an ozone source, an ozone generator, and waste ozone treatment are required, and running costs such as electric power costs are high.
【0003】一方、2−MIBのようなカビ臭除去には
生物膜接触濾過装置を用いる生物接触酸化法も知られて
いる。生物接触酸化法でのカビ臭物質の除去は、主に、
装置の濾過層内に保持される微生物、特に、細菌の好気
的な生分解作用により行われる。すなわち、河川原水中
および河川原水中の懸濁物質中に存在する2−MIB分
解微生物を原水濾過操作過程において担体上に集積、馴
養し、生物接触膜を形成させ、これらの2−MIB分解
微生物の生物分解作用によって2−MIBを除去してい
る。しかしながら、このような方法では生物接触膜の生
成に半月〜2カ月程度を有し、この間は、不十分な処理
しか行うことができず、処理効率が低下することにな
り、このような状態では、後段の処理操作へのカビ臭物
質処理の負荷が大きくなる。したがって、生物接触酸化
法により高効率に2−MIBの除去を図るためには、濾
過装置内での2−MIB分解微生物の迅速な増加を図る
ことが重要である。そのためには、2−MIBを分解し
うる有用微生物を常時保持するとともに、除去率が低下
した場合に、濾過層担体への添加接種することが必要で
あるが、従来、そのための有効な手段は見当たらなかっ
た。On the other hand, a biocatalytic oxidation method using a biofilm contact filtration device is also known for removing a mold odor such as 2-MIB. The removal of musty odor substances by the biological contact oxidation method is mainly
It is carried out by the aerobic biodegradation of microorganisms, especially bacteria, retained within the filtration layer of the device. That is, 2-MIB degrading microorganisms present in river raw water and suspended matter in river raw water are accumulated and acclimated on a carrier in the raw water filtration operation process to form a biological contact membrane, and these 2-MIB degrading microorganisms are formed. 2-MIB is removed by the biodegradation action of However, in such a method, it takes about half a month to 2 months to produce the biological contact membrane, and during this period, insufficient treatment can be performed, resulting in a reduction in treatment efficiency. However, the load of the musty odor substance treatment on the subsequent treatment operation becomes large. Therefore, in order to efficiently remove 2-MIB by the biological contact oxidation method, it is important to rapidly increase the number of 2-MIB-degrading microorganisms in the filtration device. For that purpose, it is necessary to always retain useful microorganisms capable of degrading 2-MIB, and in the case where the removal rate decreases, it is necessary to add and inoculate to the carrier of the filtration layer. Conventionally, effective means therefor is I couldn't find it.
【0004】[0004]
【発明が解決しようとする課題】本発明は、生物接触酸
化法における2−MIB除去機能を有効に発揮させるた
めに、生物接触濾過装置における生物接触膜中の2−M
IB分解微生物数の増大を図る有効な手段を提供するこ
とを目的とする。DISCLOSURE OF THE INVENTION In order to effectively exhibit the 2-MIB removal function in the biological contact oxidation method, the present invention provides 2-M in the biological contact membrane in the biological contact filtration apparatus.
It is an object to provide an effective means for increasing the number of IB-degrading microorganisms.
【0005】[0005]
【課題を解決するための手段】本発明は、試料を、高濃
度の2−メチルイソボルネオール(2−MIB)を含有
する寒天培地で、20〜30℃にて、12〜20日間、
好気的に培養し、生育した2−MIB分解能を有する微
生物を分離、収集することを特徴とする2−MIB分解
微生物の純粋分離培養方法を提供するものである。According to the present invention, a sample is agar medium containing a high concentration of 2-methylisoborneol (2-MIB) at 20 to 30 ° C. for 12 to 20 days.
Provided is a method for purely separating and culturing 2-MIB-degrading microorganisms, which comprises aerobically culturing and separating and collecting grown microorganisms having 2-MIB decomposing ability.
【0006】また、本発明は、該純粋分離培養方法で分
離された2−MIB分離微生物を担体に担持させで生物
接触膜としてなることを特徴とする水処理用生物接触濾
過装置、浄水処理装置および該装置を組み込んでなる浄
水システムも提供するものである。Further, the present invention provides a biological contact membrane for water treatment, a biological contact filtration apparatus and a water purification apparatus, wherein the microorganisms separated by the pure separation culture method are carried on a carrier to form a biological contact membrane. And a water purification system incorporating the device.
【0007】本発明によれば、生物接触酸化法の2−M
IBの生物分解除去において重要な役割を果たしている
2−MIB分解微生物の、効率よい分離培養方法が確立
し、これらの微生物を常時保持することが可能となると
ともに、この2−MIB分解微生物の純粋分離培養菌株
を大量培養した後、セラミック等の担体に大量付着させ
ることによって、濾過層内に生物接触膜の2−MIB分
解微生物数の増加を図り、微生物による2−MIBの分
解を効率よく行わせることができる。According to the present invention, 2-M of the biological catalytic oxidation method is used.
