JPH09134795A - Small sized x-ray source - Google Patents

Small sized x-ray source

Info

Publication number
JPH09134795A
JPH09134795A JP7314900A JP31490095A JPH09134795A JP H09134795 A JPH09134795 A JP H09134795A JP 7314900 A JP7314900 A JP 7314900A JP 31490095 A JP31490095 A JP 31490095A JP H09134795 A JPH09134795 A JP H09134795A
Authority
JP
Japan
Prior art keywords
ray
cup
source
electron
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7314900A
Other languages
Japanese (ja)
Inventor
Ichiro Miura
一朗 三浦
Mototatsu Doi
元達 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP7314900A priority Critical patent/JPH09134795A/en
Publication of JPH09134795A publication Critical patent/JPH09134795A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make the irradiation area of an X-ray larger than 90 degrees taking the propagation direction of an electron beam as reference, and expand an effective irradiation field so as to improve a medical treatment effect. SOLUTION: In a small sized X-ray source, a target film 15b is fitted on the inside bottom face of cup-like X-ray penetration material 15a. An element having a small atomic number such as beryllium or aluminum is used as the penetration material 15a, and an element having a large atomic number such as tungsten or molybdenum and a high melting point is used for the target film 15b. By using such cup-like X-ray penetration material, an X-ray can be irradiated without being shielded by a stainless steel patient insertion thin tube 14, the effective irradiation field can be expanded. The effective irradiation field is adjusted by the height of the cup of the X-ray penetration material 15a. For the adhesion of the thin tube 14 and the penetration material, vacuum adhesive is used so as to secure conductivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、X線発生源を患者
の体内に挿入して放射線治療を行う小型X線源に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact X-ray source for performing radiotherapy by inserting an X-ray source into a patient's body.

【0002】[0002]

【従来の技術】従来の小型X線源の一例が特表平6−500
661 号公報に開示されている。この小型X線源の構成に
ついて図4を用いて説明する。図4において、小型X線
源は、電子発生源11,複数の電極で構成される電子加
速・集束系13,電子発生源11と電子加速・集束系1
3とを真空中に封入・保持する真空容器1,真空容器1
に接続される外径数mmの患者挿入細管14,患者挿入細
管14の先端に取り付けられるX線発生部15,電子発
生源11と電子加速・集束系13に電力を供給する高圧
電源部21,高圧電源部21の出力を制御する制御部
3,真空容器1と高圧電源部21とを保持するハウジン
グ2から構成される。
2. Description of the Related Art An example of a conventional small X-ray source is Tokuhyo 6-500
No. 661 is disclosed. The structure of this small X-ray source will be described with reference to FIG. In FIG. 4, the small X-ray source includes an electron generation source 11, an electron acceleration / focusing system 13 composed of a plurality of electrodes, an electron generation source 11 and an electron acceleration / focusing system 1.
Vacuum container 1, vacuum container 1 for enclosing and holding 3 and 3 in a vacuum
A patient insertion thin tube 14 having an outer diameter of several mm, an X-ray generator 15 attached to the tip of the patient insertion thin tube 14, a high voltage power supply 21 for supplying electric power to an electron source 11 and an electron acceleration / focusing system 13, It is composed of a control unit 3, which controls the output of the high-voltage power supply unit 3, a vacuum container 1, and a housing 2 which holds the high-voltage power supply unit 21.

【0003】電子発生源11から放出された電子線は、
複数電極で構成される電子加速・集束系13で加速・集
束され、患者挿入細管14を通ってX線発生部15に到
達しX線を発生する。発生したX線はX線発生部15の
周囲の物質を透過して外部に放射され、治療対象6に照
射され、治療を行う。
The electron beam emitted from the electron source 11 is
It is accelerated and focused by the electron acceleration / focusing system 13 composed of a plurality of electrodes, passes through the patient insertion thin tube 14, reaches the X-ray generation unit 15, and generates X-rays. The generated X-rays pass through the substance around the X-ray generation unit 15 and are radiated to the outside to irradiate the treatment target 6 for treatment.

