JPH09131067A - Power feeder - Google Patents

Power feeder

Info

Publication number
JPH09131067A
JPH09131067A JP7282744A JP28274495A JPH09131067A JP H09131067 A JPH09131067 A JP H09131067A JP 7282744 A JP7282744 A JP 7282744A JP 28274495 A JP28274495 A JP 28274495A JP H09131067 A JPH09131067 A JP H09131067A
Authority
JP
Japan
Prior art keywords
power
converter
switch
control circuit
power conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7282744A
Other languages
Japanese (ja)
Other versions
JP3534914B2 (en
Inventor
Yasuyuki Minamino
康幸 南野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP28274495A priority Critical patent/JP3534914B2/en
Publication of JPH09131067A publication Critical patent/JPH09131067A/en
Application granted granted Critical
Publication of JP3534914B2 publication Critical patent/JP3534914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

PROBLEM TO BE SOLVED: To control the number of inverters being operated according to the insolation intensity with high reliability by controlling the operation and suspension of a power conversion means with the signal of the detection means which detects the input resultant power, etc., of the power conversion means. SOLUTION: A time of low insolation state where a converter 2-1 is operable, a switch 4-1 is closed, and the converter 2-1 is operates, but the close signal S from a switch control circuit 5-1 is not outputted, and the switch 4-2 connected to the converter 2-2 is kept closed. Therefore, the power generated by a solar battery 1-1 is converted with only the converter 2-1. When the insolation intensity increases, a close signal SH1 is outputted from the switch control circuit 5-1, receiving the output of a detection means 3-1, and the converter 2-2 operates. Furthermore, when insolation intensity increases, a close signal SH2 is outputted from the control circuit 5-2, receiving the output of the detection means 3-2, and the switch 4-2 is closed, and the converter 2-3 operates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、出力変動の大きい
太陽電池や燃料電池等の直流発電手段に互いに並列接続
させたインバータ及び/又はコンバータ等の電力変換手
段の変換効率を常に高く維持できるようにした電力供給
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention can always maintain a high conversion efficiency of power conversion means such as an inverter and / or a converter connected in parallel to a DC power generation means such as a solar cell or a fuel cell having large output fluctuation. Power supply device.

【0002】[0002]

【従来技術とその問題点】従来より、例えば太陽電池に
よる直流の発電電力をインバータにより交流に変換して
交流負荷へ電力供給を行うように構成された太陽光発電
システムでは、予想される最大日射強度における太陽電
池の最大発電電力を変換し得る容量のインバータを用意
し、太陽電池の容量とインバータの定格容量とを対応さ
せて使用することが多い。
2. Description of the Related Art Conventionally, for example, in a solar power generation system configured to convert direct-current power generated by a solar cell into alternating current by an inverter to supply power to an alternating current load, expected maximum solar radiation is expected. In many cases, an inverter having a capacity capable of converting the maximum generated power of the solar cell in strength is prepared, and the capacity of the solar cell and the rated capacity of the inverter are used in correspondence with each other.

【0003】このため、通常、インバータはその定格容
量より低い負荷率で運転されることになり、特に朝・夕
や曇天・雨天時などの日射強度が低い状況下では著しく
低い負荷率で運転されることになる。
For this reason, the inverter is usually operated at a load factor lower than its rated capacity, and particularly at a low load factor in a situation where the solar radiation intensity is low such as morning / evening, cloudy weather, and rainy weather. Will be.

【0004】また、一般に、インバータは負荷率が低下
するに従い、直流を交流に変換する変換効率も低下する
が、特に負荷率が20%より低くなると変換効率も著し
く低下する。そして、従来の太陽光発電システムでは、
日射強度が低い状況下では変換効率が大きく低下するた
め、インバータを作動させること自体が不可能となった
り、太陽電池の発電電力が無駄に消費されることがあっ
た。
In general, as the load factor of an inverter decreases, the conversion efficiency of converting direct current into alternating current also decreases, but especially when the load factor becomes lower than 20%, the conversion efficiency also remarkably decreases. And in the conventional solar power generation system,
In a situation where the intensity of solar radiation is low, the conversion efficiency is greatly reduced, which may make it impossible to operate the inverter itself or wastefully consume the power generated by the solar cell.

【0005】そこで、このようなインバータの負荷率の
低下に伴う変換効率の低下を極力防止するために、太陽
電池等の直流電源と複数のインバータとからなるシステ
ムを電力変換効率を適値に維持して並列運転制御する方
法が提案されている(例えば、特開平7-67346 号公報を
参照)。
Therefore, in order to prevent the reduction of conversion efficiency due to the reduction of the load factor of such an inverter as much as possible, a system including a DC power source such as a solar cell and a plurality of inverters maintains the power conversion efficiency at an appropriate value. Then, a method for controlling parallel operation has been proposed (see, for example, Japanese Patent Laid-Open No. 7-67346).

