JPH09133003A - Integral shroud blade - Google Patents

Integral shroud blade

Info

Publication number
JPH09133003A
JPH09133003A JP29271995A JP29271995A JPH09133003A JP H09133003 A JPH09133003 A JP H09133003A JP 29271995 A JP29271995 A JP 29271995A JP 29271995 A JP29271995 A JP 29271995A JP H09133003 A JPH09133003 A JP H09133003A
Authority
JP
Japan
Prior art keywords
shroud
blade
rotor
flow
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29271995A
Other languages
Japanese (ja)
Inventor
Takashi Iwamoto
隆史 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP29271995A priority Critical patent/JPH09133003A/en
Publication of JPH09133003A publication Critical patent/JPH09133003A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations
    • F01D5/225Blade-to-blade connections, e.g. for damping vibrations by shrouding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve internal efficiency of a turbine, by increasing flow path resistance of a leak flow passing through a connection surface, and impeding smoothly flowing of the leak flow, so as to reduce a flow amount of this leak flow, even when a clearance is generated in the connection surface. SOLUTION: A platform part 3 is successively implanted in a peripheral surface of a rotor 2, when a moving blade is formed in a peripheral edge of the rotor 2, an opposed surface of adjacent shroud parts 5 is used to serve as a connection surface provided with an irregular surface fitted alternately to each other. In this way, even when a clearance is generated in the connection surface, flow path resistance is increased by the irregular surface, a leak flow F1 flowing in an axial direction of the shroud part 5 and a leak flow F2 flowing from a profile part 4 to 8 seal part 7 can be reduced, so that internal efficiency of 8 turbine can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ロータの外周に組
立てられ、蒸気タービン、またはガスタービンの動翼を
形成するインテグラルシュラウド翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integral shroud blade assembled on the outer circumference of a rotor to form a moving blade of a steam turbine or a gas turbine.

【0002】[0002]

【従来の技術】蒸気、若しくは燃焼ガス等の作動流体が
作用して、ロータまわりに回動し、動力を発生させる動
翼には、作動流体が作用するプロファイル部(翼幹部)
の外径端部に配設されるシュラウド部、およびプロファ
イル部の内径端部に配設されるプラットフォーム部を、
一体にして形成したインテグラルシュラウド翼を、ロー
タまわりに植設して形成するものがある。
2. Description of the Prior Art A working fluid such as steam or combustion gas acts to rotate around a rotor to generate power, and a profile portion (wing trunk) on which the working fluid acts.
The shroud portion arranged at the outer diameter end of the, and the platform portion arranged at the inner diameter end of the profile portion,
There is one in which integral shroud blades formed integrally are planted around a rotor.

【0003】すなわち、プラットフォーム部をロータの
外周周方向に設けた溝に順次嵌め込み、ロータの外周に
動翼を形成したとき、プロファイル部の外周端部には、
隣接する動翼の振動を相互に防止するとともに、外周端
部を密着して、動翼の軸方向、および半径方向の作動流
体の流出を低減し、タービン内部効率の低減を防止する
シュラウド部が、同時に形成されるようにしたものであ
る。しかしながら、従来のインテグラルシュラウド翼で
は、組み立て時に隣接するインテグラルシュラウド翼と
の間で接合し、動翼の外周端部を密閉する接合面は、平
坦なものにされたものが使用されている。
That is, when the platform portion is sequentially fitted into the groove provided in the outer peripheral circumferential direction of the rotor to form the moving blades on the outer periphery of the rotor, the outer peripheral end portion of the profile portion is
A shroud part that prevents vibrations of adjacent moving blades from each other and closes the outer peripheral ends to reduce the outflow of working fluid in the axial and radial directions of the moving blades and to prevent the reduction of turbine internal efficiency. , Are formed at the same time. However, in the conventional integral shroud blade, a flat joint surface is used for joining between adjacent integral shroud blades during assembly and sealing the outer peripheral end of the moving blade. .