An efficient method for separating and culturing 2-MIB-degrading microorganisms, which plays an important role in removing biodegradation of IB, has been established, and these microorganisms can be maintained at all times, and the purity of the 2-MIB-degrading microorganisms can be maintained. After mass-culturing the isolated culture strain, by mass adhering it to a carrier such as ceramics, the number of 2-MIB-degrading microorganisms in the biological contact membrane in the filtration layer is increased, and 2-MIB is efficiently decomposed by the microorganisms. Can be made.
【0008】[0008]
【発明の実施の形態】本発明の2−MIB分解菌の純粋
分離培養方法の試料としては、例えば、河川原水または
原水処理の生物接触膜に集積された微生物群等を使用で
きる。これらの試料を2−MIBを高濃度に含有する寒
天培地に接種して、培養する。寒天培地における2−M
IBの濃度は、通常、50〜100μg/ml、好ましく
は、62.5μg/ml程度とする。これにより、2−MI
Bの抗菌作用を利用し、試料中の他の従属栄養微生物の
増殖を抑制して、2−MIBの抗菌作用に対して抵抗性
を有する微生物のみを寒天平板上に生育させることがで
きる。BEST MODE FOR CARRYING OUT THE INVENTION As a sample of the method for purely separating and culturing 2-MIB-degrading bacteria of the present invention, for example, a group of microorganisms accumulated in river raw water or a biological contact membrane of raw water treatment can be used. These samples are inoculated on an agar medium containing a high concentration of 2-MIB and cultured. 2-M in agar
The concentration of IB is usually 50 to 100 μg / ml, preferably about 62.5 μg / ml. This allows 2-MI
By utilizing the antibacterial effect of B, the growth of other heterotrophic microorganisms in the sample can be suppressed, and only the microorganisms resistant to the antibacterial effect of 2-MIB can be grown on the agar plate.
【0009】寒天培地は、通常、0.8%(特に断らな
い限りw/v%)の寒天を含む平板培地とし、グルコー
スのような炭素源、ポリペプトン、酵母エキスのような
窒素源、カルシウム、マグネシウムの無機塩等や微量元
素を適宜添加し、要すれば、塩酸、水酸化ナトリウム等
を用いてpH7.2に調整し、120℃で、20分間滅菌
する。The agar medium is usually a plate medium containing 0.8% (w / v% unless otherwise specified) of agar medium, carbon source such as glucose, polypeptone, nitrogen source such as yeast extract, calcium, An inorganic salt of magnesium or the like and trace elements are appropriately added, and if necessary, the pH is adjusted to 7.2 with hydrochloric acid, sodium hydroxide or the like, and sterilized at 120 ° C. for 20 minutes.
【0010】培養は、好気的条件下で、20〜30℃、
通常、25℃にて、12〜20日間、通常、2週間行
う。このようにして寒天平板培地に生育した2−MIB
耐性微生物を、常法により分離し、2−MIBを含む液
体培養液に接種して、これらの微生物の2−MIB分解
能を確認する。The culture is carried out under aerobic conditions at 20 to 30 ° C.
Usually, it is carried out at 25 ° C for 12 to 20 days, usually for 2 weeks. 2-MIB thus grown on the agar plate medium
Resistant microorganisms are separated by a conventional method and inoculated into a liquid culture medium containing 2-MIB to confirm the 2-MIB degrading ability of these microorganisms.
【0011】2−MIB分解能の確認は、例えば、寒天
平板培地から分離した2−MIB耐性微生物を、グルコ
ースのような炭素源、ポリペプトン、酵母エキスのよう
な窒素源、カルシウム、マグネシウムの無機塩等や微量
元素を含む、pH7.2の有機栄養液体培地(120℃、
20分間滅菌)で好気的条件下にて、25℃にて48時
間前培養を行う。ついで、4μg/mlの2−MIBと、
グルコースのような炭素源、ポリペプトン、酵母エキス
のような窒素源を含む、pH7.2の液体培地(120
℃、20分間滅菌)で、2−MIBの揮散を防ぎなが
ら、25℃にて7日間培養し、培地の2−MIB濃度の
減少を、例えば、ガスクロマトグラフィーで測定して確
認する。To confirm the 2-MIB degrading ability, for example, a 2-MIB-resistant microorganism isolated from an agar plate medium is treated with a carbon source such as glucose, a polypeptone, a nitrogen source such as yeast extract, inorganic salts of calcium and magnesium, etc. PH 7.2 organic nutrient liquid medium (120 ℃,
Sterilize for 20 minutes) and perform preculture at 25 ° C. for 48 hours under aerobic conditions. Then, with 4-μg / ml 2-MIB,
PH 7.2 liquid medium containing carbon source such as glucose, polypeptone, nitrogen source such as yeast extract (120
Sterilization at 20 ° C. for 20 minutes), culturing for 7 days at 25 ° C. while preventing volatilization of 2-MIB, and confirming a decrease in 2-MIB concentration of the medium by, for example, measuring by gas chromatography.