【0006】この方法は複数のインバータの出力電力の
総和と、予め各インバータ容量から導出して設定したプ
ログラム設定値とを比較して、運転するインバータを選
択し、運転状態の変更時にはチャタリング防止のための
タイマー機構を備えることにより、一定の状態確認時間
を設定するようにしている。
According to this method, the sum of output power of a plurality of inverters is compared with a program set value derived and set from each inverter capacity in advance, an inverter to be operated is selected, and chattering is prevented when the operating state is changed. By providing a timer mechanism for this, a certain state confirmation time is set.

【0007】ところが、複数のインバータと太陽電池等
の直流電源とから成るシステムの構成機器の全ての定格
容量や最大発電能力が確定していなければ、合理的な運
転プログラムを設定することはできない。
However, unless all the rated capacities and the maximum power generation capacities of the components of the system consisting of a plurality of inverters and a DC power source such as a solar cell have been determined, a rational operating program cannot be set.

【0008】すなわち、少容量の規格化された太陽電池
とインバータとから成るユニットを適宜追加する場合
や、種々のシステム容量に対応させるためには、インバ
ータの作動・休止をスイッチング制御するスイッチ制御
回路の変更やプログラムの変更が必要になり、汎用性に
乏しかったり制御が複雑になるなどの問題が生じる。
That is, in order to appropriately add a unit consisting of a small-capacity standardized solar cell and an inverter, or to cope with various system capacities, a switch control circuit for performing switching control of operation and suspension of the inverter. Need to be changed or the program needs to be changed, resulting in problems such as poor versatility and complicated control.

【0009】また、運転状態の変更時に一定の状態確認
時間を設定することによって、ごく短時間のチャタリン
グは防止できるものの、運転状態の変更条件付近での運
転が続けば、一定時間毎に頻繁にスイッチの切り替えが
生じることに変わりはなく、これにより頻繁にインバー
タの作動・休止を繰り返す状況になる事態を回避できる
とは言いがたいのである。
Further, although chattering for a very short time can be prevented by setting a constant state confirmation time when changing the operating state, if the operation continues near the operating state changing condition, it will frequently occur at regular intervals. There is no change in the switching of the switch, and it is hard to say that this can avoid the situation where the inverter is frequently activated and stopped.

【0010】さらに、状態確認時間内に日射強度が急増
してインバータ容量をオーバーするおそれやインバータ
の故障原因となることもある。
Further, there is a possibility that the intensity of solar radiation will suddenly increase within the state confirmation time and the capacity of the inverter will be exceeded, or it may cause a failure of the inverter.

【0011】なお、インバータのかわりに太陽電池の発
電電力が最大となるように動作点を制御するコンバータ
(例えば、MPPT(マキシマム・パワー・ポイント・
トラッカー))としたものにおいても上述したものと同
様な問題が生ずることは容易に理解されるので説明を省
略する。
It should be noted that instead of the inverter, a converter that controls the operating point so that the power generated by the solar cell is maximized (for example, MPPT (maximum power point
It is easily understood that the same problem as described above occurs even in the case of the tracker)), and the description thereof will be omitted.

【0012】そこで、本発明は日射強度に応じて作動さ
せるインバータ数を容易かつ信頼性よく制御できる電力
供給装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a power supply device which can easily and reliably control the number of inverters to be operated according to the intensity of solar radiation.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に、本発明の電力供給装置は、直流発電手段と、該直流
発電手段に並列接続させたn(n≧2)個の電力変換手
段と、第k(k=1,・・・,n−1)乃至第nの各々
の電力変換手段の入力合成電力又は出力合成電力、もし
くは入力合成電流又は出力合成電流をそれぞれ検出する
第m(m=k)の検出手段と、第mの検出手段による検
出信号でもって、第k+1の電力変換手段の作動・休止
を制御する制御手段とを備えて成る。
In order to solve the above-mentioned problems, a power supply apparatus of the present invention comprises a DC power generation means and n (n ≧ 2) power conversion means connected in parallel to the DC power generation means. And the input combined power or output combined power, or the input combined current or output combined current of the kth (k = 1, ..., N-1) to nth power conversion means, respectively. (m = k) detecting means, and control means for controlling the operation / pause of the (k + 1) th power converting means by the detection signal from the mth detecting means.

【0014】ここで、特に、m=k=1のときに、第1
の検出手段の検出値が高レベル設定値以上になったとき
に第1及び第2電力変換手段の双方を作動させ、次に検
出手段の検出値が高レベル設定値より低い低レベル設定
値以下になったときに、第2電力変換手段を休止するよ
うにすると、第1の検出手段の設定値で第2電力変換手
段の作動・休止を繰り返すこと(チャタリング)がな
い。
Here, in particular, when m = k = 1, the first
When the detection value of the detection means exceeds the high level set value, both of the first and second power conversion means are activated, and then the detection value of the detection means is lower than the low level set value lower than the high level set value. If the second power conversion means is stopped when the above condition occurs, the operation / stop of the second power conversion means is not repeated (chattering) at the set value of the first detection means.