【0004】このため、タービン運転時には、遠心力、
熱膨張により、動翼、及びロータが伸び、隣接するイン
テグラルシュラウド翼の外径端部に設けられたシュラウ
ド部の接合面に隙間が生じることがある。従って、プロ
ファイル部を流れ、動翼に動力を発生させるための作動
流体の一部が、この隙間を通過して軸方向に流れ、ま
た、プロファイル部側から外径端部のシュラウド部の外
周面側に漏出して、シュラウド部の外周面と動翼を被包
する車室の内周面との設けたラビリンスを通り、動翼入
口側から出口側に漏れ出してしまい、タービンの内部効
率を低下させる不具合がある。
Therefore, during turbine operation, centrifugal force,
Due to the thermal expansion, the rotor blade and the rotor may expand, and a gap may be generated in the joint surface of the shroud portion provided at the outer diameter end portion of the adjacent integral shroud blade. Therefore, a part of the working fluid that flows through the profile portion to generate power in the rotor blades passes through this gap in the axial direction, and also the outer peripheral surface of the shroud portion from the profile portion side to the outer diameter end portion. Leaks to the side, passes through the labyrinth provided by the outer peripheral surface of the shroud and the inner peripheral surface of the casing that encloses the moving blades, and then leaks from the blade inlet side to the outlet side, increasing the internal efficiency of the turbine. There is a problem that lowers it.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来のイン
テグラルシュラウド翼の上述した不具合を解消するた
め、隣接して配設されるインテグラルシュラウド翼のシ
ュラウド部が、相互に接合する対向面の隙間を、タービ
ン運転時においても、小さくして、隙間からの作動流体
の漏出を低減し、タービンの内部効率を向上できるイン
テグラルシュラウド翼を提供することを課題とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the conventional integral shroud blade, the present invention is directed to facing surfaces where shrouds of adjacent integral shroud blades are joined to each other. It is an object of the present invention to provide an integral shroud vane capable of reducing the leakage of the working fluid from the gap and improving the internal efficiency of the turbine by reducing the size of the gap during operation of the turbine.

【0006】[0006]

【課題を解決するための手段】このため、本発明のイン
テグラルシュラウド翼は、次の手段とした。プラットフ
ォーム部をロータ外周面に植設し、ロータの周方向全周
にインテグラルシュラウド翼を配設したとき、隣接する
シュラウド部の対向する面を、相互に嵌合し、対向する
面の隙間を通って、軸方向に流れる作動流体の流量、お
よびプロファイル部側より動翼の外径端側へ流れる作動
流体の流量を低減するようにした凹凸面が形成された接
合面とした。
Therefore, the integral shroud blade of the present invention has the following means. When the platform part is planted on the outer peripheral surface of the rotor and the integral shroud blades are arranged all around the rotor in the circumferential direction, the facing surfaces of the adjacent shroud parts are fitted with each other to form a gap between the facing surfaces. A joint surface having an uneven surface is formed so as to reduce the flow rate of the working fluid flowing in the axial direction and the flow rate of the working fluid flowing from the profile portion side to the outer diameter end side of the moving blade.

【0007】なお、凹凸面の形状は、シュラウド部の接
合面の軸方向に凹凸を連続して設けたものでも、径方向
に凹凸を連続して設けたものでも、軸方向と傾斜させ、
若しくは曲線状にして、凹凸を連続して設けたものでも
良く、または、これらの凹凸の形状を組合せて接合面を
形成するようにしても良い。すなわち、シュラウド部が
接合する対向する面を相互に嵌合して、シュラウド部の
接合面に生じる隙間を、タービン軸方向に流れる漏洩流
の円滑な流れを阻害し、この流量を低減するとともに、
インテグラルシュラウド翼のプロファイル部側からシュ
ラウド部の外径端部への流れを阻害して、流量を低減
し、動翼の外周端と車室の内周面の間に設けたシール部
からタービン軸方向に流出する流量を低減するものであ
れば良い。
As for the shape of the uneven surface, whether the uneven surface is continuously formed in the axial direction of the joint surface of the shroud or the uneven surface is continuously formed in the radial direction, it is inclined with respect to the axial direction.
Alternatively, it may be formed in a curved shape and provided with concavities and convexities continuously, or the joint surface may be formed by combining the shapes of these concavities and convexities. That is, the facing surfaces where the shroud portions are joined are fitted to each other, and the smooth flow of the leakage flow that flows in the turbine axial direction is obstructed through the gap generated in the joint surface of the shroud portions, and this flow rate is reduced,
The flow rate is reduced by blocking the flow from the profile side of the integral shroud blade to the outer diameter end of the shroud, and the turbine from the seal provided between the outer peripheral edge of the blade and the inner peripheral surface of the casing Any material that reduces the flow rate in the axial direction may be used.

