JPH09133669A - Method for determining paralytic shell poison - Google Patents

Method for determining paralytic shell poison

Info

Publication number
JPH09133669A
JPH09133669A JP28895695A JP28895695A JPH09133669A JP H09133669 A JPH09133669 A JP H09133669A JP 28895695 A JP28895695 A JP 28895695A JP 28895695 A JP28895695 A JP 28895695A JP H09133669 A JPH09133669 A JP H09133669A
Authority
JP
Japan
Prior art keywords
column
reaction
paralytic shellfish
solution
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28895695A
Other languages
Japanese (ja)
Inventor
Morimasa Hayashi
守正 林
Yoshihide Yasui
嘉秀 安居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP28895695A priority Critical patent/JPH09133669A/en
Publication of JPH09133669A publication Critical patent/JPH09133669A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-precision liquid chromatographic analysis method by which all paralytic shell poisons can be highly specifically determined with high sensitivity by improving the fluorescence generating reactions of gonyautoxins and saxitoxins having a hydroxyl group at the first unit for determining paralytic shell poisons by using a post-column derivative detecting method. SOLUTION: After a paralytic shell poison is separated through a column 4, a reagent for causing a fluorescence generating reaction is supplied to the elute from a first reagent feeding pump 5 so that the concentration of an oxidizing agent (iodine peroxide, etc.) after mixture can become >=1mM and the pH of the mixed solution after mixture can become >=8 and a reactor 7 is maintained at 90-110 deg.C so that the reaction can take place. Then an acidic solution is fed to the reacted solution from a second reagent feeding pump 8 so as to improve the intensity of fluorescence and the intensity of fluorescence is measured with a fluorescence detector 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はゴニオトキシン類ま
たはサキシトキシン類などの麻痺性貝毒を分析する方法
に関する。
TECHNICAL FIELD The present invention relates to a method for analyzing paralytic shellfish toxins such as goniotoxins or saxitoxins.

【0002】[0002]

【従来の技術】麻痺性貝毒はゴニオトキシン類やサキシ
トキシン類などの神経毒性を示す化合物の総称で、一部
の渦鞭毛藻によって生産され、この藻類を餌とする二枚
貝を毒化する。その二枚貝を食すると死亡率の高い食中
毒を引き起こすため、水産ならびに食品衛生上、大きな
社会問題となっている。
2. Description of the Related Art Paralytic shellfish poison is a general term for compounds showing neurotoxicity such as goniotoxins and saxitoxins and is produced by some dinoflagellates and poisons bivalves that feed on these algae. Eating the bivalve causes food poisoning with a high mortality rate, which is a major social problem in fisheries and food hygiene.

【0003】従来、麻痺性貝毒の定量分析には、下記の
方法が知られている。
Conventionally, the following methods are known for the quantitative analysis of paralytic shellfish poison.

【0004】 マウス毒性試験法:マウスの生死に基
づく生物学的試験方法であり、公定法。
Mouse toxicity test method: A biological test method based on the life and death of mice, which is an official method.

【0005】 高速液体クロマトグラフ法:麻痺性貝
毒を含有する試料を高速液体クロマトグラフに付して、
分析すべき麻痺性貝毒を分離し、しかる後、カラムから
の溶出液に、酸化剤であるオルト過よう素酸を含有する
緩衝液を、混合後のpHおよびオルト過よう素酸濃度が、
各々、pH9 、3.5mM となるように混合し、65℃の温度下
で麻痺性貝毒を反応せしめ、次いで、酸水溶液を混合
し、反応によって生じた発蛍光性物質を蛍光光度計を用
いて測定して分析する方法。
High Performance Liquid Chromatography Method: A sample containing paralytic shellfish poison was subjected to high performance liquid chromatography,
The paralytic shellfish poison to be analyzed is separated, and then the eluate from the column is mixed with a buffer solution containing orthoperiodic acid, which is an oxidizing agent, after the pH and orthoperiodic acid concentration are mixed,
Mix to pH 9 and 3.5 mM, respectively, and react with paralytic shellfish toxin at a temperature of 65 ° C, then mix with an aqueous acid solution and use the fluorometer to measure the fluorogenic substance generated by the reaction. How to measure and analyze.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記し
た従来技術のうち法(マウス毒性試験法)では、マウ
スの個体差や検査技術に起因する分析精度、感度の問題
があり、またマウスの飼育管理が煩雑であることの問題
があり、これらが検査上の障害となっている。
However, in the method (mouse toxicity test method) of the above-mentioned conventional techniques, there are problems of analytical accuracy and sensitivity due to individual differences of mice and test technology, and the breeding management of mice. Is complicated, and these are obstacles in the examination.