【0012】本発明の方法により、純粋培養され、分離
された2−MIB分解能を有する微生物は、有機栄養寒
天平板培地上および斜面スラント上での保存、また、有
機栄養液体培養液を凍結して保存し、使用に備えること
ができる。また、得られた2−MIB分解能を有する微
生物またはその保存株は、自体公知の、生物接触酸化法
に使用される生物接触濾過装置の濾過層内や浄水処理装
置内の、セラミック、活性炭などのような適宜の形状を
有する多孔質担体に、自体公知の方法、例えば、該微生
物を懸濁させて適宜の濃度の生物接触膜が形成されるま
で適宜循環させる方法で担持させて使用できる。The microorganisms having a 2-MIB degrading ability, which are purely cultivated and separated by the method of the present invention, are preserved on an organic nutrient agar plate medium and a slant slant, and the organic nutrient liquid culture medium is frozen. Can be stored and ready for use. Further, the obtained microorganism having a 2-MIB decomposing ability or a preserved strain thereof is a ceramic, activated carbon or the like in a filter layer of a biological contact filtration apparatus used in a biological contact oxidation method or a water purification apparatus known per se. It can be used by supporting it on a porous carrier having such an appropriate shape by a method known per se, for example, a method of suspending the microorganism and appropriately circulating it until a biological contact membrane having an appropriate concentration is formed.
【0013】本発明の方法で分離された2−MIB分離
能を有する微生物を担体に担持させて生物接触膜として
なる水処理用生物接触濾過装置や浄水処理装置も本発明
の範囲内のもので、河川水を原水とし、これを処理して
上水とするための、既設設備(例えば、凝集処理、緩速
濾過処理、高度処理設備など)の前処理設備として有用
である。例えば、本発明の濾過装置は、上水処理の最初
に行われる凝集沈澱装置の前段とすることができ、以降
に行われるオゾン、活性炭処理、急速砂濾過、塩素滅菌
等の高度上水処理への負荷軽減を目的とする前処理設備
として活用することができる。このことは、また、2−
MIB分解微生物や、その他の微生物が最終処理水に混
入することを防止するためにも必要である。かくして、
このように本発明の水処理用生物接触濾過装置や浄水処
理装置を組み込んでなる浄水システムも本発明の範囲内
のものである。これらの装置、システムの運転条件は特
に限定するものではなく、所望の2−MIB除去効果が
達成できるように適宜選択することができる。A biological contact filtration apparatus for water treatment and a water purification apparatus which are used as a biological contact membrane by supporting a microorganism having 2-MIB separation ability separated by the method of the present invention on a carrier are also within the scope of the present invention. It is useful as a pretreatment facility for existing facilities (for example, coagulation treatment, slow filtration treatment, advanced treatment equipment, etc.) for treating river water as raw water and treating it as clean water. For example, the filtration device of the present invention can be a preceding stage of the coagulation-sedimentation device that is performed at the beginning of the water treatment, and can be used for advanced water treatment such as ozone, activated carbon treatment, rapid sand filtration, and chlorine sterilization performed thereafter. It can be used as a pretreatment facility for the purpose of reducing the load on the. This also means that
It is also necessary to prevent MIB-degrading microorganisms and other microorganisms from mixing into the final treated water. Thus,
Thus, a water purification system incorporating the biological contact filtration apparatus for water treatment and the water purification apparatus of the present invention is also within the scope of the present invention. The operating conditions of these devices and systems are not particularly limited, and can be appropriately selected so that the desired 2-MIB removal effect can be achieved.