【0008】タービン運転中には、入口側圧力と出口側
圧力の圧力差により、作動流体は、プロファイル部を流
れる。この圧力差は、シュラウド部にも働いており、運
転中に生ずる隣接するシュラウド部の間隙を通して漏洩
流が発生する。
During operation of the turbine, the working fluid flows in the profile section due to the pressure difference between the inlet side pressure and the outlet side pressure. This pressure difference also acts on the shroud portion, and a leakage flow is generated through the gap between the adjacent shroud portions that occurs during operation.

【0009】しかしながら、本発明のインテグラルシュ
ラウド翼は、隣接するシュラウド部の接合面に凹凸を設
け、相互に嵌合する構造とする上述の手段により、シュ
ラウド部の間隙を通して流れる漏洩流の流れが、阻害さ
れるため、この流量が低減される。また、プロファイル
部圧力の方が、動翼の外周端、すなわちシュラウド部の
外周面と車室の内周面との間のシール部の圧力より高い
ため、プロファイル側からシュラウド部の間隙を通して
シール部へ流れ出す漏洩流が発生しようとするが、これ
対しても隣接するシュラウドの接合面を凹凸を設けた構
造とする上述の手段により、流路抵抗が大きくなり、同
様にこの漏洩流が低減される。
However, in the integral shroud blade of the present invention, the flow of the leakage flow flowing through the gap of the shroud portion is caused by the above-mentioned means in which the joint surfaces of the adjacent shroud portions are provided with the concavo-convex structure so that they are fitted to each other. , And this flow rate is reduced. Further, since the pressure of the profile portion is higher than the pressure of the seal portion between the outer peripheral end of the moving blade, that is, the outer peripheral surface of the shroud portion and the inner peripheral surface of the vehicle compartment, the seal portion passes from the profile side through the gap of the shroud portion. Although a leak flow that flows out to the outside tends to be generated, the flow resistance is increased and the leak flow is similarly reduced by the above-mentioned means in which the joint surface of the adjacent shroud is provided with unevenness. .

【0010】これにより、動翼に作用することなく、動
翼を通過する作動流体の流量を低減することができ、動
翼に流入した作動流体を動翼の作動に有効に働かせるこ
とができ、タービンの内部効率を向上させることができ
る。
As a result, the flow rate of the working fluid passing through the moving blade can be reduced without acting on the moving blade, and the working fluid flowing into the moving blade can be effectively used for the operation of the moving blade. The internal efficiency of the turbine can be improved.

【0011】[0011]

【発明の実施の形態】以下、本発明のインテグラルシュ
ラウド翼の実施の一形態を、図面にもとづき説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the integral shroud blade of the present invention will be described below with reference to the drawings.