【0007】また、前記した従来技術の法(高速液体
クロマトグラフ法)では、操作が簡単であり、精度も高
いが、麻痺性貝毒の種類によって感度が異なり、特に1
位に水酸基を有するゴニオトキシン類(GTX-1、GTX-4
など)に対して高感度が望めないという課題があった。
In the above-mentioned conventional method (high-performance liquid chromatograph method), the operation is simple and the accuracy is high, but the sensitivity varies depending on the type of paralytic shellfish poisoning.
Goniotoxins having a hydroxyl group at position (GTX-1, GTX-4
However, there was a problem that high sensitivity could not be expected.

【0008】本発明は、前記従来技術の課題を解決する
ため、法をさらに改良し、従来から当該方法が有する
操作が簡単であり、精度も高い特徴に加えて、感度と特
異性を増大した麻痺性貝毒の分析方法を提供することを
目的とする。
In order to solve the above-mentioned problems of the prior art, the present invention has further improved the method, which has a feature that the method has a simple operation and a high precision, and has increased sensitivity and specificity. It is an object to provide a method for analyzing paralytic shellfish poison.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、 イ 麻痺性貝毒を含有する試料を高速液体クロマトグラ
フに付して、分析すべき麻痺性貝毒をカラムで分離する
分離行程、 ロ 当該カラムからの溶出液に、酸化剤を混合する混合
行程、 ハ 当該混合液を加熱し麻痺性貝毒を反応せしめる反応
行程、 ニ 次いで、当該反応液に酸水溶液または緩衝液を混合
してpH5 以下とした後反応によって生じた発蛍光性物質
を蛍光光度計を用いて測定する蛍光測定行程、よりなる
麻痺性貝毒の分析方法において、混合行程においてカラ
ムからの溶出液に混合する酸化剤を含有する緩衝液を、
混合後の酸化剤の濃度が1mM 以下でありかつ、混合後の
当該混合液のpH値が8以上になるような酸化剤濃度とし
かつ、このようなpH緩衝能力を有する緩衝液とし、さら
に、反応行程において当該混合液を90℃から110 ℃の間
の任意の温度条件下で加熱し麻痺性貝毒を反応せしめる
反応行程としたことを特徴とする。
In order to achieve the above object, the present invention provides a sample containing a paralytic shellfish poison by high performance liquid chromatography to separate the paralytic shellfish poison to be analyzed by a column. Separation step, (b) a mixing step in which the eluate from the column is mixed with an oxidant, (c) a reaction step in which the mixed solution is heated to react paralytic shellfish poison, (d) an aqueous acid solution or a buffer solution is then added to the reaction solution. In the method for the analysis of paralytic shellfish toxins, in which the fluorescent substance generated by the reaction is measured using a fluorometer, the eluent from the column is mixed in the mixing process. A buffer solution containing an oxidizing agent to be mixed,
The concentration of the oxidizing agent after mixing is 1 mM or less, and the concentration of the oxidizing agent is such that the pH value of the mixed solution after mixing is 8 or more, and a buffer solution having such a pH buffering capacity, The reaction step is characterized in that the mixed solution is heated under an arbitrary temperature condition between 90 ° C. and 110 ° C. so as to react with the paralytic shellfish poison.