【0014】[0014]
【実施例】つぎに、実施例を挙げて本発明をさらに詳し
く説明するが、本発明はこれらに限定されるものではな
い。 実施例1 2−MIB分解微生物の分離 寒天培地(ポリペプトン0.5g、酵母エキス0.25g、
グルコース0.1g/基礎無機塩溶液[基礎無機塩組成:
CaCl2 0.21g、MgSO4・7H2O 0.13g、Na
Cl 0.13g、(NH4)2SO4 0.02g、Na2HPO
4・12H2O 0.05g、KH2PO4 0.01g/蒸留水
1リットル、pH7.2]1リットル、寒天0.8%)を
120℃にて20分間滅菌し、滅菌小試験管に3ml入れ
て、42℃で保温した。この培地に2−MIB(2mg/
ml、DMSO溶液)0.1mlを添加した後、試料(河川
水や生物接触濾過装置の逆洗浄水)の希釈液0.1mlを
入れて撹拌混合した。これを直ちに小シャーレ(内径5
0mm)に入れて固化して平板を調製した。パラフィルム
でシールをしたシャーレを25℃で2週間培養した。生
育したコロニーを、有機栄養寒天平板培地に3〜5回植
えつぎ、純化した。純化したコロニーを寒天平板培地お
よび斜面スラントでの保存と共に、有機栄養培地で培養
した菌株の凍結保存を行った。Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Example 1 Separation of 2-MIB-degrading microorganisms Agar medium (0.5 g of polypeptone, 0.25 g of yeast extract,
Glucose 0.1 g / basic inorganic salt solution [basic inorganic salt composition:
CaCl 2 0.21 g, MgSO 4 / 7H 2 O 0.13 g, Na
Cl 0.13 g, (NH 4 ) 2 SO 4 0.02 g, Na 2 HPO
4・ 12H 2 O 0.05g, KH 2 PO 4 0.01g / distilled water 1 liter, pH 7.2] 1 liter, agar 0.8%) were sterilized at 120 ° C for 20 minutes, and then sterilized into small test tubes. 3 ml was put and kept at 42 ° C. 2-MIB (2 mg /
0.1 ml of DMSO solution) was added, and then 0.1 ml of a diluted sample (river water or backwash water of a biological contact filter) was added and mixed with stirring. Immediately add this to a small petri dish (inner diameter 5
0 mm) and solidified to prepare a flat plate. The petri dish sealed with parafilm was cultured at 25 ° C for 2 weeks. The grown colonies were planted on an organic nutrient agar plate medium 3 to 5 times and purified. The purified colonies were stored on an agar plate medium and a slant slant, and the strains cultured on an organic nutrient medium were cryopreserved.
【0015】2−MIB分解能の確認 保存分離菌株を有機栄養液体培地(ポリペプトン2g、
酵母エキス1g、グルコース0.5g/リットル無機塩溶
液)10mlで前培養を行い、菌株を遠沈集菌した。これ
を滅菌培養液20ml(2−MIB 4μg/ml、エタノ
ール2μl/ml、酵母エキス10μg/ml)を含む100
mlの共栓付き三角フラスコに接種し、2−MIBの揮散
を少なくして、25℃で7日間培養後、接種2−MIB
濃度の減少をガスクロマトグラフ(GC−FID、検出
限界:0.2μg/ml)で測定した。Confirmation of 2-MIB degradability The stock strain isolated was treated with an organic nutrient liquid medium (2 g of polypeptone,
Preculture was carried out with 1 g of yeast extract and 10 ml of glucose (0.5 g / liter inorganic salt solution) to centrifuge the strain. 100 ml of this containing 20 ml of sterilized culture solution (2-MIB 4 μg / ml, ethanol 2 μl / ml, yeast extract 10 μg / ml)
Inoculate an Erlenmeyer flask with a stopper to reduce the volatilization of 2-MIB, incubate at 25 ° C for 7 days, and then inoculate 2-MIB.
The decrease in concentration was measured by gas chromatography (GC-FID, detection limit: 0.2 μg / ml).
【0016】2−MIB分解能を有する分解微生物 以上の方法によって、2−MIBを分解する菌株を分離
した。そのうち、特に、2−MIBを高効率に分解する
ものを同定したところ、以下の3株が同定できた。菌株
1−2は、スフィンゴモナス・エス・ピー(Sphingomo
nas sp.:濃黄のコロニーを形成し、桿菌、胞子形成な
し、グラム染色性は陰性、運動性有り、鞭毛は極単毛、
オキシダーゼ活性有り、カタラーゼ活性−わずかに陽
性、イソプレノイドキノンの分子種はユビキノン種Q−
10を持つ)であった。菌株H5−1はマイクロバクテ
リウム(Microbacterium)属の細菌(淡黄のコロニー
を形成し、桿菌、胞子形成なし、グラム染色性は陽性、
運動性無し、カタラーゼ活性陽性、イソプレノイドキノ
ンの分子種はメナキノン種MK−11、MK−12、M
K−13を持ち、ペプチドグリカン型はGroupB、ジア
ミノ酸はLysである)であった。Degrading microorganism having 2-MIB degrading strain The strain degrading 2-MIB was isolated by the above method. Among them, when the one that decomposes 2-MIB with high efficiency was identified, the following three strains could be identified. Strain 1-2 is Sphingomonas sp.
nas sp .: dark yellow colony, bacillus, no sporulation, negative Gram stainability, motility, flagella very monofilament,
Oxidase activity, catalase activity-slightly positive, isoprenoid quinone molecular species is ubiquinone species Q-
It had 10). Strain H5-1 is a bacterium of the genus Microbacterium (forming a pale yellow colony, bacilli, no sporulation, positive Gram stainability,
No motility, positive catalase activity, molecular species of isoprenoid quinone are menaquinone species MK-11, MK-12, M
It has K-13, the peptidoglycan type is Group B, and the diamino acid is Lys).