【0012】図1は、本発明のインテグラルシュラウド
翼の実施の第1形態を示す斜視図である。図において、
1は基端部のプラットフォーム部3、プロファイル部
4、および外径端部のシュラウド部5を一体成形したイ
ンテグラルシュラウド翼(以下単に翼という)である。
翼1は、プラットフォーム部3をロータ2の外周面に設
けた溝に、順次嵌合して、ロータ2の全周に植設され、
動翼を形成する。また、プロファイル部4は、断面形状
が翼形に形成されており、入口側INより出口側OUT
に通過する蒸気等の作動流体6の作用により、ロータ2
まわりに動力を発生する。
FIG. 1 is a perspective view showing a first embodiment of an integral shroud blade of the present invention. In the figure,
Reference numeral 1 denotes an integral shroud blade (hereinafter simply referred to as a blade) in which a platform portion 3 at a base end portion, a profile portion 4, and a shroud portion 5 at an outer diameter end portion are integrally molded.
The blade 1 is sequentially fitted into a groove provided on the outer peripheral surface of the rotor 2 with the platform portion 3 and is planted on the entire circumference of the rotor 2.
Form a moving blade. In addition, the profile portion 4 is formed in a wing shape in cross section, and the profile portion 4 has an outlet side OUT rather than an inlet side IN.
By the action of the working fluid 6 such as steam passing through the rotor 2,
Generates power around.

【0013】また、プロファイル部4の外径端部に一体
成形されたシュラウド部5は、翼1がロータ2の全周に
わたり植設され動翼を形成したとき、隣接する翼1のシ
ュラウド部5と接合する接合面をあらかじめ凹凸に加工
しておき、ロータ2への植込時に、一方のシュラウド部
5に設けた凹部と隣接する他方のシュラウド部に設けた
凸部、一方のシュラウド部5の凸部と他方のシュラウド
5の凹部を、それぞれ対応させて配置して、互いに嵌合
させ、密着させるようにしている。
Further, the shroud portion 5 formed integrally with the outer diameter end of the profile portion 4 has the shroud portion 5 of the adjacent blade 1 when the blade 1 is planted over the entire circumference of the rotor 2 to form a moving blade. The joining surface to be joined with is processed in advance into an uneven shape, and when implanted in the rotor 2, a concave portion provided in one shroud portion 5 and a convex portion provided in the other shroud portion adjacent to the shroud portion 5, and one shroud portion 5 The convex portion and the concave portion of the other shroud 5 are arranged so as to correspond to each other, and are fitted to and brought into close contact with each other.

【0014】この隣接するシュラウド部5の接合面に設
ける凹凸の形状としては、多くのものが考えられる。図
2は、この接合面の凹凸の形状を模式的に示したもので
ある。図においては、作動流体6の入口側INの凹凸面
を軸方向に配置し、出口側OUTの凹凸面を径方向に配
置した、図1に示す接合面を図2(a)で表す要領で示
すようにしている。
There are many possible concavo-convex shapes provided on the joint surface of the adjacent shroud portions 5. FIG. 2 schematically shows the shape of the irregularities on the joint surface. In the figure, the concavo-convex surface on the inlet side IN of the working fluid 6 is arranged in the axial direction, and the concavo-convex surface on the outlet side OUT is arranged in the radial direction, in the manner shown in FIG. 2 (a). I am trying to show you.

【0015】図に示すように、接合面に設ける凹凸の形
状としては、軸方向に設ける凹凸面と径方向に設ける凹
凸面の配置関係を、図2(a)のものから変えた図2
(b)、図2(c)、軸方向に設ける凹凸面と径方向に
設ける凹凸面を結合した図2(d)、軸方向にのみ凹凸
面を設けた図2(e)、径方向にのみ凹凸面を設けた図
2(f)、凹凸面の形状を曲線にした図2(g)、凹凸
面と形状を軸方向と傾斜させた図2(h)、図2(d)
と図2(h)を組合せた形状にした図2(i)、および
凹凸面の形状を折り曲げた形状にした図2(j)等、種
々のバリエーションが考えられる。
As shown in the figure, as for the shape of the unevenness provided on the joint surface, the arrangement relationship between the uneven surface provided in the axial direction and the uneven surface provided in the radial direction is different from that shown in FIG. 2A.
(B), FIG. 2 (c), FIG. 2 (d) in which the uneven surface provided in the axial direction and the uneven surface provided in the radial direction are combined, FIG. 2 (e) in which the uneven surface is provided only in the axial direction, 2 (f) in which only the uneven surface is provided, FIG. 2 (g) in which the shape of the uneven surface is a curve, FIG. 2 (h) in which the uneven surface and the shape are inclined with respect to the axial direction, and FIG. 2 (d).
Various variations are conceivable, such as FIG. 2I in which the shape of FIG. 2H is combined with FIG. 2H, and FIG. 2J in which the shape of the uneven surface is bent.