【0004】[0004]

【発明が解決しようとする課題】患者挿入細管14に取
り付けられているX線発生部15は、厚さ1mm程度の、
例えばベリリウムのようなX線透過材の円盤上に、例え
ばタングステンやモリブデンのような原子番号が大き
く、融点の高い材料を数μmの膜厚で成膜したものであ
る。また、患者挿入細管14には、例えばステンレス鋼
のような放出ガス量が少なく機械的強度の大きい材質の
パイプが用いられる。ステンレス鋼はX線吸収係数が大
きいため、小型X線源から放射されるX線は電子線の進
行方向の前方方向にのみ分布する。この場合のX線の放
射角度分布は図4に示す如くなり、X線焦点から治療対
象6側にのみ制限される。さらに、X線線量はX線焦点
からの距離が大きくなると急激に減衰するため、有効照
射野が狭く十分な治療効果を得られないという問題があ
った。従って、本発明では有効照射野の大きい小型X線
源を提供することを目的とした。
The X-ray generator 15 attached to the patient insertion thin tube 14 has a thickness of about 1 mm.
For example, a material having a large atomic number and a high melting point, such as tungsten and molybdenum, is deposited on a disk of an X-ray transparent material such as beryllium to a film thickness of several μm. The patient insertion thin tube 14 is made of a material such as stainless steel that has a small amount of released gas and a large mechanical strength. Since stainless steel has a large X-ray absorption coefficient, X-rays emitted from a small X-ray source are distributed only in the forward direction of the electron beam traveling direction. The X-ray emission angle distribution in this case is as shown in FIG. 4, and is limited only from the X-ray focus to the treatment target 6 side. Further, since the X-ray dose rapidly attenuates as the distance from the X-ray focus increases, there is a problem that the effective irradiation field is narrow and a sufficient therapeutic effect cannot be obtained. Therefore, the object of the present invention is to provide a compact X-ray source having a large effective irradiation field.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明では電子発生源と、電子線の加速・集束系
と、前記電子発生源と前記電子線の加速・集束系を収容
する真空容器と、該真空容器の一端に接続され、その先
端にX線発生部を具備する患者挿入細管と、前記電子発
生源と前記電子線の加速・集束系に電力を供給する電源
部とから構成する小型X線源において、前記X線発生部
のX線照射範囲を前記電子線の進行方向を基準にして9
0度より大きくしたことを特徴とする(請求項1)。
In order to achieve the above object, in the present invention, an electron source, an electron beam acceleration / focusing system, and a vacuum housing the electron source and the electron beam acceleration / focusing system. A container, a patient insertion thin tube connected to one end of the vacuum container and provided with an X-ray generation unit at its tip, a power supply unit for supplying electric power to the electron source and the electron beam acceleration / focusing system. In the small X-ray source, the X-ray irradiation range of the X-ray generator is set to 9
It is characterized in that it is larger than 0 degree (claim 1).

【0006】本発明では更に、前記X線発生部がカップ
状のX線透過材と、該X線透過材の内側底面に設けた原
子番号の大きな高融点元素からなるターゲット膜とから
構成されていることを特徴とする(請求項2)。
Further, in the present invention, the X-ray generating portion is composed of a cup-shaped X-ray transmitting material and a target film made of a high melting point element having a large atomic number provided on the inner bottom surface of the X-ray transmitting material. (Claim 2).

【0007】本発明では更に、前記カップ状X線透過材
の材質がベリリウム若しくはアルミニウムであることを
特徴とする(請求項3)。
The present invention is further characterized in that the material of the cup-shaped X-ray transparent material is beryllium or aluminum (claim 3).

【0008】本発明によれば、小型X線源から放射され
るX線を、X線焦点から治療対象6側にのみ制限するこ
となく、広い範囲に照射可能となる。
According to the present invention, it is possible to irradiate a wide range of X-rays emitted from a compact X-ray source without limiting the X-ray focal point to the treatment target 6 side only.