【0017】菌株H27−2はオウレオバクテリウム
(Aureobacterium)属の細菌(黄色のコロニーを形成
し、桿菌、胞子形成なし、グラム染色性は陽性、運動性
無し、カタラーゼ活性陽性、イソプレノイドキノンの分
子種はメナキノン種MK−10、MK−11、MK−1
2を持ち、ペプチドグリカン型はGroupB、ジアミノ酸
はOrnである)に該当した。これらの菌株は、上記分解
能確認実験を行った結果、培養液中4μg/ml濃度レベ
ルの2−MIBを1週間で1.0μg/ml以下(GC−F
ID法で測定)にすることができ、明らかに2−MIB
分解能を有する菌株であった。なお、平成7年11月7
日から、菌株1−2はFERM P−15286、菌株
H5−1はFERM P−15288、菌株H27−2
はFERM P−15287の受託番号の下で工業技術
院生命工学工業技術研究所に寄託されている。Strain H27-2 is a bacterium of the genus Aureobacterium (forming yellow colonies, bacilli, no sporulation, positive Gram stainability, no motility, positive catalase activity, isoprenoid quinone molecule). Species are menaquinone species MK-10, MK-11, MK-1
2 and the peptidoglycan type is Group B and the diamino acid is Orn). These strains were subjected to the above-described resolution confirmation experiment, and as a result, 2-MIB at a concentration level of 4 μg / ml in the culture solution was 1.0 μg / ml or less per week (GC-F).
(Measured by the ID method), which is obviously 2-MIB
It was a strain with resolution. In addition, November 7, 1995
From the date, strain 1-2 is FERM P-15286, strain H5-1 is FERM P-15288, strain H27-2.
Has been deposited with the Institute of Biotechnology, Institute of Industrial Science and Technology under the accession number of FERM P-15287.
【0018】実施例2 水処理用生物接触濾過装置 添付の図1に本発明の水処理用生物接触濾過装置を用い
るセラミック生物膜接触酸化法による2−MIB除去シ
ステムの1具体例のフローチャートを示す。内径2.5c
m、長さ300cmのカラム1に、支持層2を30cm、そ
の上に略球形の、有効径5〜7mmの多孔質セラミックを
濾過層3の担体として135cm充填(真比重:1.5、
空隙率:60%、比表面積4.6m2/g)してなる濾過装
置を2機直列に接続してシステムを構成した。No.1
およびNo.2の各濾過装置には濾過層内に酸素を供給
するための空気配管を濾過層3の上部50cmの部位に、
また、逆洗用の空気配管を支持層下部に、それぞれ、接
続し、エアーボンベより空気を送れるようにした。Example 2 Biological Contact Filter for Water Treatment FIG. 1 attached herewith shows a flow chart of a specific example of a 2-MIB removal system by a ceramic biofilm catalytic oxidation method using the biological contact filter for water treatment of the present invention. . Inner diameter 2.5c
A column 1 having a length of m and a length of 300 cm was packed with a support layer 2 of 30 cm on which a substantially spherical porous ceramic having an effective diameter of 5 to 7 mm was packed as a carrier of the filtration layer 3 for 135 cm (true specific gravity: 1.5
A system was constructed by connecting two filtration devices in series having a porosity of 60% and a specific surface area of 4.6 m 2 / g). No. 1
In each of the No. 2 and No. 2 filtration devices, an air pipe for supplying oxygen into the filtration layer is provided in the upper 50 cm of the filtration layer 3.
Further, air pipes for backwashing were connected to the lower part of the support layer, respectively, so that air could be sent from an air cylinder.