【0016】何れにしても、前述したように、ロータ2
への翼1の植込み時に、一方のシュラウド部5の接合面
に設けた凹、又は凸部に、隣接する他方のシュラウド部
5の接合面に設けた凸、又は凹部を嵌合させて、接合面
を密着するようにしている。また、プロファイル5の外
周面と動翼を被包して設けられる車室の内周面との間に
形成されるシール部7には、図示省略したラビリンスが
配設されており、シール部7を軸方向に流れる作動流体
の流体抵抗を大きくしてシール部7からの漏洩流量を低
減するようにしている。
In any case, as described above, the rotor 2
At the time of implanting the blade 1 into the shroud portion, the concave portion or the convex portion provided on the joint surface of one shroud portion 5 is fitted with the convex portion or the concave portion provided on the joint surface of the other adjacent shroud portion 5 to join them. The surfaces are closely attached. Further, a labyrinth (not shown) is arranged in the seal portion 7 formed between the outer peripheral surface of the profile 5 and the inner peripheral surface of the vehicle casing that covers the moving blades. The fluid resistance of the working fluid flowing in the axial direction is increased to reduce the leakage flow rate from the seal portion 7.

【0017】本実施の形態の翼1は、上述のように構成
されているので、タービン運転中、作動流体6には、図
3(b)に示すように、翼1の入口側INの圧力PIN
出口側OUT圧力POUT には、圧力差(POUT <PIN
が生じており、この圧力差により作動流体6は、図3
(a)に示すように、プロファイル部4の周辺を流れ翼
1に動力を発生させる。また、この圧力差はシュラウド
部5にも発生しており、運転中に生ずる、隣接するシュ
ラウド部5の接合面の熱膨張、又は回転に伴う遠心力、
により生じる接合面の間隙を通して漏洩流F1 が発生す
る。
Since the blade 1 of the present embodiment is constructed as described above, the pressure of the working fluid 6 during the operation of the turbine, as shown in FIG. There is a pressure difference (P OUT <P IN ) between P IN and OUT side OUT pressure P OUT.
Is generated, and the working fluid 6 is generated by the pressure difference in FIG.
As shown in (a), power is generated in the flow vanes 1 around the profile portion 4. Further, this pressure difference is also generated in the shroud portion 5, and the centrifugal force due to the thermal expansion or the rotation of the joint surface of the adjacent shroud portion 5 which occurs during the operation,
Leakage flow F 1 is generated through the gap between the joint surfaces caused by.

【0018】しかしながら、隣接するシュラウド5の接
合面に凹凸面が設けられ、相互に嵌合する本実施の形態
の構造としたことにより、シュラウド部5の接合面の間
隙を通って軸方向に流れる漏洩流F1 の流れが阻害され
るため、この流量を低減させることができる。また、図
3(b)に示すように、軸方向の同一位置では、プロフ
ァイル部4を軸方向に流れる作動流体の圧力PPROFILE
の方が、シール部7を軸方向に流れる作動流体の圧力P
SEALより高いため、プロファイル部4からシュラウド部
5の接合面の間隙を通って、シール部7へ流れ出す漏洩
流F2 が発生するが、これに対しても隣接するシュラウ
ドの接合面に径方向凹凸面を設けた接合面構造とするこ
とにより流路抵抗が大きくなり、同様にこの漏洩流を低
減させることができる。
However, since the concavo-convex surface is provided on the joint surface of the adjacent shrouds 5 and the structure of the present embodiment in which the shroud portions 5 are fitted to each other is provided, the shroud portion 5 flows in the axial direction through the gap between the joint surfaces. Since the flow of the leakage flow F 1 is obstructed, this flow rate can be reduced. Further, as shown in FIG. 3B, at the same position in the axial direction, the pressure P PROFILE of the working fluid flowing in the profile portion 4 in the axial direction.
Is the pressure P of the working fluid flowing in the seal portion 7 in the axial direction.
Since it is higher than SEAL, a leak flow F 2 that flows out from the profile portion 4 through the joint surface of the shroud portion 5 to the seal portion 7 is generated. Against this, the radial concavity and convexity on the joint surface of the adjacent shroud is also generated. By adopting a joint surface structure in which the surfaces are provided, the flow path resistance is increased, and this leak flow can be similarly reduced.