【0015】また、直流発電手段と、該直流発電手段に
並列接続させた少なくとも第1及び第2の電力変換手段
と、前記直流発電手段の発電電力もしくは発電電流を検
出する検出手段と、該検出手段の検出値が高レベル設定
値以上になったときに前記第1及び第2電力変換手段を
作動させ、次に検出手段の検出値が前記高レベル設定値
より低い低レベル設定値以下になったときに、前記第2
電力変換手段を休止する制御手段とを備えて成る電力供
給装置としてもよい。
The DC power generation means, at least first and second power conversion means connected in parallel to the DC power generation means, detection means for detecting the generated power or generated current of the DC power generation means, and the detection When the detected value of the means becomes higher than the high level set value, the first and second power conversion means are operated, and then the detected value of the detection means becomes lower than the low level set value lower than the high level set value. When the second
The power supply device may include a control unit that suspends the power conversion unit.

【0016】また、電力供給装置の起動時に、全ての電
力変換手段をいったん作動状態とすることを特徴として
もよい。
Further, it may be characterized in that all the power conversion means are once put into operation when the power supply device is activated.

【0017】[0017]

【発明の実施の形態】本発明に係る実施例を図面に基づ
き詳細に説明する。 〔実施例1〕図1に示すように、電力供給装置E1は、
最大発電容量3Cの太陽電池1−1に、定格容量Cの第
1〜第3の電力変換手段であるDC−DCコンバータ
(以下、コンバータという)2−1,2−2,2−3の
各々を、第1〜第3のスイッチ4−1,4−2,4−3
の各々を介して互いに並列接続させ、さらに、太陽電池
1−1の発電量、すなわちコンバータへの合成電力(又
は合成電流、以下、簡単のため電力についてのみ記す)
を検出する第1及び第2の検出手段3−1,3−2と、
これら検出手段からの検出信号により第1〜第3のスイ
ッチ4−1,4−2,4−3を開閉制御する第1及び第
2のスイッチ制御回路5−1,5−2を設けて成り、第
1及び第2の出力端子6−1,6−3に接続された不図
示の負荷に電力を供給するようにしたものである。ここ
で、D1,D2はそれぞれ第1,第2の分岐点であり、
J1は合流点である。コンバータ2−1,2−2の出力
電圧は同じであるため、合流点J1を設けて出力端子6
−1に接続し、コンバータ2−3の出力電圧はコンバー
タ2−1,2−2とは異なるため、出力端子6−3を別
に設けている。なお、電力をより多く要求される負荷を
出力端子6−1に、そうでない負荷を出力端子6−3に
接続するようにしてもよい。また、このような負荷とし
ては例えば蓄電池,直流モーター,ヒーター,白熱灯,
インバータ等とする。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail with reference to the drawings. [Embodiment 1] As shown in FIG.
Each of the DC-DC converters (hereinafter referred to as converters) 2-1, 2-2, 2-3, which are the first to third power conversion means having the rated capacity C, are added to the solar cell 1-1 having the maximum power generation capacity 3C. The first to third switches 4-1, 4-2, 4-3
Connected in parallel via each of the above, and further, the power generation amount of the solar cell 1-1, that is, the combined power to the converter (or the combined current, hereinafter, only the power is described for simplicity).
First and second detecting means 3-1 and 3-2 for detecting
It is provided with first and second switch control circuits 5-1 and 5-2 for controlling the opening and closing of the first to third switches 4-1, 4-2 and 4-3 by the detection signals from these detecting means. , And power is supplied to a load (not shown) connected to the first and second output terminals 6-1 and 6-3. Here, D1 and D2 are the first and second branch points, respectively,
J1 is the confluence. Since the output voltages of the converters 2-1 and 2-2 are the same, the converging point J1 is provided and the output terminal 6 is provided.
-1, and the output voltage of the converter 2-3 is different from that of the converters 2-1 and 2-2, so that the output terminal 6-3 is separately provided. It should be noted that a load that requires more electric power may be connected to the output terminal 6-1 and a load that does not require electric power may be connected to the output terminal 6-3. Examples of such loads include storage batteries, DC motors, heaters, incandescent lamps,
Inverter, etc.

【0018】ここで、コンバータ2−1の前段に設けら
れたスイッチ4−1は、コンバータ2−1により太陽電
池1−1が発電していないか、もしくはコンバータ2−
1が作動不可能な低電力(低日射)状態であるときに
は、コンバータ2−1の内部に設けたセンサで検出し
て、この検出信号でもって開放されるスイッチである。
Here, in the switch 4-1 provided in the preceding stage of the converter 2-1, whether the solar cell 1-1 is not generating power by the converter 2-1 or the converter 2-
When 1 is in an inoperable low power (low solar radiation) state, it is a switch that is detected by a sensor provided inside the converter 2-1 and is opened by this detection signal.