【0019】2−MIB除去実験開始時には、カラム中
のセラミック担体に、実施例1で得られた2−MIB分
解微生物(500ml三角フラスコにて培養し、遠心分
離をしたもの、各3菌株)を約105個/mlの濃度にな
るように添加した河川水を、原水槽よりポンプPでカラ
ム内に25℃にて 時間循環させて、担体上に微生物膜
を形成させた後、2−MIB除去実験を行った。2−M
IB除去実験は、原水槽よりポンプPで原水を濾過装置
の頂部からカラム内の濾過層へ供給しつつ、エアーボン
ベより空気を濾過層に供給しながら行った。濾過速度の
影響を見るため、濾過速度100m/日から500m/日
まで変化させる(SV=3から15、接触時間19分か
ら4分まで)とともに、水温の影響をも調べた。At the start of the 2-MIB removal experiment, the 2-MIB-degrading microorganisms obtained in Example 1 (cultured in a 500 ml Erlenmeyer flask and centrifuged, 3 strains each) were placed on the ceramic carrier in the column. River water added to a concentration of about 10 5 cells / ml was circulated in the column from the raw water tank by pump P at 25 ° C for a period of time to form a microbial membrane on the carrier and then 2-MIB. A removal experiment was performed. 2-M
The IB removal experiment was performed while supplying the raw water from the raw water tank with the pump P from the top of the filter to the filter layer in the column, while supplying the air from the air cylinder to the filter layer. In order to see the effect of filtration speed, the filtration speed was changed from 100 m / day to 500 m / day (SV = 3 to 15, contact time 19 minutes to 4 minutes), and the effect of water temperature was also examined.
【0020】実験結果を低水温期(20℃以下)と中高
水温期(20℃以上)で、濾過速度の変動との関係でま
とめ、図2に示す。中高温時(20℃以上)の除去率が
低水温期よりも高く、中高温時では濾過速度100m/
日以下で、除去率87.1%、400m/日以上でも除去
率39.7%を示し、平均で65.8%の除去率を示し
た。また、低水温期でも、濾過速度が低い場合には、除
去率は88.6%となり、水温が低下した場合でも除去
率の低下は認められなかった。濾過層内の2−MIB分
解菌数を調べた結果を表1に示す。The experimental results are summarized in relation to the fluctuation of the filtration rate in the low water temperature period (20 ° C. or lower) and the middle and high water temperature period (20 ° C. or higher) and are shown in FIG. The removal rate at medium to high temperatures (20 ° C or higher) is higher than that at low water temperature, and the filtration rate is 100 m /
The removal rate was 87.1% below a day, the removal rate was 39.7% above 400 m / day, and the average removal rate was 65.8%. Even in the low water temperature period, the removal rate was 88.6% when the filtration rate was low, and no reduction in the removal rate was observed even when the water temperature decreased. The results of examining the number of 2-MIB-degrading bacteria in the filtration layer are shown in Table 1.
【0021】[0021]
【表1】 [Table 1]
【0022】表1に示すごとく、河川水中には2−MI
B分解微生物数は、102個/ml程度存在しているのに
対して、濾過層内には、104〜106個/ml程度存在し
た。このように、本発明によれば、セラミック担体付着
生物膜中に多量の2−MIB分解微生物を短時間で保持
することができる。As shown in Table 1, 2-MI is contained in river water.
The number of B-degrading microorganisms was about 10 2 / ml, whereas the number of B-degrading microorganisms was about 10 4 to 10 6 / ml in the filtration layer. Thus, according to the present invention, a large amount of 2-MIB-degrading microorganisms can be retained in the ceramic carrier-attached biofilm in a short time.
【0023】[0023]
【発明の効果】本発明によれば、2−MIB分解微生物
を効率よく分離培養することができ、この2−MIB分
解微生物を用いることにより、高密度に濾過層の担体に
2−MIB分解微生物を付着させ、その2−MIB分解
能を積極的に利用することにより、迅速に、かつ、効果
的に河川原水中の2−MIBを除去することができる。
また、高濃度のカビ臭物質が存在するときでも、濾過層
内に多量に存在する2−MIB分解微生物の作用のため
に、効率よく2−MIBを除去でき、かつ維持管理が極
めて容易であり、自動逆洗浄装置を付随させることによ
って、濾過層内に保持された濁質度物質は洗浄される
が、逆洗後には、分解微生物の再接種は必要とせず、効
率的なカビ臭除去が行われる。また、高度処理施設の前
段で用いることにより、濁質度物質の除去やアンモニア
性窒素等の除去も行われるため、後段の各処理段階への
汚濁物質の負荷が軽減できる等のメリットがある。さら
に、活性炭処理法における活性炭再生費用、オゾン処理
法に伴う電力費等のランニングコストの軽減になるもの
である。しかも、河川水中に生存していた2−MIB分
解微生物を利用しているために、濾過層担体付着生物膜
中での生存に適し、特別な栄養物の添加などは必要とせ
ず、河川水由来の有機栄養物を利用して、濾過層担体生
物膜中で十分に増殖可能である。したがって、2−MI
B分解に必要な分解微生物数の保持が可能である。INDUSTRIAL APPLICABILITY According to the present invention, a 2-MIB-degrading microorganism can be efficiently separated and cultivated. By using this 2-MIB-degrading microorganism, a 2-MIB-degrading microorganism can be densely used as a carrier for a filtration layer. By adhering the water and actively using the 2-MIB resolving power, 2-MIB in the river raw water can be removed quickly and effectively.