【0019】これにより、シール部7を軸方向に通過し
て翼1に作用することなく、又は部分的に作用するだけ
で、翼1を通過する作動流体6の流量を低減することが
でき、タービンの内部効率を向上させることができる。
As a result, the flow rate of the working fluid 6 passing through the blade 1 can be reduced without passing through the seal portion 7 in the axial direction and acting on the blade 1 or only partially. The internal efficiency of the turbine can be improved.

【0020】[0020]

【発明の効果】以上述べたように、本発明のインテグラ
ルシュラウド翼によれば、特許請求の範囲に示す構成に
より、次の効果が得られる。隣接するシュラウド部が接
合する接合面に設けられた凹凸面により、タービン運転
時に、遠心力、熱膨張により、動翼、およびロータが伸
び、接合面に隙間が発生するようなことがあっても、接
合面を通過する漏洩流の流路抵抗が大きくなり、漏洩流
の円滑な流れを阻害することによって、この流量を低減
し、タービンの内部効率の向上を達成させることができ
る。
As described above, according to the integral shroud blade of the present invention, the following effects can be obtained with the configuration shown in the claims. Due to the uneven surface provided on the joint surface where the adjacent shroud portions are joined, centrifugal force and thermal expansion may cause the rotor blades and rotor to stretch during turbine operation, resulting in gaps in the joint surface. By increasing the flow resistance of the leakage flow passing through the joint surface and hindering the smooth flow of the leakage flow, this flow rate can be reduced and the internal efficiency of the turbine can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のインテグラルシュラウド翼の実施の第
1形態を示す斜視図、
FIG. 1 is a perspective view showing a first embodiment of an integral shroud blade of the present invention,

【図2】図1に示すシュラウド部接合面を示す図で、図
2(a)は図1のシュラウド部接合面正面図、図2
(b)、および図2(c)は図2(a)に示す接合面の
軸方向、および径方向に設ける凹凸面の配置を変えた接
合面正面図、図2(d)は軸方向、および径方向の凹凸
面を結合した接合面正面図、図2(e)は軸方向の凹凸
面のみを設けた接合面正面図、図2(f)は径方向の凹
凸面のみを設けた接合面正面図、図2(g)は凹凸面を
曲線状にした接合面正面図、図2(h)は凹凸面を軸方
向から傾斜させた接合面正面図、図2(i)は図2
(d)と図2(h)を組合せた凹凸面にした接合面正面
図、図2(j)は凹凸面を折曲げ形状にした接合面正面
図、
2 is a view showing a joint surface of the shroud portion shown in FIG. 1, and FIG. 2 (a) is a front view of the joint surface of the shroud portion of FIG. 1;
2 (b) and 2 (c) are front views of the joint surface in which the arrangement of the uneven surface provided in the axial direction and the radial direction of the joint surface shown in FIG. 2 (a) is changed, and FIG. 2 (d) is the axial direction. And a front view of a joint surface in which radial concavo-convex surfaces are joined, FIG. 2 (e) is a front view of a joint surface in which only a concavo-convex surface in the axial direction is provided, and FIG. 2 (f) is a joint in which only a concavo-convex surface in the radial direction is provided. Surface front view, FIG. 2 (g) is a joint surface front view in which the uneven surface is curved, FIG. 2 (h) is a joint surface front view in which the uneven surface is inclined from the axial direction, and FIG.
FIG. 2 (j) is a front view of a joint surface having an uneven surface, and FIG. 2 (j) is a front view of the joint surface having a bent shape.