【0010】本発明において、酸化剤とは、オルト過ヨ
ウ素酸HIO、メタ過ヨウ素酸HIO又は過ヨウ
素酸の塩(過ヨウ素酸の水化物やポリ酸の塩であって、
オルト酸塩、二メソ酸塩、メソ酸塩、二オルト酸塩、メ
タ酸塩を含む)又は酢酸鉛(IV)Pb(CHCO
O)をいう。また、本発明において、混合後の酸化剤
の濃度が1mM以下の酸化剤濃度となる酸化剤濃度とは、
例えば、カラム溶離液と酸化剤含有反応液を等量に混合
する場合には、酸化剤含有反応液中の酸化剤濃度を2mM
以下にすることをいい、酸化剤として過ヨウ素酸の塩を
用いる場合には、過ヨウ素酸量に換算した濃度をいう。
さらに、本発明において、混合後の当該混合液のpH値が
8以上となるpH緩衝能力を有する緩衝液としては、ほう
酸緩衝液、炭酸緩衝液等の使用が望ましい。
In the present invention, the oxidizing agent is orthoperiodic acid H 5 IO 6 , metaperiodic acid HIO 4 or a salt of periodic acid (a hydrate of periodate or a salt of polyacid,
Ortho acid salt, dimesoic acid salt, meso acid salt, diortho acid salt, and meta acid salt) or lead (IV) acetate Pb (CH 3 CO 3
O) refers to 4 . In the present invention, the oxidant concentration at which the concentration of the oxidant after mixing is 1 mM or less is
For example, if the column eluent and the oxidant-containing reaction solution are mixed in equal amounts, the oxidant concentration in the oxidant-containing reaction solution should be 2 mM.
When the periodate salt is used as the oxidant, it means the concentration converted into the periodate amount.
Further, in the present invention, it is desirable to use a borate buffer solution, a carbonate buffer solution, or the like as the buffer solution having a pH buffering ability such that the pH value of the mixed solution after mixing becomes 8 or more.

【0011】上記した本発明の構成は、前述の従来技術
法と同様に、高速液体クロマトグラフィーによる麻痺
性貝毒の分離と、麻痺性貝毒を発蛍光性化合物に導くポ
ストカラム誘導体化検出からなる。しかし、従来のポス
トカラム誘導体化検出法では1位に水酸基を有するゴニ
オトキシン類に対する感度が低いという課題があったの
で、それを解決すべく本発明の発明者は試薬濃度、反応
時間、反応温度などの基礎実験を行った。その結果、1
位に水酸基を有するゴニオトキシン類は、過よう素酸を
作用させなくても、塩基性下、かつ高温下で反応させる
と発蛍光性を示すこと、また、過よう素酸の作用濃度が
低いほど感度が向上することを見いだした。さらに、1
位に水酸基を有さないゴニオトキシン類については、発
蛍光性化合物に導くために過よう素酸を作用させる必要
があったが、過よう素酸以外に四酢酸鉛も同様な効果が
あることを見いだした。これら事実は公知ではなく、発
明者の一連の研究によって、初めて知り得たものであ
る。本発明は、こうした研究の結果をポストカラム誘導
体化検出に応用し、最適な反応条件を決定したものであ
る。
The above-described constitution of the present invention is similar to the above-mentioned prior art method in that the paralytic shellfish toxin is separated by high performance liquid chromatography and the postcolumn derivatization detection for converting the paralytic shellfish toxin into a fluorescent compound is performed. Become. However, the conventional post-column derivatization detection method has a problem that the sensitivity to goniotoxins having a hydroxyl group at the 1-position is low, and therefore the inventors of the present invention have solved it by solving the problems such as reagent concentration, reaction time and reaction temperature. We conducted basic experiments such as. As a result, 1
Goniotoxins having a hydroxyl group at the position show fluorescence even if they are reacted with basic acid at high temperature without the action of periodic acid, and the action concentration of periodic acid is low. I found that the sensitivity was improved. In addition, 1
For goniotoxins that do not have a hydroxyl group at the position, it was necessary to act periodic acid in order to lead to a fluorescent compound, but lead tetraacetate also has similar effects in addition to periodic acid. I found it. These facts are not publicly known, and can be found for the first time by a series of studies by the inventors. The present invention applies the results of these studies to post-column derivatization detection to determine the optimal reaction conditions.