【0009】[0009]

【発明の実施の形態】以下、図面を用いて本発明の実施
例について説明する。図1は、本発明の構成の一実施例
を示したものである。本実施例の小型X線源は、電子発
生源11,複数の電極で構成される電子加速・集束系1
3,電子発生源11と電子加速・集束系13とを真空中
に封入・保持する真空容器1,真空容器1に接続される
外径数mmの患者挿入細管14,患者挿入細管14の先端
に取り付けられるX線発生部15,電子発生部11と電
子加速・集束系13に電力を供給する高圧電源部21,
高圧電源部21の出力を制御する制御部3,真空容器1
と高圧電源部21を保持するハウジング2から構成され
る。本実施例の特徴は、X線発生部15の構成にある。
以下、詳細に説明する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the configuration of the present invention. The small X-ray source of this embodiment is an electron source 11 and an electron acceleration / focusing system 1 composed of a plurality of electrodes.
3, a vacuum container 1 for enclosing and holding an electron source 11 and an electron acceleration / focusing system 13 in a vacuum 1, a patient insertion thin tube 14 with an outer diameter of several mm connected to the vacuum container 1, and a tip of the patient insertion thin tube 14. An X-ray generator 15, an electron generator 11, and a high-voltage power supply 21, which supplies electric power to the electron acceleration / focusing system 13,
Control unit 3 for controlling the output of the high-voltage power supply unit 3, vacuum container 1
And a housing 2 that holds the high-voltage power supply unit 21. The feature of this embodiment lies in the configuration of the X-ray generation unit 15.
The details will be described below.

【0010】本実施例のX線発生部15は、カップ状の
X線透過材15aの内側の底面にターゲット膜15bを
付けたものである。カップ状のX線透過材15aにはベ
リリウムやアルミニウム等の原子番号の小さな元素を用
い、ターゲット膜15bにはタングステンやモリブデン
等の原子番号の大きな、高融点の元素を用いる。カップ
状のX線透過材15aは患者挿入細管14の細管部に接
続される。この接続はろう付又は接着等により行われ
る。カップ状のX線透過材15aを用いることにより、
従来品ではステンレス製の患者挿入細管14でX線遮蔽
されていたX線が小型X線源外に放射されるため、X線
の有効照射野が拡がる。有効照射野はカップ状X線透過
材15aのカップ部の高さを高くすることにより拡大す
ることができる。
The X-ray generating section 15 of this embodiment is a cup-shaped X-ray transmitting material 15a having a target film 15b attached to the inner bottom surface thereof. An element with a small atomic number such as beryllium or aluminum is used for the cup-shaped X-ray transparent material 15a, and a high melting point element with a large atomic number such as tungsten or molybdenum is used for the target film 15b. The cup-shaped X-ray transparent material 15a is connected to the thin tube portion of the patient insertion thin tube 14. This connection is made by brazing or gluing. By using the cup-shaped X-ray transmission material 15a,
In the conventional product, the X-rays shielded by the patient insertion thin tube 14 made of stainless steel are radiated to the outside of the small X-ray source, so that the effective X-ray irradiation field is expanded. The effective irradiation field can be expanded by increasing the height of the cup portion of the cup-shaped X-ray transparent material 15a.