【図3】図1に示すインテグラルシュラウド翼を通過す
る作動流体の状態を示す図で、図3(a)は作動流体の
流れ状態を示す側面図、図3(b)はインテグラルシュ
ラウド翼の各部の圧力状態を示す図である。
3A and 3B are diagrams showing a state of a working fluid passing through the integral shroud blade shown in FIG. 1, FIG. 3A is a side view showing a flow state of the working fluid, and FIG. 3B is an integral shroud blade. It is a figure which shows the pressure state of each part of.

【符号の説明】[Explanation of symbols]

1 インテグラルシュラウド翼(翼) 2 ロータ 3 プラットフォーム部 4 プロファイル部 5 シュラウド部 6 作動流体 7 シール部 1 Integral shroud blade (wing) 2 Rotor 3 Platform part 4 Profile part 5 Shroud part 6 Working fluid 7 Seal part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 外径端部のシュラウド部、内径端部のプ
ラットフォーム部、およびプロファイル部を一体成形し
て動翼を形成するインテグラルシュラウド翼において、
前記プラットフォーム部をロータ外周面に順次植設し、
前記ロータ周縁に前記動翼を形成したとき、隣接する前
記シュラウド部の対向面が、相互に嵌合する凹凸面にさ
れた接合面に形成されていることを特徴とするインテグ
ラルシュラウド翼。
1. An integral shroud blade in which a shroud portion at an outer diameter end portion, a platform portion at an inner diameter end portion, and a profile portion are integrally formed to form a moving blade,
The platform portion is sequentially planted on the outer peripheral surface of the rotor,
An integral shroud blade, characterized in that, when the rotor blades are formed on the peripheral edge of the rotor, the facing surfaces of the adjacent shroud portions are formed into a joint surface that is an uneven surface that fits with each other.
JP29271995A 1995-11-10 1995-11-10 Integral shroud blade Withdrawn JPH09133003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29271995A JPH09133003A (en) 1995-11-10 1995-11-10 Integral shroud blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29271995A JPH09133003A (en) 1995-11-10 1995-11-10 Integral shroud blade

Publications (1)

Publication Number Publication Date
JPH09133003A true JPH09133003A (en) 1997-05-20

Family

ID=17785436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29271995A Withdrawn JPH09133003A (en) 1995-11-10 1995-11-10 Integral shroud blade

Country Status (1)

Country Link
JP (1) JPH09133003A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1408199A1 (en) * 2002-10-08 2004-04-14 United Technologies Corporation Leak resistant vane cluster
JP2010216473A (en) * 2009-03-12 2010-09-30 General Electric Co <Ge> Shroud ring of turbine engine
WO2012041651A1 (en) * 2010-09-30 2012-04-05 Siemens Aktiengesellschaft Blade ring segment, turbomachine and method for producing same
WO2016071224A1 (en) * 2014-11-03 2016-05-12 Nuovo Pignone Srl Sector for the assembly of a stage of a turbine and corresponding manufacturing method
US20170356298A1 (en) * 2016-06-08 2017-12-14 Rolls-Royce Plc Stator vane
US20190078447A1 (en) * 2016-03-08 2019-03-14 Mitsubishi Heavy Industries Compressor Corporation Turbine rotor blade assembly
EP3597861A1 (en) * 2018-07-19 2020-01-22 United Technologies Corporation Contact coupled airfoil singlets