【0012】[0012]

【発明の実施の形態】前記した本発明の構成によれば、
麻痺性貝毒を含有する試料を高速液体クロマトグラフに
付して、分析すべき麻痺性貝毒を分離し、しかる後、カ
ラムからの溶出液に、酸化剤を含有する緩衝液を、混合
後の酸化剤濃度およびpHが、各々、1mM 以下、pH8 以
上、となるように混合し、90℃から110 ℃の間の任意の
温度下で麻痺性貝毒を反応せしめ、次いで、酸水溶液ま
たは緩衝液を混合してpH5 以下とした後、反応によって
生じた発蛍光性物質を蛍光光度計を用いて測定して分析
する。このポストカラム誘導体化反応によって1 位に水
酸基を有するゴニオトキシン類を含むゴニオトキシン類
が強い発蛍光性を示す物質に変化し、これを蛍光光度法
により容易に検出・測定可能となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the configuration of the present invention described above,
A sample containing paralytic shellfish poison is subjected to high performance liquid chromatography to separate the paralytic shellfish poison to be analyzed, and then the eluate from the column is mixed with a buffer solution containing an oxidizing agent. Oxidizer concentration and pH are 1 mM or less and pH 8 or more, respectively, and the paralytic shellfish poison is allowed to react at any temperature between 90 ° C and 110 ° C, and then acid aqueous solution or buffer is added. After mixing the solutions to pH 5 or less, measure the fluorogenic substances generated by the reaction using a fluorimeter and analyze. By this post-column derivatization reaction, goniotoxins, including goniotoxins having a hydroxyl group at the 1-position, are converted into substances exhibiting strong fluorescence, which can be easily detected and measured by a fluorometric method.

【0013】また、本件発明にかかる蛍光物質生成反応
は、麻痺性貝毒を予め高速液体クロマトグラフに付すこ
となく分析する目的に使用することができる。例えば、
1 位に水酸基を有するゴニオトキシン類を、塩基性下、
酸化剤の存在無しで、かつ90℃から110 ℃の温度条件で
反応させ、その後酸性条件下で蛍光を測定することによ
るゴニオトキシン類の分析方法がある。
Further, the fluorescent substance forming reaction according to the present invention can be used for the purpose of analyzing paralytic shellfish poisoning without preliminarily applying it to a high performance liquid chromatograph. For example,
Goniotoxins having a hydroxyl group at the 1-position are
There is a method of analyzing goniotoxins by reacting in the absence of an oxidant and at a temperature condition of 90 ° C to 110 ° C, and then measuring fluorescence under acidic conditions.

【0014】[0014]

【実施例】以下、実施例を用いて、本発明をさらに詳細
に説明する。なお、本発明は下記の実施例に限定される
ものではない。
The present invention will be described in more detail with reference to the following examples. In addition, this invention is not limited to a following example.

【0015】まず、分析装置について説明する。First, the analyzer will be described.

【0016】図1は本発明で用いる高速液体クロマトグ
ラフの流路図を示す。図1において、1は移動相送液ポ
ンプ、2は試料導入器、3はカラム恒温槽、4はカラ
ム、5は第1試薬送液ポンプ、6は反応恒温槽、7は反
応器、8は第2試薬送液ポンプ、9は混合器、10は蛍
光検出器、11はデータ処理器である。
FIG. 1 is a flow chart of a high performance liquid chromatograph used in the present invention. In FIG. 1, 1 is a mobile phase liquid feeding pump, 2 is a sample introducer, 3 is a column thermostatic bath, 4 is a column, 5 is a first reagent liquid feeding pump, 6 is a reaction thermostatic bath, 7 is a reactor, and 8 is The second reagent delivery pump, 9 is a mixer, 10 is a fluorescence detector, and 11 is a data processor.

【0017】次に、第1 図に示した分析装置を用いた本
発明の一実施例について、その作用を説明する。
Next, the operation of one embodiment of the present invention using the analyzer shown in FIG. 1 will be described.