【0019】また、スイッチ4−2,4−3は常開スイ
ッチであって、スイッチ4−2はスイッチ制御回路5−
1の設定容量(C)より検出手段3−1が多くの電力を
検出したときに、スイッチ制御回路5−1の出力信号S
H1でもって閉成され、スイッチ4−3はスイッチ制御
回路5−2の設定容量(C)より検出手段3−2が多く
の電力を検出しているときに、スイッチ制御回路5−2
の出力信号SH2でもって閉成されるものである。
The switches 4-2 and 4-3 are normally open switches, and the switch 4-2 is the switch control circuit 5-.
When the detection means 3-1 detects more power than the set capacity (C) of 1, the output signal S of the switch control circuit 5-1.
When the switch 4-3 is closed by H1, and the detection means 3-2 detects more electric power than the set capacity (C) of the switch control circuit 5-2, the switch control circuit 5-2.
Is closed by the output signal SH2.

【0020】全てのスイッチ4−1,4−2,4−3が
閉となっているときに、検出手段3−1は太陽電池1−
1と第1分岐点D1との間に設けられ、検出手段3−2
は第1分岐点D1と第2分岐点D2との間に設けられて
いるため、検出手段3−1ではコンバータ2−1,2−
2及び2−3で電力変換する電力を合算した値を検出す
ることになり、検出手段3−2ではコンバータ2−2及
び2−3で電力変換する電力を合算した値を検出する。
When all the switches 4-1, 4-2 and 4-3 are closed, the detecting means 3-1 detects the solar cell 1-.
1 and the first branch point D1 and is provided with a detecting means 3-2.
Is provided between the first branch point D1 and the second branch point D2, the converter 2-1 and 2-
2 and 2-3 will detect the value which added the electric power which carries out electric power conversion, and the detection means 3-2 will detect the value which added the electric power which carries out electric power conversion by the converters 2-2 and 2-3.

【0021】以下に、電力供給装置E1の一日の平均的
な日射強度の変化に従った動作について説明する。まず
早朝において、コンバータ2−1が作動可能な低日射状
態時には、スイッチ4−1は閉じられ、コンバータ2−
1は作動するが、検出手段3−1による電力検出値S1
はまだ小さく、スイッチ制御回路5−1の設定値(C)
よりも小さいため、スイッチ制御回路5−1からの閉信
号SH1は出力されず、コンバータ2−2に接続された
スイッチ4−2は開のままとなる。同様にコンバータ2
−3に接続されたスイッチ4−3も開のままであるの
で、コンバータ2−2及びコンバータ2−3は休止した
ままである。
The operation of the power supply device E1 according to the change in the average solar radiation intensity for one day will be described below. First, in the early morning, when the converter 2-1 is operable in a low solar radiation state, the switch 4-1 is closed and the converter 2-
1 operates, but the power detection value S1 by the detection means 3-1
Is still small, the set value (C) of the switch control circuit 5-1
Therefore, the closed signal SH1 from the switch control circuit 5-1 is not output, and the switch 4-2 connected to the converter 2-2 remains open. Similarly converter 2
The switch 4-3 connected to -3 also remains open, so the converter 2-2 and the converter 2-3 remain dormant.

【0022】このため、太陽電池1−1の発電電力はコ
ンバータ2−1のみで電力変換されることになり、コン
バータ2−1の負荷率はコンバータ2−1,2−2,2
−3の並列運転時と比較すると3倍になるため、コンバ
ータ2−1の変換効率を高く保つことができる。
Therefore, the generated power of the solar cell 1-1 is converted into power only by the converter 2-1, and the load factor of the converter 2-1 is converters 2-1, 2-2, 2
-3, which is three times as high as that in parallel operation, so that the conversion efficiency of the converter 2-1 can be kept high.

【0023】次に、太陽が上昇するなどにより日射強度
が少し増大して、検出手段3−1による検出値S1がス
イッチ制御回路5−1の設定値(C)以上になると、ス
イッチ制御回路5−1から閉信号SH1が出力されスイ
ッチ4−2が閉じられ、コンバータ2−2が作動する。
これにより、コンバータ2−1,2−2での処理電力は
各々1/2C以上になるが、この値はスイッチ制御回路
5−2の設定値(C)よりも小さいため、スイッチ制御
回路5−2から閉信号SH2は出力されず、スイッチ4
−3は開のままであり、コンバータ2−3は休止したま
まである。
Next, when the solar radiation intensity slightly increases as the sun rises and the detection value S1 by the detecting means 3-1 becomes equal to or higher than the set value (C) of the switch control circuit 5-1, the switch control circuit 5 -1 outputs the close signal SH1, the switch 4-2 is closed, and the converter 2-2 operates.
As a result, the processing power in the converters 2-1 and 2-2 becomes 1/2 C or more, respectively, but since this value is smaller than the set value (C) of the switch control circuit 5-2, the switch control circuit 5- 2 does not output the closing signal SH2, and the switch 4
-3 remains open and converter 2-3 remains dormant.