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1408199A1 (en) * 2002-10-08 2004-04-14 United Technologies Corporation Leak resistant vane cluster
WO2004033871A2 (en) * 2002-10-08 2004-04-22 United Technologies Corporation Leak resistant vane cluster
US6910854B2 (en) 2002-10-08 2005-06-28 United Technologies Corporation Leak resistant vane cluster
WO2004033871A3 (en) * 2002-10-08 2009-04-23 United Technologies Corp Leak resistant vane cluster
JP2010216473A (en) * 2009-03-12 2010-09-30 General Electric Co <Ge> Shroud ring of turbine engine
CN101892870A (en) * 2009-03-12 2010-11-24 通用电气公司 Turbine engine shroud ring
WO2012041651A1 (en) * 2010-09-30 2012-04-05 Siemens Aktiengesellschaft Blade ring segment, turbomachine and method for producing same
CN103119249A (en) * 2010-09-30 2013-05-22 西门子公司 Blade ring segment, turbomachine and method for producing same
WO2016071224A1 (en) * 2014-11-03 2016-05-12 Nuovo Pignone Srl Sector for the assembly of a stage of a turbine and corresponding manufacturing method
CN107208491A (en) * 2014-11-03 2017-09-26 诺沃皮尼奥内股份有限公司 Section and corresponding manufacture method for the component of the level of turbine
CN107208491B (en) * 2014-11-03 2019-08-06 诺沃皮尼奥内股份有限公司 The section of the component of grade for turbine and corresponding manufacturing method
US11008893B2 (en) 2014-11-03 2021-05-18 Nuovo Pignone Srl Sector for the assembly of a stage of a turbine and corresponding manufacturing method
US20190078447A1 (en) * 2016-03-08 2019-03-14 Mitsubishi Heavy Industries Compressor Corporation Turbine rotor blade assembly
US10781700B2 (en) * 2016-03-08 2020-09-22 Mitsubishi Heavy Industries Compressor Corporation Turbine rotor blade assembly
US20170356298A1 (en) * 2016-06-08 2017-12-14 Rolls-Royce Plc Stator vane
EP3597861A1 (en) * 2018-07-19 2020-01-22 United Technologies Corporation Contact coupled airfoil singlets
US10738634B2 (en) 2018-07-19 2020-08-11 Raytheon Technologies Corporation Contact coupled singlets

Similar Documents

Publication Publication Date Title
JP3912935B2 (en) High-pressure turbine stator ring for turbine engines
JP5227114B2 (en) Labyrinth compression seal and turbine incorporating it
JP5570823B2 (en) Turbine blade angel wing compression seal
US9551224B2 (en) Turbine and method for manufacturing turbine
US20080056889A1 (en) Angel wing abradable seal and sealing method
JP6888907B2 (en) gas turbine
JP2008101614A (en) Stationary-rotating assembly having surface feature for enhanced containment of fluid flow, and related processes
JP2006342797A (en) Seal assembly of gas turbine engine, rotor assembly, blade for rotor assembly and inter-stage cavity seal
JP2002371802A (en) Shroud integrated type moving blade in gas turbine and split ring
KR20180075665A (en) Seal structure and turbine
KR102272728B1 (en) Steam turbine and methods of assembling the same
JPH09133003A (en) Integral shroud blade
FR3081500A1 (en) ANGULAR SECTOR OF PERFECTED TURBOMACHINE WATERPROOFING
US11365646B2 (en) Rotary machine and seal member
FR3081499A1 (en) ANGULAR BLADE SECTOR OF IMPROVED SEALING TURBOMACHINE
JPH09242505A (en) Turbine structure
JP6197985B2 (en) Seal structure and turbine device provided with the same
RU2581328C2 (en) Abradable seal for inner stator cover
JP4039512B2 (en) Turbine closure bucket and turbine rotor wheel
US10871076B2 (en) Rotating unit and steam turbine including the same
US11066946B2 (en) Axial turbomachinery
JP4677179B2 (en) Brush seal support
JP2600955B2 (en) Double-flow steam turbine
CA2937316A1 (en) Seal arrangement for compressor or turbine section of gas turbine engine
JPH11350915A (en) Deformation preventive structure for gland portion of low pressure steam turbine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030204