【0018】まず、送液ポンプ1によって移動相を送液
し、麻痺性貝毒を含有する試料を試料導入器2からマイ
クロシリンジなどを用いて導入し、分析すべき麻痺性貝
毒を、カラム恒温槽3によって一定温度に置かれたカラ
ム4内で分離する。カラムから連続的に溶出する移動相
に、第1試薬送液ポンプ5により、酸化剤を含有する反
応試薬を送液して混合し、反応恒温槽6内で90℃から11
0 ℃の間任意の温度下に置かれた反応器7に送る。ここ
で、麻痺性貝毒を発蛍光性化合物に導く。次いで、第2
試薬送液ポンプ8によって酸水溶液または緩衝液を送液
し、混合器9で反応液と混合して、混合液のpH値を5 以
下にする。この処理により、発蛍光性化合物の蛍光強度
を増大せしめた後、当該発蛍光性化合物を蛍光検出器1
0測定し、これをデータ処理器11で処理するものであ
る。
First, the mobile phase is sent by the solution sending pump 1, a sample containing paralytic shellfish poison is introduced from the sample introducer 2 using a microsyringe, etc., and the paralytic shellfish poison to be analyzed is stored in the column. Separation is performed in the column 4 kept at a constant temperature by the constant temperature bath 3. The reaction reagent containing the oxidant was fed by the first reagent feed pump 5 to the mobile phase which was continuously eluted from the column, and mixed, and the mixture was mixed in the reaction thermostat 6 at 90 ° C to
It is sent to the reactor 7 placed at an arbitrary temperature for 0 ° C. Here, the paralytic shellfish poison is led to a fluorescent compound. Then the second
An acid aqueous solution or a buffer solution is sent by the reagent sending pump 8 and mixed with the reaction solution by the mixer 9, so that the pH value of the mixed solution becomes 5 or less. By this treatment, the fluorescence intensity of the fluorescent compound is increased and then the fluorescent compound is detected by the fluorescence detector 1.
0 is measured and this is processed by the data processor 11.

【0019】カラム4 には、例えば、逆相クロマトグラ
フィー用カラム「STR ODS-II」(内径 4 mm ×長さ 150
mm )が用いられる。ただし、カラム4 は分析すべき麻
痺性貝毒を分離することがでものであれば、どのような
ものであってもよい。
The column 4 includes, for example, a column for reverse phase chromatography “STR ODS-II” (inner diameter 4 mm × length 150 mm).
mm) is used. However, column 4 may be of any type as long as it can separate the paralytic shellfish to be analyzed.

【0020】移動相には、一例として、 4mM 1- ヘプタ
ンスルホン酸ナトリウムを含有する8mM りん酸(ナトリ
ウム)緩衝液<pH7.0> を用いる。ただし、移動相は、分
析すべき麻痺性貝毒を分離することができるものであれ
ば、その種類や濃度などに何らの制約はない。
As the mobile phase, for example, 8 mM sodium phosphate buffer <pH 7.0> containing 4 mM sodium 1-heptanesulfonate is used. However, there is no restriction on the type and concentration of the mobile phase as long as it can separate the paralytic shellfish to be analyzed.

【0021】麻痺性貝毒を発蛍光性化合物に導く反応試
薬には、例えば、過よう素酸を含有する、ほう酸(ナト
リウム)緩衝液<pH9.2> を用い、カラム溶出液と混合し
て、90℃〜110 ℃下で、10秒〜60秒間、反応させる。過
よう素酸は、カラム溶出液との混合後の濃度が1mM 以下
となるような濃度で用いることが好ましい。また、緩衝
液は、カラム溶出液との混合後のpHが8 以上になるよう
なものであれば、どのような種類、濃度であっても良
く、ほう酸緩衝液以外に、炭酸緩衝液などを用いること
もできる。
As a reaction reagent for converting paralytic shellfish poison to a fluorescent compound, for example, boric acid (sodium) buffer solution <pH9.2> containing periodic acid is used and mixed with the column eluate. Incubate at 90 ℃ -110 ℃ for 10-60 seconds. Periodic acid is preferably used at a concentration such that the concentration after mixing with the column eluate is 1 mM or less. Further, the buffer solution may be of any type and concentration as long as the pH after mixing with the column eluate is 8 or more. Besides the borate buffer solution, a carbonate buffer solution or the like may be used. It can also be used.