【0011】図2には、本発明適用品と従来品のX線線
量の放射角度依存性の概略比較を示す。図2において、
縦軸はX線線量の対数値を、横軸はX線放射角度θを示
したものである。X線放射角度は、ターゲット膜に入射
する電子線の方向を基準にした角度である。本発明適用
品のX線線量を実線Aで、従来品のX線線量を破線Bで
示した。従来品でX線放射角度θ=θ1(90度より小
さい角度)でX線線量が大幅に減衰しているのに対し、
本発明適用品ではθ=θ2(90度より大きい角度)ま
でX線線量が大きく、X線放射領域が広がっている。す
なわち、本発明適用品の如くカップ状のX線透過材15
aを用いることにより、X線の有効照射野は、0〜θ1
の範囲から0〜θ2の範囲に拡大することができる。ま
た、本発明適用品においても、θ=θ1の近くで若干の
減衰が生ずるが、狭い範囲であるので実用上の問題はな
い。
FIG. 2 shows a schematic comparison of the radiation angle dependence of the X-ray dose between the product of the present invention and the conventional product. In FIG.
The vertical axis shows the logarithmic value of the X-ray dose, and the horizontal axis shows the X-ray emission angle θ. The X-ray emission angle is an angle based on the direction of the electron beam incident on the target film. The solid line A shows the X-ray dose of the product to which the invention is applied, and the broken line B shows the X-ray dose of the conventional product. In the conventional product, the X-ray dose is greatly attenuated at the X-ray emission angle θ = θ1 (angle smaller than 90 degrees).
In the product to which the present invention is applied, the X-ray dose is large up to θ = θ2 (angle larger than 90 degrees), and the X-ray emission region is widened. That is, the cup-shaped X-ray transmission material 15 like the product to which the present invention is applied.
By using a, the effective irradiation field of X-rays is 0 to θ1.
Can be expanded from the range of 0 to the range of θ2. Also in the product to which the present invention is applied, some attenuation occurs near θ = θ1, but there is no practical problem because it is in a narrow range.

【0012】以上説明した如く、カップ状のX線透過材
を用いることにより、X線有効照射野の拡大をはかるこ
とができるが、バルク材のベリリウムをカップ状に加工
して、内面の底にタングステン膜を形成するのには作業
に困難が伴うものである。そこで、以下に示すような方
法によってもベリリウム製のカップ状X線透過材を得る
ことができるので、その方法について説明する。
As described above, by using a cup-shaped X-ray transmitting material, the effective X-ray irradiation field can be expanded. It is difficult to form a tungsten film. Therefore, a cup-shaped X-ray transparent material made of beryllium can also be obtained by the method described below, so that method will be described.

【0013】図3には、ベリリウム製のカップ状X線透
過材の一例を示す。図3において、カップ状X線透過材
15aは、外径の等しい円盤15a1と円筒15a2のベ
リリウム材から構成される。円盤15a1 にはあらかじ
めタングステン等の高融点元素をX線ターゲット膜15
bとして成膜しておく。円盤15a1と円筒15a2
間、円筒15a1 と患者挿入細管14との間は、真空用
接着剤などにより結合する。ただし、真空用接着剤は通
常絶縁物であるため、円盤15a1と円筒15a2の間、
円筒15a2 と患者挿入細管14の接合面を真空用接着
剤で満たすと、X線ターゲットの部分が患者挿入細管1
4から絶縁されることになり、X線ターゲット15bに
入射した電子はX線ターゲット15b及びベリリウム製
円盤15a1に留まり、これらを充電することになる。こ
れを避けるため、円盤15a1 ,円筒15a2 及び患者
挿入細管14の導電性を確保する必要がある。
FIG. 3 shows an example of a cup-shaped X-ray transparent material made of beryllium. In FIG. 3, the cup-shaped X-ray transparent material 15a is composed of a beryllium material of a disk 15a 1 and a cylinder 15a 2 having the same outer diameter. The disk 15a 1 is preliminarily provided with a refractory element such as tungsten in the X-ray target film 15
The film is formed as b. The disk 15a 1 and the cylinder 15a 2 and the cylinder 15a 1 and the patient insertion thin tube 14 are connected by a vacuum adhesive or the like. However, since the vacuum adhesive is usually an insulating material, the adhesive between the disk 15a 1 and the cylinder 15a 2
When the joint surface between the cylinder 15a 2 and the patient-inserted thin tube 14 is filled with a vacuum adhesive, the portion of the X-ray target is filled with the patient-inserted thin tube 1.
Therefore, the electrons incident on the X-ray target 15b remain in the X-ray target 15b and the beryllium disk 15a 1 and charge them. In order to avoid this, it is necessary to ensure the conductivity of the disk 15a 1 , the cylinder 15a 2 and the patient insertion thin tube 14.