Further, even when a high-concentration musty odor substance is present, 2-MIB can be efficiently removed due to the action of 2-MIB-degrading microorganisms present in a large amount in the filtration layer, and maintenance is extremely easy. By attaching an automatic backwashing device, the turbidity substances retained in the filtration layer are washed, but after backwashing, re-inoculation of degrading microorganisms is not required and efficient mold odor removal is possible. Done. In addition, by using it in the first stage of the advanced treatment facility, it is possible to remove turbidity substances and ammonia nitrogen, etc., so that there is an advantage that the load of pollutant substances on each subsequent treatment stage can be reduced. In addition, running costs such as activated carbon regeneration costs in the activated carbon treatment method and electric power costs associated with the ozone treatment method can be reduced. Moreover, since the 2-MIB-degrading microorganisms that have survived in the river water are used, they are suitable for survival in the biofilm adhering to the filtration layer carrier and do not require the addition of special nutrients. It can be grown well in a filter bed carrier biofilm utilizing the organic nutrients of. Therefore, 2-MI
It is possible to maintain the number of degrading microorganisms required for B decomposition.
【図1】 本発明の生物接触濾過装置を用いる生物接触
酸化法による2−MIB除去システムの1具体例のフロ
ーシート。FIG. 1 is a flow sheet of one specific example of a 2-MIB removal system by a biological contact oxidation method using the biological contact filtration apparatus of the present invention.
【図2】 図1におけるカビ臭除去と水温、濾過速度と
の関係を示すグラフ。FIG. 2 is a graph showing the relationship between mold odor removal, water temperature, and filtration rate in FIG.
1:カラム、2:支持層、3:濾過層 1: column, 2: support layer, 3: filtration layer
フロントページの続き (72)発明者 磯村 欽三 東京都港区虎ノ門一丁目1番3号 磯村豊 水機工株式会社内 (72)発明者 玉舎 利昭 東京都港区虎ノ門一丁目1番3号 磯村豊 水機工株式会社内Continued front page (72) Inventor Kinzo Isomura 1-3 1-3 Toranomon, Minato-ku, Tokyo Inside Isomura Hosui Kiki Co., Ltd. (72) Inventor Toshiaki Tamaya 1-3-3 Toranomon Minato-ku, Tokyo Isomura Hosui Kiko Co., Ltd.
Claims (7)
オール(2−MIB)を含有する寒天培地で、20〜3
0℃にて、12〜20日間、好気的に培養し、生育した
2−MIB分解能を有する微生物を分離、収集すること
を特徴とする2−MIB分解微生物の純粋分離培養方
法。1. A sample is agar medium containing a high concentration of 2-methylisoborneol (2-MIB) for 20 to 3 times.
A method for purely separating and culturing 2-MIB-degrading microorganisms, which comprises aerobically culturing at 0 ° C. for 12 to 20 days to separate and collect the grown microorganisms having 2-MIB decomposing ability.
0μg/mlである請求項1記載の純粋分離培養方法。2. The concentration of 2-MIB in the agar medium is 50 to 10
The pure separation culture method according to claim 1, wherein the amount is 0 μg / ml.
触膜に集積された微生物群である請求項1記載の純粋分
離培養方法。3. The pure separation culture method according to claim 1, wherein the sample is a group of microorganisms accumulated in river raw water or a biological contact membrane of raw water treatment.
された2−MIB分解微生物を担体に担持させて生物接
触膜としてなることを特徴とする水処理用生物接触濾過
装置。4. A biological contact filtration apparatus for water treatment, which comprises a carrier for supporting the 2-MIB-degrading microorganisms separated by the pure separation culture method according to claim 1 to form a biological contact membrane.
載の生物接触濾過装置。5. The biological contact filtration device according to claim 4, wherein the carrier is a ceramic carrier.
された2−MIB分解微生物を担体に担持させて生物接
触膜としてなることを特徴とする浄水処理装置。6. A water purification apparatus characterized in that it is used as a biological contact membrane by supporting a 2-MIB-degrading microorganism separated by the pure separation culture method according to claim 1 on a carrier.