【0022】反応液を酸性にする試薬には、例えば、り
ん酸水溶液を用い、反応液と5 秒〜20秒間、混合させ
る。ただし、試薬は、反応液のpHを5 以下にすることが
できるものであれば、どのような種類、濃度であっても
良く、りん酸水溶液以外に、酢酸水溶液、りん酸緩衝
液、酢酸緩衝液などを用いることもできる。
As the reagent for acidifying the reaction solution, for example, an aqueous phosphoric acid solution is used and mixed with the reaction solution for 5 to 20 seconds. However, the reagent may be of any type and concentration as long as it can bring the pH of the reaction solution to 5 or less.In addition to the phosphoric acid aqueous solution, an acetic acid aqueous solution, a phosphate buffer solution, an acetate buffer solution, A liquid or the like can also be used.

【0023】検出波長は、励起波長330nm 、蛍光波長39
0nm であることが好ましいが、反応によって生成た発蛍
光性化合物が検出される波長であれば、どの波長によっ
てもかまわない。
The detection wavelength is excitation wavelength 330 nm, fluorescence wavelength 39
The wavelength is preferably 0 nm, but any wavelength may be used as long as it can detect the fluorescent compound produced by the reaction.

【0024】次に、具体的な分析例を示す。Next, a specific analysis example will be shown.

【0025】 (1) 分離条件 カラム: STR ODS-II(内径 4 mm ×長さ 150 mm ) 移動相: 4mM 1-ヘプタンスルホン酸ナトリウムを含有する 8mM りん酸(ナトリウム)緩衝液<pH7.0> 流 量: 0.6 mL/min 温 度: 40℃ (3) 検出条件 [蛍光誘導体化試薬] 1mM 過よう素酸を含む 80mMほう酸(ナトリウム)緩衝液<pH9.2> 流量: 0.3 mL/min [酸性化試薬] 120mM りん酸水溶液 流量: 0.3 mL/min 反応恒温槽温度: 100 ℃ 検 出: 蛍光光度 Ex:330nm, Em:390nm (4) 分析結果 以上の分析結果を図2に示す。図2は上述の具体的分析
により得られたゴニオトキシン類の標準試料のクロマト
グラムであり、ゴニオトキシン類の標準試料溶液を4倍
に希釈して当該希釈溶液20μLをカラムに導入した分析
結果である。図2中、GTX−1、GTX−2、GTX
−3、GTX−4はそれぞれゴニオトキシン1、ゴニオ
トキシン2、ゴニオトキシン3、ゴニオトキシン4を示
している。この結果、被検試料中の麻痺性貝毒4成分が
分離、検出された。また、1位に水酸基を有するゴニオ
トキシン1、ゴニオトキシン4も高感度に検出されてい
る。
(1) Separation Conditions Column: STR ODS-II (internal diameter 4 mm × length 150 mm) Mobile phase: 8 mM phosphate (sodium) buffer solution containing 4 mM sodium 1-heptanesulfonate <pH 7.0> Flow rate: 0.6 mL / min Temperature: 40 ° C (3) Detection conditions [Fluorescent derivatization reagent] 80 mM boric acid (sodium) buffer containing 1 mM periodic acid <pH9.2> Flow rate: 0.3 mL / min [acidic Reagent] 120 mM phosphoric acid aqueous solution Flow rate: 0.3 mL / min Reaction constant temperature bath temperature: 100 ° C Detection: Fluorescence intensity Ex: 330nm, Em: 390nm (4) Analytical results Figure 2 shows the analytical results. FIG. 2 is a chromatogram of a standard sample of goniotoxins obtained by the above-mentioned specific analysis. It is an analysis result obtained by diluting a standard sample solution of goniotoxins 4 times and introducing 20 μL of the diluted solution into the column. is there. 2, GTX-1, GTX-2, GTX
-3 and GTX-4 represent goniotoxin 1, goniotoxin 2, goniotoxin 3 and goniotoxin 4, respectively. As a result, four paralytic shellfish poison components in the test sample were separated and detected. Also, goniotoxin 1 and goniotoxin 4 having a hydroxyl group at the 1-position have been detected with high sensitivity.