【0024】次に、さらに日射強度が増大して、検出手
段3−2による検出値S2がスイッチ制御回路5−2の
設定値(C)以上になると閉信号SH2が出力され、ス
イッチ4−3が閉じられ、コンバータ2−3が作動す
る。これにより、コンバータ2−1,2−2,2−3で
の処理電力は各々2/3C以上になり、変換効率は高く
維持される。このとき、検出手段3−2の検出値S2は
コンバータ2−2,2−3の処理電力を加え合わせた値
4/3C以上に増加するため、スイッチ4−3がチャタ
リングを起こすことはない。
Next, when the solar radiation intensity further increases and the detected value S2 by the detecting means 3-2 becomes equal to or greater than the set value (C) of the switch control circuit 5-2, the closing signal SH2 is output and the switch 4-3. Is closed and the converter 2-3 is activated. Thereby, the processing power in converters 2-1, 2-2, 2-3 becomes 2 / 3C or more, respectively, and the conversion efficiency is maintained high. At this time, the detection value S2 of the detection means 3-2 increases to 4 / 3C or more, which is the sum of the processing powers of the converters 2-2 and 2-3, so that the switch 4-3 does not cause chattering.

【0025】南中前後の高日射状態時には、これらコン
バータ2−1,2−2,2−3の並列運転状態が保たれ
るが、午後になり日射強度が少し減少して、検出手段3
−2の検出値S2がスイッチ制御回路5−2の設定値
(C)を下回ると、閉信号SH2が出力されなくなりス
イッチ4−3が開かれるので、コンバータ2−3が休止
する。
In the high solar radiation state before and after the south central part, the parallel operation state of these converters 2-1, 2-2, 2-3 is maintained, but in the afternoon, the solar radiation intensity slightly decreases, and the detecting means 3
When the detected value S2 of −2 becomes less than the set value (C) of the switch control circuit 5-2, the closing signal SH2 is not output and the switch 4-3 is opened, so that the converter 2-3 is stopped.

【0026】さらに、日射強度が低下し、検出手段3−
1の検出値S1がスイッチ制御回路5−1の設定値
(C)を下回ると、閉信号SH1が出力されなくなりス
イッチ4−2が開となるので、コンバータ2−2が休止
する。
Further, the intensity of solar radiation decreases, and the detecting means 3-
When the detected value S1 of 1 is less than the set value (C) of the switch control circuit 5-1, the closing signal SH1 is not output and the switch 4-2 is opened, so that the converter 2-2 is stopped.

【0027】このように、太陽電池1−1の発電量に応
じて作動コンバータの数を自動的に調整でき、コンバー
タの負荷率を高く維持することが可能となり、従来のよ
うな変換効率の低下を極力防止することができる。
As described above, the number of working converters can be automatically adjusted according to the amount of power generated by the solar cell 1-1, and the load factor of the converter can be maintained high, resulting in a decrease in conversion efficiency as in the conventional case. Can be prevented as much as possible.

【0028】〔実施例2〕実施例1では、第1のスイッ
チ制御回路5−1からの第2のスイッチ4−2の閉信号
SH1は、第1の検出手段3−1の検出値S1を第1の
スイッチ制御回路5−1の設定値(C)と大小比較して
出力されるが、検出値S1は第2のスイッチ4−2の開
閉前後で変化しないため、太陽電池1−1の発電量がC
の近傍のとき、第2のスイッチ4−2がチャタリングを
起こす可能性がある。このチャタリングを防止する例に
ついて図2に基づき説明する。
[Second Embodiment] In the first embodiment, the closing signal SH1 of the second switch 4-2 from the first switch control circuit 5-1 is the detection value S1 of the first detecting means 3-1. Although it is output by comparing the set value (C) of the first switch control circuit 5-1 with the magnitude, the detected value S1 does not change before and after the opening and closing of the second switch 4-2. Power generation is C
The second switch 4-2 may cause chattering in the vicinity of. An example of preventing this chattering will be described based on FIG.

【0029】図2に示すように、実施例2は図1におい
て、コンバータ2−1,2−2の代わりに定格容量Cの
インバータ7−1,7−2を設け、検出手段3−1によ
る検出値S1がスイッチ制御回路5−1の第1設定値で
ある高レベル設定値(H:H=C)以上になると、閉信
号SH1が出力されスイッチ4−2を閉とするように構
成したものである。ここで、実施例1と異なる点は閉信
号SH1は信号SL1が出力されない限り保持される点
である。その他の構成については実施例1と同様である
ので説明を省略する。
As shown in FIG. 2, in the second embodiment, inverters 7-1 and 7-2 having a rated capacity C are provided in place of the converters 2-1 and 2-2 in FIG. When the detected value S1 is equal to or higher than the high level set value (H: H = C) which is the first set value of the switch control circuit 5-1, the closing signal SH1 is output and the switch 4-2 is closed. It is a thing. Here, the difference from the first embodiment is that the closed signal SH1 is held unless the signal SL1 is output. The other configurations are similar to those of the first embodiment, and thus the description thereof is omitted.