【0014】導電性を確保するための一例として、銀ペ
ースト等を外表面に薄く塗布する方法が考えられる。し
かし、銀が厚すぎるとX線遮蔽材となるので、X線有効
照射野の拡大を損うおそれがある。そこで、図に示すよ
うに、円筒15a2 及び患者挿入細管14に溝20を設
け、この部分に真空用接着剤22を流し込み、接合面の
一部は円盤15a1 と円筒15a2 の間、円筒15a2
と患者挿入細管14の間で接触させて、導電性を維持す
るようにする。上述の如き構成をとることにより、ベリ
リウム製のカップ状X線透過材15aを形成することが
可能となり、小型X線源の有効照射野を拡大し、治療効
果の向上をはかることができる。
As an example for ensuring conductivity, a method of thinly applying silver paste or the like on the outer surface can be considered. However, if the silver is too thick, it becomes an X-ray shielding material, which may impair the expansion of the X-ray effective irradiation field. Therefore, as shown in the figure, a groove 20 is provided in the cylinder 15a 2 and the patient insertion thin tube 14, and a vacuum adhesive 22 is poured into this portion, and a part of the joint surface is between the disk 15a 1 and the cylinder 15a 2 15a 2
And the patient insertion tubule 14 are contacted to maintain electrical conductivity. With the above-described configuration, the cup-shaped X-ray transparent material 15a made of beryllium can be formed, the effective irradiation field of the small X-ray source can be expanded, and the therapeutic effect can be improved.

【0015】[0015]

【発明の効果】以上説明した如く、本発明によれば、小
型X線源から放射されるX線は、X線焦点から治療対象
6側にのみ制限されることがなくなるため、その有効照
射範囲は従来に比較して広くなり、治療効果を向上させ
ることができる。
As described above, according to the present invention, the X-rays emitted from the small X-ray source are not limited to the treatment target 6 side from the X-ray focal point, and therefore the effective irradiation range thereof. Is wider than before, and the therapeutic effect can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す図。FIG. 1 is a diagram showing one embodiment of the present invention.

【図2】本発明適用品と従来品のX線線量の放射角度依
存性の概略比較を示す図。
FIG. 2 is a diagram showing a schematic comparison of radiation angle dependence of X-ray dose between a product to which the present invention is applied and a conventional product.

【図3】ベリリウム製のカップ状X線透過材の一例を示
す図。
FIG. 3 is a diagram showing an example of a cup-shaped X-ray transparent material made of beryllium.

【図4】従来の小型X線源の構成を示す図。FIG. 4 is a diagram showing a configuration of a conventional small X-ray source.

【符号の説明】[Explanation of symbols]

1 真空容器 2 ハウジング 3 制御部 11 電子発生源 13 電子加速・集束系 14 患者挿入細管 15 X線発生部 15a カップ状X線透過材 15a1 ベリリウム製円盤 15a2 ベリリウム製円筒 15b X線ターゲット膜 20 溝 21 高圧電源部 22 真空用接着剤DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Housing 3 Control part 11 Electron generation source 13 Electron acceleration / focusing system 14 Patient insertion thin tube 15 X-ray generation part 15a Cup-shaped X-ray transmission material 15a 1 Beryllium disc 15a 2 Beryllium cylinder 15b X-ray target film 20 Groove 21 High voltage power supply 22 Vacuum adhesive