【0026】[0026]

【発明の効果】本発明に係る麻痺性貝毒の分析方法によ
れば、1 位に水酸基を有するゴニオトキシン類を含む麻
痺性貝毒をその種類にかかわらず高感度かつ特異性高く
分析することができる。また従来法の高速液体クロマト
グラム法が有していた操作が簡単かつ高精度という特徴
も損なわれない、また、酸化剤を含まない蛍光誘導体化
をおこなえば、分析費用を節約することができまた、反
応溶液作成の手間と時間を節約できる。
EFFECTS OF THE INVENTION According to the method for analyzing paralytic shellfish toxins of the present invention, paralytic shellfish poisons containing goniotoxins having a hydroxyl group at the 1-position can be analyzed with high sensitivity and specificity regardless of the type. You can In addition, the features of the conventional high-performance liquid chromatogram method, which are easy to operate and highly accurate, are not impaired.Furthermore, fluorescent derivatization that does not contain an oxidizing agent can save analysis cost. Therefore, it is possible to save the labor and time for preparing the reaction solution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例で用いる分析装置(高速液体
クロマトグラフ)を示す図である。
FIG. 1 is a diagram showing an analyzer (high-performance liquid chromatograph) used in one embodiment of the present invention.

【図2】本発明の一実施例であるゴニオトキシン類の分
析結果を示すクロマトグラムである。
FIG. 2 is a chromatogram showing the analysis results of goniotoxins, which is an example of the present invention.

【符号の説明】[Explanation of symbols]

1:送液ポンプ 2:試料導入器 3:カラム恒温槽 4:カラム 5:第1試薬送液ポンプ 6:反応恒温槽 7:反応器 8:第2試薬送液ポンプ 9:混合器 10:蛍光検出器 11:データ処理器 1: Liquid delivery pump 2: Sample introduction device 3: Column constant temperature bath 4: Column 5: First reagent liquid feed pump 6: Reaction constant temperature bath 7: Reactor 8: Second reagent liquid feed pump 9: Mixer 10: Fluorescence Detector 11: Data processor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】イ 麻痺性貝毒を含有する試料を高速液体
クロマトグラフに付して、分析すべき麻痺性貝毒をカラ
ムで分離する分離行程、 ロ 当該カラムからの溶出液に、酸化剤を混合する混合
行程、 ハ 当該混合液を加熱し麻痺性貝毒を反応せしめる反応
行程、 ニ 次いで、当該反応液に酸水溶液または緩衝液を混合
してpH5 以下とした後反応によって生じた発蛍光性物質
を蛍光光度計を用いて測定する蛍光測定行程、よりなる
麻痺性貝毒の分析方法において、 混合行程においてカラムからの溶出液に混合する酸化剤
を含有する緩衝液を、混合後の酸化剤の濃度が1mM 以下
でありかつ、混合後の当該混合液のpH値が8以上になる
ような酸化剤濃度としかつ、このようなpH緩衝能力を有
する緩衝液とし、 さらに、反応行程において当該混合
液を90℃から110 ℃の間の任意の温度条件下で加熱し麻
痺性貝毒を反応せしめる反応行程としたことを特徴とす
る麻痺性貝毒の分析方法。
1. A separation process in which a sample containing paralytic shellfish poison is subjected to high performance liquid chromatography to separate the paralytic shellfish poison to be analyzed by a column, and (2) an eluent from the column is added with an oxidizing agent. Mixing process, c) a reaction process in which the mixed liquid is heated to react with paralytic shellfish toxin, d. Next, the reaction liquid is mixed with an aqueous acid solution or buffer solution to a pH of 5 or less, and fluorescence generated by the reaction In the method for analysis of paralytic shellfish toxin, which comprises a fluorescence measurement step of measuring a volatile substance using a fluorometer, a buffer solution containing an oxidant mixed with the eluate from the column in the mixing step is oxidized after mixing. The concentration of the agent is 1 mM or less, the concentration of the oxidizing agent is such that the pH value of the mixed solution after mixing is 8 or more, and the buffer solution has such a pH buffering capacity. 90 ° C for the mixture The analysis method of paralytic shellfish poisons, characterized in that the optional heating at a temperature reaction step of reacting a paralytic shellfish poison between 110 ° C..
JP28895695A 1995-11-07 1995-11-07 Method for determining paralytic shell poison Pending JPH09133669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28895695A JPH09133669A (en) 1995-11-07 1995-11-07 Method for determining paralytic shell poison