【0030】すなわち、信号SL1は検出手段3−1に
よる検出値S1がスイッチ制御回路5−1の第1設定値
より低い第2設定値である低レベル設定値(L<C)以
下になると出力され、信号SH1をオフにする。これに
より、検出手段3−1による検出値S1がCの近傍に保
持されたときに、スイッチ4−2がチャタリングを起こ
すのを防止できる。
That is, the signal SL1 is output when the detection value S1 by the detection means 3-1 becomes equal to or lower than the low level setting value (L <C) which is the second setting value lower than the first setting value of the switch control circuit 5-1. Then, the signal SH1 is turned off. This prevents the switch 4-2 from chattering when the detection value S1 detected by the detection means 3-1 is held in the vicinity of C.

【0031】〔実施例3〕電力供給装置は、常に低日射
状態から起動するとは限らない。例えば、商用電源と系
統連系させるような場合、系統の停電で一旦休止した
後、再起動する場合には、太陽電池は最大発電容量状態
にあることも考えられる。このような起動時の高日射状
態に適切に対処する装置を実施例3として図3に示す。
[Embodiment 3] The power supply device is not always activated from a low solar radiation state. For example, in the case of system interconnection with a commercial power source, the solar cell may be in the maximum power generation capacity state when the system is temporarily stopped by a system power failure and then restarted. An apparatus for appropriately coping with such a high solar radiation state at startup is shown in FIG. 3 as a third embodiment.

【0032】図3に示すように、電力供給装置E3の起
動時には全インバータを作動し、その後、電力検出値に
応じてカスケード状にインバータを休止・作動を自動調
節するのである。
As shown in FIG. 3, all the inverters are operated when the power supply device E3 is started, and thereafter, the inverters are automatically suspended and operated in a cascade manner according to the detected power value.

【0033】ここで、第2〜第4のスイッチ4−2,4
−3,4−4は常閉スイッチであり、3−1,3−2,
3−3はそれぞれ第1,第2,第3の電力検出手段であ
る。その他の構成については図2と同様であるので説明
を省略する。なお、図中D1〜D3は第1〜第3の分岐
点であり、J1〜J3は第1〜第3の合流点である。こ
こで例えば、スイッチ4−4は、電力検出手段3−3に
よる検出値S3がスイッチ制御回路5−3の低レベル設
定値(L=C)以下になると出力される開信号SL3に
より開とされる。
Here, the second to fourth switches 4-2 and 4
-3 and 4-4 are normally closed switches, 3-1 and 3-2.
Reference numerals 3-3 denote first, second and third power detection means, respectively. Other configurations are the same as those in FIG. 2, and thus description thereof will be omitted. In the figure, D1 to D3 are first to third branch points, and J1 to J3 are first to third confluence points. Here, for example, the switch 4-4 is opened by the open signal SL3 that is output when the detection value S3 by the power detection means 3-3 becomes equal to or lower than the low level set value (L = C) of the switch control circuit 5-3. It

【0034】このようにすると、起動時には全てのイン
バータ回路が閉であるから、高日射状態であっても、イ
ンバータの処理電力が定格容量をオーバーすることはな
い。起動後は日射状態の変化に応じて作動インバータ数
が自動調節される。なお、チャタリング防止のために、
スイッチ制御回路5−1の低レベル設定値LをL<Cと
し、信号SL1は検出値S1がスイッチ制御回路5−1
の高レベル設定値(H=C)以上になって、信号SH1
が出力されるまで保持されるようにしてもよい。
In this way, since all the inverter circuits are closed at the time of start-up, the processing power of the inverter does not exceed the rated capacity even in the high solar radiation state. After startup, the number of operating inverters is automatically adjusted according to changes in solar radiation. In order to prevent chattering,
The low level setting value L of the switch control circuit 5-1 is set to L <C, and the detection value S1 of the signal SL1 is the switch control circuit 5-1.
Becomes higher than the high level set value (H = C) of the signal SH1.
May be held until is output.