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電子発生源と、電子線の加速・集束系と、
前記電子発生源と前記電子線の加速・集束系を収容する
真空容器と、該真空容器の一端に接続され、その先端に
X線発生部を具備する患者挿入細管と、前記電子発生源
と前記電子線の加速・集束系に電力を供給する電源部と
から構成する小型X線源において、前記X線発生部のX
線照射範囲を前記電子線の進行方向を基準にして90度
より大きくしたことを特徴とする小型X線源。
1. An electron source, an electron beam acceleration / focusing system,
A vacuum container for accommodating the electron source and the electron beam acceleration / focusing system, a patient insertion thin tube connected to one end of the vacuum container and having an X-ray generator at its tip, the electron source and the A small X-ray source including a power supply unit for supplying electric power to an electron beam acceleration / focusing system, wherein X of the X-ray generation unit is used.
A small X-ray source, characterized in that a radiation range is set to be larger than 90 degrees with respect to a traveling direction of the electron beam.
【請求項2】請求項1記載の小型X線源において、前記
X線発生部がカップ状のX線透過材と、該X線透過材の
内側底面に設けた原子番号の大きな高融点元素からなる
ターゲット膜とから構成されていることを特徴とする小
型X線源。
2. The miniature X-ray source according to claim 1, wherein the X-ray generation section is composed of a cup-shaped X-ray transmitting material and a refractory element having a large atomic number provided on the inner bottom surface of the X-ray transmitting material. A small X-ray source, which comprises a target film.
【請求項3】請求項2記載の小型X線源において、前記
カップ状X線透過材の材質がベリリウム若しくはアルミ
ニウムであることを特徴とする小型X線源。
3. The compact X-ray source according to claim 2, wherein the material of the cup-shaped X-ray transparent material is beryllium or aluminum.
JP7314900A 1995-11-09 1995-11-09 Small sized x-ray source Pending JPH09134795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7314900A JPH09134795A (en) 1995-11-09 1995-11-09 Small sized x-ray source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7314900A JPH09134795A (en) 1995-11-09 1995-11-09 Small sized x-ray source

Publications (1)

Publication Number Publication Date
JPH09134795A true JPH09134795A (en) 1997-05-20

Family

ID=18058995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7314900A Pending JPH09134795A (en) 1995-11-09 1995-11-09 Small sized x-ray source

Country Status (1)

Country Link
JP (1) JPH09134795A (en)

Similar Documents

Publication Publication Date Title
US4104532A (en) Dental and medical X-ray apparatus
EP0740847B1 (en) X-ray source with flexible probe
US6195411B1 (en) Miniature x-ray source with flexible probe
AU684652B2 (en) X-ray apparatus for applying a predetermined flux to an interior surface of a body cavity
JPH08206103A (en) Radioactive ray medical treatment device with low dose stereostatic and x-ray source for portal imaging
JPH06162972A (en) X-ray tube provided with transmission-type anode
JP4659399B2 (en) Compact X-ray source device
JP2014026801A (en) Puncture x-ray generator
JP4268037B2 (en) Optically driven therapeutic radiation source
US6480568B1 (en) Optically driven therapeutic radiation source
USRE41741E1 (en) Optically driven therapeutic radiation source having a spiral shaped thermionic cathode
US6721392B1 (en) Optically driven therapeutic radiation source including a non-planar target configuration
EP2887379A1 (en) Intra-operatory carbon ion radiation therapy system
JPH09134795A (en) Small sized x-ray source
JP2000208294A (en) Ultraminiature x-ray generator
KR101837599B1 (en) X-ray Tube System Using X-ray Tube Based on Carbon Nanotube for Keloid and Skin Cancer Treatment X-ray Brachytherapy Apparatus
CN101720492A (en) Device for generating X-ray radiation and having a large real focus and a virtual focus which are adjusted as required
US6480573B1 (en) Therapeutic radiation source with increased cathode efficiency
CN210009041U (en) Local secondary fluorescent radiation X-ray bulb tube
US20020196900A1 (en) Optically driven therapeutic radiation source with voltage gradient control
JP2004229698A (en) Slender type x-ray irradiation equipment
JPH01204649A (en) X-ray photographing device
JP2001023556A (en) X-ray tube
US6839405B2 (en) System and method for electronic shaping of X-ray beams
JPS6155729B2 (en)