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28895695A JPH09133669A (en) 1995-11-07 1995-11-07 Method for determining paralytic shell poison

Publications (1)

Publication Number Publication Date
JPH09133669A true JPH09133669A (en) 1997-05-20

Family

ID=17736983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28895695A Pending JPH09133669A (en) 1995-11-07 1995-11-07 Method for determining paralytic shell poison

Country Status (1)

Country Link
JP (1) JPH09133669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483908B1 (en) * 2002-03-21 2005-04-18 한국해양연구원 Biosensor for saxitoxin detection using antigen-antibody interaction
CN105259292A (en) * 2015-11-12 2016-01-20 上海市农业科学院 Method for measuring paralysis shellfish poison in aquatic products

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483908B1 (en) * 2002-03-21 2005-04-18 한국해양연구원 Biosensor for saxitoxin detection using antigen-antibody interaction
CN105259292A (en) * 2015-11-12 2016-01-20 上海市农业科学院 Method for measuring paralysis shellfish poison in aquatic products

Similar Documents

Publication Publication Date Title
Thorpe et al. Phenols as enhancers of the chemiluminescent horseradish peroxidase-luminol-hydrogen peroxide reaction: application in luminescence-monitored enzyme immunoassays.
Chen et al. Determination of bisphenol‐A levels in human amniotic fluid samples by liquid chromatography coupled with mass spectrometry
Ojeda et al. High-performance liquid chromatography determination of glyoxal, methylglyoxal, and diacetyl in urine using 4-methoxy-o-phenylenediamine as derivatizing reagent
Alwarthan et al. Chemiluminescent determination of pyridoxine hydrochloride in pharmaceutical samples using flow injection
US4263406A (en) Apparatus for continuously referenced analysis of reactive components in solution
Khuhawar et al. Liquid chromatographic determination of glyoxal and methylglyoxal from serum of diabetic patients using meso‐stilbenediamine as derivatizing reagent
Tomokuni et al. Optimized liquid-chromatographic method for fluorometric determination of urinary delta-aminolevulinic acid in workers exposed to lead.
Ribeiro et al. Flow-injection spectrophotometric determination of methyldopa in pharmaceutical formulations
Wieczorek et al. Application of gradient ratio flow-injection technique to implementation of the Chemical H-point Standard Addition Method
Zhuang et al. Flow injection analysis of ketoprofen based on the order transform second chemiluminescence reaction
JPH09133669A (en) Method for determining paralytic shell poison
Mukai et al. An liquid chromatography–tandem mass spectrometry method for the simultaneous determination of afatinib, alectinib, ceritinib, crizotinib, dacomitinib, erlotinib, gefitinib, and osimertinib in human serum
Ramadan et al. Spectrophotometric determination of dopamine in bulk and dosage forms Using 2, 4-dinitrophenylhydrazine
Ingvarsson et al. Improvement in 10, 10'-dimethyl-9, 9'-biacridinium dinitrate analytical chemiluminescence measurements by use of reactive hydroxide counter ion alkyltrimethylammonium micellar surfactants
Klutch et al. Chromatographic methods for analysis of the metabolites of acetophenetidin (phenacetin)
Bian et al. Spectrofluorometric determination of total bilirubin in human serum samples using tetracycline-Eu3+
Dolinkin et al. Analysis of thyrostatic heteroaromatic thioamides
Beyene et al. Determination of fenoterol hydrobromide by sequential injection analysis with spectrophotometric detection
Iwaki et al. Precolumn derivatization technique for high-performance liquid chromatographic determination of penicillins with fluorescence detection
Ioannou et al. Simple, rapid and sensitive spectrofluorimetric determination of diflunisal in serum and urine based on its ternary complex with terbium and EDTA
Bian et al. Spectrofluorimetric determination of bilirubin in serum samples
Spiegel et al. Semiautomated method for measurement of dopa in plasma
Lever Rapid fluorometric or spectrophotometric determination of isoniazid
Ashour A novel sensitive colorimetric determination of catecholamine drug in dosage form via oxidative coupling reaction with MBTH and potassium ferricyanide
de Oliveira et al. Nitroprusside as a novel reagent for flow injection spectrophotometric determination of captopril