置および/または請求項6の浄水処理装置を組み込んで
なる浄水システム。7. A water purification system incorporating the biological contact filtration device for water treatment according to claim 4 and / or the water purification device according to claim 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29520895A JPH09135682A (en) | 1995-11-14 | 1995-11-14 | Pure culturing and separation of microorganism capable of decomposing 2-methylisoborneol and apparatus for purifying treatment of water using the same decomposing microorganism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29520895A JPH09135682A (en) | 1995-11-14 | 1995-11-14 | Pure culturing and separation of microorganism capable of decomposing 2-methylisoborneol and apparatus for purifying treatment of water using the same decomposing microorganism |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09135682A true JPH09135682A (en) | 1997-05-27 |
Family
ID=17817612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29520895A Pending JPH09135682A (en) | 1995-11-14 | 1995-11-14 | Pure culturing and separation of microorganism capable of decomposing 2-methylisoborneol and apparatus for purifying treatment of water using the same decomposing microorganism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09135682A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1294088C (en) * | 2004-06-30 | 2007-01-10 | 南京大学 | Biological method for treating synthetic pharmaceutical waste water by specific strain |
JP2013545596A (en) * | 2010-10-27 | 2013-12-26 | ペキン ユニバーシティ | Processing system and method for processing waste |
JP2018122275A (en) * | 2017-02-03 | 2018-08-09 | 田中 聡 | Method for producing deodorant |
CN112047493A (en) * | 2020-09-16 | 2020-12-08 | 重庆工商大学 | Application of microecological preparation in removing earthy smell and method for removing earthy smell of fishes in RAS system |
WO2023147659A1 (en) * | 2022-02-01 | 2023-08-10 | 683107 Alberta Ltd. | Compositions, systems, and methods for processing recirculating aquaculture water |
-
1995
- 1995-11-14 JP JP29520895A patent/JPH09135682A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1294088C (en) * | 2004-06-30 | 2007-01-10 | 南京大学 | Biological method for treating synthetic pharmaceutical waste water by specific strain |
JP2013545596A (en) * | 2010-10-27 | 2013-12-26 | ペキン ユニバーシティ | Processing system and method for processing waste |
US9278876B2 (en) | 2010-10-27 | 2016-03-08 | Peking University | Treatment of waste product |
JP2018122275A (en) * | 2017-02-03 | 2018-08-09 | 田中 聡 | Method for producing deodorant |
CN112047493A (en) * | 2020-09-16 | 2020-12-08 | 重庆工商大学 | Application of microecological preparation in removing earthy smell and method for removing earthy smell of fishes in RAS system |
CN112047493B (en) * | 2020-09-16 | 2022-11-01 | 重庆工商大学 | Application of microecological preparation in removing earthy smell and method for removing earthy smell of fishes in RAS system |
WO2023147659A1 (en) * | 2022-02-01 | 2023-08-10 | 683107 Alberta Ltd. | Compositions, systems, and methods for processing recirculating aquaculture water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018089627A (en) | Methods, compositions and systems for controlling fouling of membrane | |
JP4681576B2 (en) | Advanced sewage treatment equipment | |
CN102153250A (en) | Coking wastewater treatment system and method | |
EP0396648B1 (en) | A process for the microbiological purification of water | |
US6863815B1 (en) | Small-scale hydrogen-oxidizing-denitrifying bioreactor | |
KR20170050298A (en) | Composition using microorgarnisms with water purification function | |
JPH09135682A (en) | Pure culturing and separation of microorganism capable of decomposing 2-methylisoborneol and apparatus for purifying treatment of water using the same decomposing microorganism | |
JP2003504185A (en) | Method for purifying water, bacteria suitable for the method and use | |
JP3432214B2 (en) | Algae treatment | |
JP3728721B2 (en) | New microorganisms and wastewater treatment methods | |
JP2608459B2 (en) | Waste liquid treatment method | |
JP2006180706A (en) | New polyvinyl alcohol-degrading bacterium | |
CN105219670B (en) | One plant of bacillus thuringiensis for a variety of nitrosamine of degrading | |
CN110938567B (en) | Bacillus subtilis, microbial agent and application thereof | |
JPH0622769A (en) | Method for biodegradation of phenolic compound, new strain used therefor and method for obtaining microorganism having ability to degrade phenolic compound | |
KR100441689B1 (en) | Method for producing carrier holding degrading bacterium | |
JP2004066201A (en) | Bacteria reactor and algae reactor for water treatment and water purification device using them | |
JP4578879B2 (en) | Bisphenol A-degrading bacteria and uses thereof | |
JP2008182906A (en) | Novel microorganism and method for purifying waste water using the same | |
JP2006326435A (en) | Tetramethylammonium hydroxide-containing waste water treatment method | |
FI85984B (en) | Microbiological purification of water, and microorganism used therefor | |
JP2006061055A (en) | Microorganism decomposing bisphenol-a and method for decomposing bisphenol-a by using the microorganism | |
JP2003250529A (en) | Degradation method, purification method, and degradation fungus | |
JP2003250527A (en) | Method for degrading pva | |
CN115975891A (en) | Ochrobactrum capable of degrading N-methylpyrrolidone and application of Ochrobactrum capable of degrading N-methylpyrrolidone in wastewater treatment |