【0035】なお、上述の各実施例においては、直流発
電手段として太陽電池を用いた例について示したが、そ
の他の直流発電手段、例えば燃料電池、水力や風力等の
発電電力を直流に変換した直流発電手段でもよい。ま
た、スイッチは通常開と通常閉の並列スイッチで構成し
てもよく、スイッチ制御回路は検出手段が高レベルを検
出したときに、次段の通常開のスイッチを閉じ、検出手
段が低レベルを検出したときに、そのスイッチ制御回路
が属する通常閉のスイッチを開くようにしてもよく、本
発明の要旨を逸脱しない範囲で適宜変更・実施が可能で
ある。
In each of the above-mentioned embodiments, an example in which a solar cell is used as the DC power generation means has been shown, but other DC power generation means, for example, fuel cells, generated power of hydraulic power, wind power, etc., is converted into DC. DC power generation means may be used. Further, the switch may be constituted by a normally open and normally closed parallel switch, and when the detection means detects a high level, the switch control circuit closes the next normally open switch and the detection means sets the low level. When detected, the normally closed switch to which the switch control circuit belongs may be opened, and appropriate changes and implementations are possible without departing from the scope of the present invention.

【0036】[0036]

【発明の効果】以上のように、本発明の電力供給装置に
よれば、きわめて簡便な構成により、直流発電手段の発
電量に応じて、電力変換手段の作動数を自動的かつ容易
に増減させることができるので、作動させた電力変換手
段の負荷率を非常に高く維持することができ、ひいては
電力変換効率の低下を極力防止できる。
As described above, according to the power supply device of the present invention, the number of actuations of the power conversion means is automatically and easily increased or decreased according to the power generation amount of the DC power generation means by the extremely simple structure. Therefore, the load factor of the operated power conversion means can be kept extremely high, and the reduction of the power conversion efficiency can be prevented as much as possible.

【0037】さらに、直流発電手段に第1及び第2の電
力変換手段を並列接続させた場合に、直流発電手段の発
電電力もしくは発電電流を検出する検出手段の検出値が
高レベル設定値以上になったときに第1及び第2電力変
換手段を作動させ、次に検出手段の検出値が高レベル設
定値より低い低レベル設定値以下になったときに、第2
電力変換手段を休止する制御手段とを備えるようにした
ので、第2電力変換手段の作動・休止の繰り返しが生じ
るのを極力防止することができ、信頼性の高い電力供給
装置を提供できる。
Further, when the first and second power conversion means are connected in parallel to the DC power generation means, the detection value of the detection means for detecting the generated power or the generated current of the DC power generation means becomes higher than the high level set value. The first and second power conversion means are actuated when it becomes, and when the detection value of the detection means becomes below the low level set value lower than the high level set value, the second
Since the control means for suspending the power conversion means is provided, it is possible to prevent the repeated operation and suspension of the second power conversion means as much as possible, and it is possible to provide a highly reliable power supply device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る一実施例を示すブロック回路図で
ある。
FIG. 1 is a block circuit diagram showing an embodiment according to the present invention.

【図2】本発明に係る他の実施例を示すブロック回路図
である。
FIG. 2 is a block circuit diagram showing another embodiment according to the present invention.

【図3】本発明に係る他の実施例を示すブロック回路図
である。
FIG. 3 is a block circuit diagram showing another embodiment according to the present invention.

【符号の説明】 1−1,1−2,1−n ・・・ 太陽電池 2−1,2−2,2−3 ・・・ コンバータ 3−1,3−2,3−3 ・・・ 検出手段 4−1,4−2,4−3 ・・・ スイッチ 5−1,5−2,5−3 ・・・ スイッチ制御回路 6−1,6−3 ・・・ 出力端子 7−1,7−2,7−3,7−4 ・・・ インバー
タ E1,E2,E3 ・・・ 電力供給装置
[Explanation of Codes] 1-1, 1-2, 1-n ... Solar cells 2-1, 2-2, 2-3 ... Converters 3-1, 3-2, 3-3 ... Detection means 4-1, 4-2, 4-3 ... Switch 5-1, 5-2, 5-3 ... Switch control circuit 6-1, 6-3 ... Output terminal 7-1 7-2, 7-3, 7-4 ... Inverters E1, E2, E3 ... Power supply device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 直流発電手段と、該直流発電手段に並列
接続させたn(n≧2)個の電力変換手段と、第k(k
=1,・・・,n−1)乃至第nの各々の電力変換手段
の入力合成電力又は出力合成電力、もしくは入力合成電
流又は出力合成電流をそれぞれ検出する第m(m=k)
の検出手段と、第mの検出手段による検出信号でもっ
て、第k+1の電力変換手段の作動・休止を制御する制
御手段とを備えて成る電力供給装置。
1. A direct current power generation means, n (n ≧ 2) power conversion means connected in parallel to the direct current power generation means, and a kth (k)
, 1, ..., N-1) to n-th power conversion means for detecting the input combined power or the output combined power, or the input combined current or the output combined current, respectively.
And a control means for controlling activation / deactivation of the (k + 1) th power conversion means by the detection signal from the mth detection means.
【請求項2】 直流発電手段と、該直流発電手段に並列
接続させた第1及び第2の電力変換手段と、前記直流発
電手段の発電電力もしくは発電電流を検出する検出手段
と、該検出手段の検出値が高レベル設定値以上になった
ときに前記第1及び第2電力変換手段を作動させ、次に
検出手段の検出値が前記高レベル設定値より低い低レベ
ル設定値以下になったときに、前記第2電力変換手段を
休止する制御手段とを備えて成る電力供給装置。
2. DC power generation means, first and second power conversion means connected in parallel to the DC power generation means, detection means for detecting power generated or current generated by the DC power generation means, and the detection means. When the detected value of is above the high level set value, the first and second power conversion means are operated, and then the detected value of the detection means is below the low level set value lower than the high level set value. A power supply device, comprising: control means for suspending the second power conversion means.
JP28274495A 1995-10-31 1995-10-31 Power supply Expired - Fee Related JP3534914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28274495A JP3534914B2 (en) 1995-10-31 1995-10-31 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28274495A JP3534914B2 (en) 1995-10-31 1995-10-31 Power supply

Publications (2)

Publication Number Publication Date
JPH09131067A true JPH09131067A (en) 1997-05-16
JP3534914B2 JP3534914B2 (en) 2004-06-07

Family

ID=17656494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28274495A Expired - Fee Related JP3534914B2 (en) 1995-10-31 1995-10-31 Power supply

Country Status (1)

Country Link
JP (1) JP3534914B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11341816A (en) * 1998-05-22 1999-12-10 Sanyo Electric Co Ltd Method for operating inverter and power system
JP2000188875A (en) * 1998-10-15 2000-07-04 Canon Inc Photovoltaic power generation device and method for controlling the same
JP2000341959A (en) * 1999-05-31 2000-12-08 Kawasaki Steel Corp Power generating system
JP2007259694A (en) * 2006-03-23 2007-10-04 Pvi Solutions Inc Method and device for converting direct current to alternating current
US8384364B2 (en) 2009-10-15 2013-02-26 Fuji Electric Co., Ltd. Unit inverter system
US9436198B2 (en) 2006-03-23 2016-09-06 Enphase Energy, Inc. Method and apparatus for power conversion
US9461552B2 (en) 2006-03-23 2016-10-04 Enphase Energy, Inc. Method and apparatus for power conversion

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11341816A (en) * 1998-05-22 1999-12-10 Sanyo Electric Co Ltd Method for operating inverter and power system
JP2000188875A (en) * 1998-10-15 2000-07-04 Canon Inc Photovoltaic power generation device and method for controlling the same
JP2000341959A (en) * 1999-05-31 2000-12-08 Kawasaki Steel Corp Power generating system
JP2007259694A (en) * 2006-03-23 2007-10-04 Pvi Solutions Inc Method and device for converting direct current to alternating current
JP2012235688A (en) * 2006-03-23 2012-11-29 Enphase Energy Inc Method and device for converting direct current to alternating current
US8717780B2 (en) 2006-03-23 2014-05-06 Enphase Energy, Inc. Method and apparatus for converting direct current to alternating current
US9436198B2 (en) 2006-03-23 2016-09-06 Enphase Energy, Inc. Method and apparatus for power conversion
US9461552B2 (en) 2006-03-23 2016-10-04 Enphase Energy, Inc. Method and apparatus for power conversion
US8384364B2 (en) 2009-10-15 2013-02-26 Fuji Electric Co., Ltd. Unit inverter system

Also Published As

Publication number Publication date
JP3534914B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
US4725740A (en) DC-AC converting arrangement for photovoltaic system
KR100686281B1 (en) Method of operating a power supply system having parallel-connected inverters, and power converting system
JP3254839B2 (en) Parallel operation control method of grid connection inverter
EP2224571B1 (en) Power supply system
JPH08275390A (en) Method and apparatus for controlling charging and discharging, and power generating system having such apparatus
JPWO2006033143A1 (en) Photovoltaic power generation system and its boosting unit
JP2002315197A (en) Hybrid power supply system and its operation method
US9444366B2 (en) Dual mode micro-inverter system and operation
JP4293673B2 (en) Operation method of power supply system having a plurality of inverters
JPH1023671A (en) Power conditioner and dispersed power supplying system
JP3534914B2 (en) Power supply
JPH1023673A (en) Power conditioner and dispersed power supplying system
JP3469678B2 (en) DC power supply system
JP2000102196A (en) Uninterruptible power supply
JPH10201129A (en) Power generation installation making use of solar energy
JPH0946924A (en) Uninterruptible power supply with solar battery
JPH0965582A (en) Power supply system utilizing solar cell
JPH10210685A (en) Controlling method for system-interconnected power converter for fuel cell
EP3451522B1 (en) System including a power supply control apparatus and a switching device, distributed power supply sytem comprising the system and control method for the power supply control apparatus
JPH10127071A (en) Solar power generator
JP2009247185A (en) System-cooperative inverter and its self-sustaining operation method
JPH06133462A (en) System interconnection system
JPH09179643A (en) Power converter for photovoltatic power generation
JPH09131068A (en) Power feeder
JPH10201130A (en) Power generation installation making use of solar energy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040310

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees